Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

eIF4A1 exacerbates myocardial ischemia-reperfusion injury in mice by promoting nuclear translocation of transgelin/p53

Abstract

Eukaryotic translation initiation factor 4A1 (eIF4A1) is an ATP-dependent RNA helicase that participates in a variety of biological and pathological processes such as cell proliferation and apoptosis, and cancer. In this study we investigated the role of eIF4A1 in ischemic heart disease. The myocardial ischemia/reperfusion (I/R) model was established in mice by ligation of the left anterior descending artery for 45 min with the subsequent reperfusion for 24 h; cultured neonatal mouse ventricular cardiomyocytes (NMVCs) treated with H2O2 (200 μM) or H/R (12 h hypoxia and 12 h reoxygenation) were used for in vitro study. We showed that the expression levels of eIF4A1 were significantly increased in I/R-treated myocardium and in H2O2- or H/R-treated NMVCs. In NMVCs, eIF4A1 overexpression drastically enhanced LDH level, caspase 3 activity, and cell apoptosis. eIF4A1 overexpression also significantly reduced anti-apoptotic protein Bcl2 and elevated pro-apoptotic protein Bax expression, whereas eIF4A1 deficiency produced the opposite responses. Importantly, cardiomyocyte-specific eIF4A1 knockout attenuated cardiomyocyte apoptosis, reduced infarct area, and improved cardiac function in myocardial I/R mice. We demonstrated that eIF4A1 directly bound to transgelin (Tagln) to prevent its ubiquitination degradation and subsequent up-regulation of p53, and then promoted nuclear translocation of Tagln and p53. Nuclear localization of Tagln and p53 was increased in H2O2-treated NMVCs. Silencing Tagln reversed the pro-apoptotic effects of eIF4A1. Noticeably, eIF4A1 exerted the similar effects in AC16 human cardiomyocytes. In conclusion, eIF4A1 is a detrimental factor in myocardial I/R injury via promoting expression and nuclear translocation of Tagln and p53 and might be a potential target for myocardial I/R injury. This study highlights a novel biological role of eIF4A1 by interacting with non-translational-related factor Tagln in myocardial I/R injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Increased expression of eIF4A1 in I/R mouse hearts and H2O2- or H/R-treated cardiomyocytes.
Fig. 2: Effects of eIF4A1 on cardiomyocyte apoptosis.
Fig. 3: eIF4A1 deficiency improved cardiac function and rescued cell apoptosis following I/R injury.
Fig. 4: eIF4A1 binding to Tagln inhibited its ubiquitination.
Fig. 5: Effects of Tagln on cardiomyocyte apoptosis.
Fig. 6: EIF4A1 mediated cardiomyocyte apoptosis through Tagln/p53 pathway.
Fig. 7: Pro-apoptotic effects of eIF4A1 in AC16 cells.
Fig. 8

Similar content being viewed by others

References

  1. Rogers GW Jr., Komar AA, Merrick WC. eIF4A: the godfather of the DEAD box helicases. Prog Nucleic Acid Res Mol Biol. 2002;72:307–31.

    Article  CAS  PubMed  Google Scholar 

  2. Svitkin YV, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham GJ, et al. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5’ secondary structure. RNA. 2001;7:382–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang C, Leavenworth J, Zhang C, Liu Z, Yuan KY, Wang Y, et al. Epigenetic regulation of eIF4A1 through DNA methylation and an oncogenic role of eIF4A1 through BRD2 signaling in prostate cancer. Oncogene. 2022;41:2778–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao C, Guo X, Xue A, Ruan Y, Wang H, Gao X. High intratumoral expression of eIF4A1 promotes epithelial-to-mesenchymal transition and predicts unfavorable prognosis in gastric cancer. Acta Biochim Biophys Sin. 2020;52:310–9.

    Article  CAS  PubMed  Google Scholar 

  5. George J, Li Y, Kadamberi IP, Parashar D, Tsaih SW, Gupta P, et al. RNA-binding protein FXR1 drives cMYC translation by recruiting eIF4F complex to the translation start site. Cell Rep. 2021;37:109934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tyagi V, Parihar V, Singh D, Kapoor S, Kapoor M. The DEAD-box RNA helicase eIF4A1 interacts with the SWI2/SNF2-related chromatin remodelling ATPase DDM1 in the moss Physcomitrella. Biochim Biophys Acta Proteins Proteom. 2021;1869:140592.

    Article  CAS  PubMed  Google Scholar 

  7. Miao SB, Xie XL, Yin YJ, Zhao LL, Zhang F, Shu YN, et al. Accumulation of smooth muscle 22α protein accelerates senescence of vascular smooth muscle cells via stabilization of p53 in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2017;37:1849–59.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Q, Zhang L, Wan C, Yang B, Kong X, Xu X, et al. Transgelin promotes ferroptosis to inhibit the malignant progression of esophageal squamous cell carcinoma. Int J Oncol. 2023;63:76

  9. Zhang ZW, Yang ZM, Zheng YC, Chen ZD. Transgelin induces apoptosis of human prostate LNCaP cells through its interaction with p53. Asian J Androl. 2010;12:186–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wei X, Lou H, Zhou D, Jia Y, Li H, Huang Q, et al. TAGLN mediated stiffness-regulated ovarian cancer progression via RhoA/ROCK pathway. J Exp Clin Cancer Res. 2021;40:292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li Y, Huang X, Jin J, Zhang H, Yang K, Han J, et al. Interaction of TAGLN and USP1 promotes ZEB1 ubiquitination degradation in UV-induced skin photoaging. Cell Biosci. 2023;13:80.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yuan J, Luo K, Zhang L, Cheville JC, Lou Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell. 2010;140:384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang XD, Qin ZH, Wang J. The role of p53 in cell metabolism. Acta Pharmacol Sin. 2010;31:1208–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J, et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell. 2003;4:321–8.

