Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrophysiological characterization of human KCNT1 channel modulators and the therapeutic potential of hydroquinine and tipepidine in KCNT1 mutation-associated epilepsy mouse model

Abstract

Patients suffering epilepsy caused by the gain-of-function mutants of the hKCNT1 potassium channels are drug refractory. In this study, we cloned a novel human KCNT1B channel isoform using the brain cDNA library and conducted patch-clamp and molecular docking analyses to characterize the pharmacological properties of the hKCNT1B channel using thirteen drugs. Among cinchona alkaloids, we found that hydroquinine exerted the strongest blocking effect on the hKCNT1B channel, especially the F313L mutant. In addition, we confirmed the antitussive drug tipepidine was also a potent inhibitor of the hKCNT1B channel. Subsequently, we proved that these two drugs produced an excellent therapeutic effect on the epileptic model of KCNT1 Y777H mutant male mice; thus, both could be ready-to-use anti-epileptic drugs. On the other hand, we demonstrated that the activation of the KCNT1 channel by loxapine and clozapine was through interacting with pore domain residues to reverse the run-down of the KCNT1 channel. Taken together, our results provide new insights into the mechanism of the modulators in regulating the KCNT1 channel activity as well as important candidates for clinical tests in the treatment of KCNT1 mutant-associated epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 4-AP and TEA block the hKCNT1B both intracellularly and extracellularly.
Fig. 2: Quinidine intracellularly and extracellularly blocks the hKCNT1B channel and its mutants.
Fig. 3: Comparison of the blockade of the hKCNT1B channel and F313L mutant by cinchona alkaloids.
Fig. 4: The blockades of the hKCNT1B channel by paxilline, VPA, and propofol.
Fig. 5: The blockade of hKCNT1B channels by tipepidine (TIP) and dextromethorphan (DXM).
Fig. 6: Hydroquinine and tipepidine effectively treated the spontaneous seizures of the KCNT1 Y777H mice.
Fig. 7: Loxapine reverses the rundown of the hKCNT1B channel.
Fig. 8: The 4-AP and TEA binding sites in Kv channels and the pore structure characters of BK channel family members.

Similar content being viewed by others

References

  1. Yuan A, Santi CM, Wei A, Wang ZW, Pollak K, Nonet M, et al. The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron. 2003;37:765–73.

    Article  CAS  PubMed  Google Scholar 

  2. Xu J, Lv YT, Zhao XY, Wang JJ, Shen ZS, Li J, et al. Identification of sodium- and chloride-sensitive sites in the Slack channel. J Neurosci. 2023;43:2665–81.

  3. Hite RK, Yuan P, Li Z, Hsuing Y, Walz T, MacKinnon R. Cryo-electron microscopy structure of the Slo2.2 Na+-activated K+ channel. Nature. 2015;527:198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hite RK, MacKinnon R. Structural titration of Slo2.2, a Na+-dependent K+ channel. Cell. 2017;168:390–9.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martinez-Espinosa PL, Wu J, Yang C, Gonzalez-Perez V, Zhou H, Liang H, et al. Knockout of Slo2.2 enhances itch, abolishes KNa current, and increases action potential firing frequency in DRG neurons. Elife. 2015;4:e10013.1–27.

  6. Joiner WJ, Tang MD, Wang LY, Dworetzky SI, Boissard CG, Gan L, et al. Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nat Neurosci. 1998;1:462–9.

    Article  CAS  PubMed  Google Scholar 

  7. Bhattacharjee A, Gan L, Kaczmarek LK. Localization of the Slack potassium channel in the rat central nervous system. J Comp Neurol. 2002;454:241–54.

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Zhang FF, Song Y, Wang R, Zhang Q, Shen ZS, et al. The Slack channel deletion causes mechanical pain hypersensitivity in mice. Front Mol Neurosci. 2022;15:811441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shore AN, Colombo S, Tobin WF, Petri S, Cullen ER, Dominguez S, et al. Reduced GABAergic neuron excitability, altered synaptic connectivity, and seizures in a KCNT1 gain-of-function mouse model of childhood epilepsy. Cell Rep. 2020;33:108303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Q, Gao SH, Shen ZS, Wang Y, Hu SW, Duan GB, et al. The Slack channel regulates anxiety-like behaviors via basolateral amygdala glutamatergic projections to ventral hippocampus. J Neurosci. 2022;42:3049–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heron SE, Smith KR, Bahlo M, Nobili L, Kahana E, Licchetta L, et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 2012;44:1188–90.

    Article  CAS  PubMed  Google Scholar 

  12. Kuchenbuch M, Barcia G, Chemaly N, Carme E, Roubertie A, Gibaud M, et al. KCNT1 epilepsy with migrating focal seizures shows a temporal sequence with poor outcome, high mortality and SUDEP. Brain. 2019;142:2996–3008.

    Article  PubMed  Google Scholar 

  13. Borlot F, Abushama A, Morrison-Levy N, Jain P, Puthenveettil Vinayan K, Abukhalid M, et al. KCNT1-related epilepsy: an international multicenter cohort of 27 pediatric cases. Epilepsia. 2020;61:679–92.

    Article  CAS  PubMed  Google Scholar 

  14. Hildebrand MS, Myers CT, Carvill GL, Regan BM, Damiano JA, Mullen SA, et al. A targeted resequencing gene panel for focal epilepsy. Neurology. 2016;86:1605–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burgess R, Wang S, McTague A, Boysen KE, Yang X, Zeng Q, et al. The genetic landscape of epilepsy of infancy with migrating focal seizures. Ann Neurol. 2019;86:821–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohba C, Kato M, Takahashi N, Osaka H, Shiihara T, Tohyama J, et al. De novo KCNT1 mutations in early-onset epileptic encephalopathy. Epilepsia. 2015;56:e121–8.

    Article  CAS  PubMed  Google Scholar 

  17. Ishii A, Shioda M, Okumura A, Kidokoro H, Sakauchi M, Shimada S, et al. A recurrent KCNT1 mutation in two sporadic cases with malignant migrating partial seizures in infancy. Gene. 2013;531:467–71.

    Article  CAS  PubMed  Google Scholar 

  18. Gertler TS, Thompson CH, Vanoye CG, Millichap JJ, George AL Jr. Functional consequences of a KCNT1 variant associated with status dystonicus and early-onset infantile encephalopathy. Ann Clin Transl Neurol. 2019;6:1606–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shimada S, Hirano Y, Ito S, Oguni H, Nagata S, Shimojima K, et al. A novel KCNT1 mutation in a Japanese patient with epilepsy of infancy with migrating focal seizures. Hum Genome Var. 2014;1:14027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rizzo F, Ambrosino P, Guacci A, Chetta M, Marchese G, Rocco T, et al. Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. Mol Cell Neurosci. 2016;72:54–63.

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y, Bao XH, Zhang QP, Wang JP, Wen YX, Yu SJ, et al. [Genetic and clinical analysis of children with early-onset epilepsy encephalopathy caused by KCNT1 gene mutation]. Zhonghua Er Ke Za Zhi. 2018;56:824–8.

  22. Arai-Ichinoi N, Uematsu M, Sato R, Suzuki T, Kudo H, Kikuchi A, et al. Genetic heterogeneity in 26 infants with a hypomyelinating leukodystrophy. Hum Genet. 2016;135:89–98.

    Article  CAS  PubMed  Google Scholar 

  23. Martin HC, Kim GE, Pagnamenta AT, Murakami Y, Carvill GL, Meyer E, et al. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum Mol Genet. 2014;23:3200–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jia Y, Lin Y, Li J, Li M, Zhang Y, Hou Y, et al. Quinidine therapy for Lennox-Gastaut syndrome with KCNT1 mutation. A case report and literature review. Front Neurol. 2019;10:64.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moller RS, Heron SE, Larsen LH, Lim CX, Ricos MG, Bayly MA, et al. Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia. 2015;56:e114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Numis AL, Nair U, Datta AN, Sands TT, Oldham MS, Patel A, et al. Lack of response to quinidine in KCNT1-related neonatal epilepsy. Epilepsia. 2018;59:1889–98.

    Article  CAS  PubMed  Google Scholar 

  27. Kawasaki Y, Kuki I, Ehara E, Murakami Y, Okazaki S, Kawawaki H, et al. Three cases of KCNT1 mutations: malignant migrating partial seizures in infancy with massive systemic to pulmonary collateral arteries. J Pediatr. 2017;191:270–4.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Q, Liu Y, Xu J, Teng Y, Zhang Z. The functional properties, physiological roles, channelopathy and pharmacological characteristics of the Slack (KCNT1) channel. Adv Exp Med Biol. 2021;1349:387–400.

    Article  CAS  PubMed  Google Scholar 

  29. Tang QY, Zhang FF, Xu J, Wang R, Chen J, Logothetis DE, et al. Epilepsy-related Slack channel mutants lead to channel over-activity by two different mechanisms. Cell Rep. 2016;14:129–39.

    Article  CAS  PubMed  Google Scholar 

  30. Bearden D, Strong A, Ehnot J, DiGiovine M, Dlugos D, Goldberg EM. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann Neurol. 2014;76:457–61.

    Article  CAS  PubMed  Google Scholar 

  31. Milligan CJ, Li M, Gazina EV, Heron SE, Nair U, Trager C, et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol. 2014;75:581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fukuoka M, Kuki I, Kawawaki H, Okazaki S, Kim K, Hattori Y, et al. Quinidine therapy for West syndrome with KCNTI mutation: a case report. Brain Dev. 2017;39:80–3.

    Article  PubMed  Google Scholar 

  33. Dilena R, DiFrancesco JC, Soldovieri MV, Giacobbe A, Ambrosino P, Mosca I, et al. Early treatment with quinidine in 2 patients with epilepsy of infancy with migrating focal seizures (EIMFS) due to gain-of-function KCNT1 mutations: functional studies, clinical responses, and critical issues for personalized therapy. Neurotherapeutics. 2018;15:1112–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mikati MA, Jiang YH, Carboni M, Shashi V, Petrovski S, Spillmann R, et al. Quinidine in the treatment of KCNT1-positive epilepsies. Ann Neurol. 2015;78:995–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mullen SA, Carney PW, Roten A, Ching M, Lightfoot PA, Churilov L, et al. Precision therapy for epilepsy due to KCNT1 mutations: a randomized trial of oral quinidine. Neurology. 2018;90:e67–72.

    Article  CAS  PubMed  Google Scholar 

  36. Fitzgerald MP, Fiannacca M, Smith DM, Gertler TS, Gunning B, Syrbe S, et al. Treatment responsiveness in KCNT1-related epilepsy. Neurotherapeutics. 2019;16:848–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abdelnour E, Gallentine W, McDonald M, Sachdev M, Jiang YH, Mikati MA. Does age affect response to quinidine in patients with KCNT1 mutations? Report of three new cases and review of the literature. Seizure. 2018;55:1–3.

    Article  PubMed  Google Scholar 

  38. Yoshitomi S, Takahashi Y, Yamaguchi T, Oboshi T, Horino A, Ikeda H, et al. Quinidine therapy and therapeutic drug monitoring in four patients with KCNT1 mutations. Epileptic Disord. 2019;21:48–54.

    Article  PubMed  Google Scholar 

  39. Madaan P, Jauhari P, Gupta A, Chakrabarty B, Gulati S. A quinidine non responsive novel KCNT1 mutation in an Indian infant with epilepsy of infancy with migrating focal seizures. Brain Dev. 2018;40:229–32.

    Article  PubMed  Google Scholar 

  40. McTague A, Nair U, Malhotra S, Meyer E, Trump N, Gazina EV, et al. Clinical and molecular characterization of KCNT1-related severe early-onset epilepsy. Neurology. 2018;90:e55–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu D, Chen S, Yang J, Wang X, Fang Z, Li M. Precision therapy with quinidine of KCNT1-related epileptic disorders: a systematic review. Br J Clin Pharmacol. 2022;88:5096–112.

    Article  CAS  PubMed  Google Scholar 

  42. Mori K, Saito T, Masuda Y, Nakaya H. Effects of class III antiarrhythmic drugs on the Na+-activated K+ channels in guinea-pig ventricular cells. Br J Pharmacol. 1996;119:133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mori K, Kobayashi S, Saito T, Masuda Y, Nakaya H. Inhibitory effects of class I and IV antiarrhythmic drugs on the Na+-activated K+ channel current in guinea pig ventricular cells. Naunyn Schmiedebergs Arch Pharmacol. 1998;358:641–8.

    Article  CAS  PubMed  Google Scholar 

  44. Yang B, Gribkoff VK, Pan J, Damagnez V, Dworetzky SI, Boissard CG, et al. Pharmacological activation and inhibition of Slack (Slo2.2) channels. Neuropharmacology. 2006;51:896–906.

    Article  CAS  PubMed  Google Scholar 

  45. Cole BA, Johnson RM, Dejakaisaya H, Pilati N, Fishwick CWG, Muench SP, et al. Structure-based identification and characterization of inhibitors of the epilepsy-associated KNa1.1 (KCNT1) potassium channel. iScience. 2020;23:101100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Spitznagel BD, Mishra NM, Qunies AM, Prael FJ, 3rd, Du Y, Kozek KA, et al. VU0606170, a selective Slack channels inhibitor, decreases calcium oscillations in cultured cortical neurons. ACS Chem Neurosci. 2020;11:3658–71.

    Article  CAS  PubMed  Google Scholar 

  47. Griffin AM, Kahlig KM, Hatch RJ, Hughes ZA, Chapman ML, Antonio B, et al. Discovery of the first orally available, selective K(Na)1.1 inhibitor: in vitro and in vivo activity of an oxadiazole series. ACS Med Chem Lett. 2021;12:593–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Biton B, Sethuramanujam S, Picchione KE, Bhattacharjee A, Khessibi N, Chesney F, et al. The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2). J Pharmacol Exp Ther. 2012;340:706–15.

    Article  CAS  PubMed  Google Scholar 

  49. Evely KM, Pryce KD, Bhattacharjee A. The Phe932Ile mutation in KCNT1 channels associated with severe epilepsy, delayed myelination and leukoencephalopathy produces a loss-of-function channel phenotype. Neuroscience. 2017;351:65–70.

    Article  CAS  PubMed  Google Scholar 

  50. Wang GM, Zhong ZG, Du XR, Zhang FF, Guo Q, Liu Y, et al. Cloning and characterization of the rat Slo3 (K(Ca) 5.1) channel: from biophysics to pharmacology. Br J Pharmacol. 2020;177:3552–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tang QY, Kolanos R, De Felice LJ, Glennon RA. Structural analysis of dopamine- and amphetamine-induced depolarization currents in the human dopamine transporter. ACS Chem Neurosci. 2015;6:551–8.

    Article  CAS  PubMed  Google Scholar 

  52. Xie C, Liu HW, Pan N, Ding JP, Yao J. The residue I257 at S4-S5 linker in KCNQ1 determines KCNQ1/KCNE1 channel sensitivity to 1-alkanols. Acta Pharmacol Sin. 2016;37:124–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bitencourt-Ferreira G, Pintro VO, de Azevedo WF Jr. Docking with AutoDock4. Methods Mol Biol. 2019;2053:125–48.

    Article  CAS  PubMed  Google Scholar 

  54. Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81.

    Article  CAS  PubMed  Google Scholar 

  55. Luttjohann A, Fabene PF, van Luijtelaar G. A revised Racine’s scale for PTZ-induced seizures in rats. Physiol Behav. 2009;98:579–86.

    Article  PubMed  Google Scholar 

  56. Liu J, Liu X, Zhou WY, Gan J, Wang J, Zhang Q, et al. The activation of GABAergic neurons in the hypothalamic tuberomammillary nucleus attenuates sevoflurane and propofol-induced anesthesia in mice. Front Pharmacol. 2023;14:1153735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yeste M, Llavanera M, Pérez G, Scornik F, Puig-Parri J, Brugada R, et al. Elucidating the role of K+ channels during in vitro capacitation of boar spermatozoa: do SLO1 channels play a crucial role? Int J Mol Sci. 2019;20:1–21.

  58. Zhou Y, Tang QY, Xia XM, Lingle CJ. Glycine311, a determinant of paxilline block in BK channels: a novel bend in the BK S6 helix. J Gen Physiol. 2010;135:481–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Romoli M, Mazzocchetti P, D’Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, et al. Valproic acid and epilepsy: from molecular mechanisms to clinical evidences. Curr Neuropharmacol. 2019;17:926–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Takase C, Shirai K, Matsumura Y, Watanabe T, Watanabe A, Hirasawa-Inoue A, et al. KCNT1-positive epilepsy of infancy with migrating focal seizures successfully treated with nonnarcotic antitussive drugs after treatment failure with quinidine: a case report. Brain Dev. 2020;42:607–11.

    Article  PubMed  Google Scholar 

  61. Schmiedl S, Peters D, Schmalz O, Mielke A, Rossmanith T, Diop S, et al. Loxapine for treatment of patients with refractory, chemotherapy-induced neuropathic pain: a prematurely terminated pilot study showing efficacy but limited tolerability. Front Pharmacol. 2019;10:838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tang QY, Zhang Z, Xia XM, Lingle CJ. Block of mouse Slo1 and Slo3 K+ channels by CTX, IbTX, TEA, 4-AP and quinidine. Channels. 2010;4:22–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kirsch GE, Shieh CC, Drewe JA, Vener DF, Brown AM. Segmental exchanges define 4-aminopyridine binding and the inner mouth of K+ pores. Neuron. 1993;11:503–12.

    Article  CAS  PubMed  Google Scholar 

  64. Shieh CC, Kirsch GE. Mutational analysis of ion conduction and drug binding sites in the inner mouth of voltage-gated K+ channels. Biophys J. 1994;67:2316–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Choquet D, Korn H. Mechanism of 4-aminopyridine action on voltage-gated potassium channels in lymphocytes. J Gen Physiol. 1992;99:217–40.

    Article  CAS  PubMed  Google Scholar 

  66. Armstrong CM, Hollingworth S. Na+ and K+ channels: history and structure. Biophys J. 2021;120:756–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lenaeus MJ, Vamvouka M, Focia PJ, Gross A. Structural basis of TEA blockade in a model potassium channel. Nat Struct Mol Biol. 2005;12:454–9.

    Article  CAS  PubMed  Google Scholar 

  68. Yellen G, Jurman ME, Abramson T, MacKinnon R. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science. 1991;251:939–42.

    Article  CAS  PubMed  Google Scholar 

  69. Mikov M, Kevresan S, Kuhajda K, Jakovljevic V, Vasovic V. 3Alpha,7alpha-dihydroxy-12-oxo-5beta-cholanate as blood-brain barrier permeator. Pol J Pharmacol. 2004;56:367–71.

    CAS  PubMed  Google Scholar 

  70. Liu X, Van Natta K, Yeo H, Vilenski O, Weller PE, Worboys PD, et al. Unbound drug concentration in brain homogenate and cerebral spinal fluid at steady state as a surrogate for unbound concentration in brain interstitial fluid. Drug Metab Dispos. 2009;37:787–93.

    Article  CAS  PubMed  Google Scholar 

  71. Costa-Jussa FR, Jacobs JM. The pathology of amiodarone neurotoxicity. I. Experimental studies with reference to changes in other tissues. Brain. 1985;108:735–52.

    PubMed  Google Scholar 

  72. Brien JF, Jimmo S, Brennan FJ, Ford SE, Armstrong PW. Distribution of amiodarone and its metabolite, desethylamiodarone, in human tissues. Can J Physiol Pharmacol. 1987;65:360–4.

    Article  CAS  PubMed  Google Scholar 

  73. Brien JF, Jimmo S, Brennan FJ, Armstrong PW, Abdollah H. Disposition of amiodarone and its proximate metabolite, desethylamiodarone, in the dog for oral administration of single-dose and short-term drug regimens. Drug Metab Dispos. 1990;18:846–51.

    Article  CAS  PubMed  Google Scholar 

  74. Singh BN. Bepridil therapy: guidelines for patient selection and monitoring of therapy. Am J Cardiol. 1992;69:79D–85D.

    Article  CAS  PubMed  Google Scholar 

  75. Wei YL, Lei YQ, Ye ZJ, Zhuang XD, Zhu LP, Wang XR, et al. Effects of bepridil on early cardiac development of zebrafish. Cell Tissue Res. 2023;391:375–91.

    Article  CAS  PubMed  Google Scholar 

  76. Kojima A, Ito Y, Ding WG, Kitagawa H, Matsuura H. Interaction of propofol with voltage-gated human Kv1.5 channel through specific amino acids within the pore region. Eur J Pharmacol. 2015;764:622–32.

    Article  CAS  PubMed  Google Scholar 

  77. Yang L, Liu H, Sun HY, Li GR. Intravenous anesthetic propofol inhibits multiple human cardiac potassium channels. Anesthesiology. 2015;122:571–84.

    Article  CAS  PubMed  Google Scholar 

  78. Zanatta G, Sula A, Miles AJ, Ng LCT, Torella R, Pryde DC, et al. Valproic acid interactions with the NavMs voltage-gated sodium channel. Proc Natl Acad Sci USA. 2019;116:26549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miki R, Honda I, Hamasaki R, Kawahara R, Soeda F, Shirasaki T, et al. Effects of tipepidine on MK-801-induced cognitive impairment in mice. Brain Res. 2019;1710:230–6.

    Article  CAS  PubMed  Google Scholar 

  80. Aylward M, Maddock J, Davies DE, Protheroe DA, Leideman T. Dextromethorphan and codeine: comparison of plasma kinetics and antitussive effects. Eur J Respir Dis. 1984;65:283–91.

    CAS  PubMed  Google Scholar 

  81. Nanou E, Kyriakatos A, Bhattacharjee A, Kaczmarek LK, Paratcha G, El Manira A. Na+-mediated coupling between AMPA receptors and KNa channels shapes synaptic transmission. Proc Natl Acad Sci USA. 2008;105:20941–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nguyen L, Matsumoto RR. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice. Behav Brain Res. 2015;295:26–34.

    Article  CAS  PubMed  Google Scholar 

  83. Egan TM, Dagan D, Kupper J, Levitan IB. Properties and rundown of sodium-activated potassium channels in rat olfactory bulb neurons. J Neurosci. 1992;12:1964–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Natural Science Foundation of China (NSFC) grant to ZZ (81471314 and 81671090), Natural Science Foundation of Jiangsu Province to ZZ (SBK201502515), Xuzhou Science and Technology Program (KC19036) to ZZ and (KC16H0230) to QYT, an NSFC grant to QYT (82371233). The Important Project of Natural Science in Colleges and Universities in Jiangsu Province to ZZ (14KJA320002), Jiangsu specially appointed professor to ZZ and QYT, We also appreciate the grant support from the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Jiangsu Provincial Special Program of Medical Science (BL2014029). Jiangsu Province College Students’ Innovative Entrepreneurial Training Plan Program to YMW (202110313072). The general project of the developing grant for the Affiliated Hospital of Xuzhou Medical University to MJK (XYFM202330).

Author information

Authors and Affiliations

Authors

Contributions

QG, JG, EZW, and YMW performed research and analyzed the data. FFZ cloned the hKCNT1 channel. YX tested the electrophysiological property of the hKCNT1 channel. JX and MC generated the modeling structure. MJK and MXJ provided useful suggestions and supervised surgery. QYT and ZZ designed the experiment and wrote the paper. All authors have approved the final version of this manuscript.

Corresponding authors

Correspondence to Meng-xing Jia, Ming-jian Kong, Qiong-yao Tang or Zhe Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Gan, J., Wang, Ez. et al. Electrophysiological characterization of human KCNT1 channel modulators and the therapeutic potential of hydroquinine and tipepidine in KCNT1 mutation-associated epilepsy mouse model. Acta Pharmacol Sin 46, 1190–1204 (2025). https://doi.org/10.1038/s41401-024-01457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01457-8

Keywords

Search

Quick links