    Article  CAS  PubMed  Google Scholar 

  15. Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H, Takaoka A, et al. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev. 2003;17:2233–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80:293–9.

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y, Zhang Y, Yang J, Zhang M, Tian T, Jiang Y, et al. Interdependent nuclear co-trafficking of ASPP1 and p53 aggravates cardiac ischemia/reperfusion injury. Circ Res. 2023;132:208–22.

    Article  CAS  PubMed  Google Scholar 

  18. Liu PY, Tee AE, Milazzo G, Hannan KM, Maag J, Mondal S, et al. The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35. Nat Commun. 2019;10:5026.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu S, Xu S, Li R, Li K, Zhong X, Li Y, et al. mTORC1-Rps15 axis contributes to the mechanisms underlying global translation reduction during senescence of mouse embryonic fibroblasts. Front Cell Dev Biol. 2019;7:337.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature. 2014;513:65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Modelska A, Turro E, Russell R, Beaton J, Sbarrato T, Spriggs K, et al. The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape. Cell Death Dis. 2015;6:e1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang S, Ju X, Zhou Y, Chen Y, Ke G, Wen H, et al. Downregulation of eukaryotic initiation factor 4A1 improves radiosensitivity by delaying DNA double strand break repair in cervical cancer. Oncol Lett. 2017;14:6976–82.

    PubMed  PubMed Central  Google Scholar 

  23. Ma X, Li B, Liu J, Fu Y, Luo Y. Phosphoglycerate dehydrogenase promotes pancreatic cancer development by interacting with eIF4A1 and eIF4E. J Exp Clin Cancer Res. 2019;38:66.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu C, Liu D, Zhang L, Wang J, Ding Y, Sun Z, et al. 5’-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I. Front Med. 2023;17:476-492.

  25. Zhao Y, Wang Y, Chen W, Bai S, Peng W, Zheng M, et al. Targeted intervention of eIF4A1 inhibits EMT and metastasis of pancreatic cancer cells via c-MYC/miR-9 signaling. Cancer Cell Int. 2021;21:670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang L, Li L, Yang T, Li W, Song L, Meng X, et al. Transgelin as a potential target in the reversibility of pulmonary arterial hypertension secondary to congenital heart disease. J Cell Mol Med. 2018;22:6249–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Z, He S, Zhan Y, He A, Fang D, Gong Y, et al. TGF-beta-induced transgelin promotes bladder cancer metastasis by regulating epithelial-mesenchymal transition and invadopodia formation. EBioMedicine. 2019;47:208–20.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Meng X, Liu X, Guo X, Jiang S, Chen T, Hu Z, et al. FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature. 2018;564:130–5.

    Article  CAS  PubMed  Google Scholar 

  29. Yang W, Zhuang Y, Wu H, Su S, Li Y, Wang C, et al. Substrate-dependent interaction of SPOP and RACK1 aggravates cardiac fibrosis following myocardial infarction. Cell Chem Biol. 2023;30:1248–60.e4

    Article  CAS  PubMed  Google Scholar 

  30. Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol. 2019;20:199–210.

    Article  CAS  PubMed  Google Scholar 

  31. Wade M, Wang YV, Wahl GM. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 2010;20:299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–34.

    Article  CAS  PubMed  Google Scholar 

  33. Seoane J, Le HV, Massagué J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature. 2002;419:729–34.

    Article  CAS  PubMed  Google Scholar 

  34. Qi W, Li J, Pei X, Ke Y, Bu Q, Ni X β-Actin facilitates etoposide-induced p53 nuclear import. J Biosci. 2020;45:34.

  35. Wadhwa R, Takano S, Robert M, Yoshida A, Nomura H, Reddel RR, et al. Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J Biol Chem. 1998;273:29586–91.

    Article  CAS  PubMed  Google Scholar 

  36. Poon IK, Jans DA. Regulation of nuclear transport: central role in development and transformation? Traffic. 2005;6:173–86.

    Article  CAS  PubMed  Google Scholar 

  37. Lain S, Lane D. Improving cancer therapy by non-genotoxic activation of p53. Eur J Cancer. 2003;39:1053–60.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, Xiong Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science. 2001;292:1910–5.

    Article  CAS  PubMed  Google Scholar 

  39. Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2002;2:594–604.

    Article  CAS  PubMed  Google Scholar 

  40. Eckerdt F, Yuan J, Saxena K, Martin B, Kappel S, Lindenau C, et al. Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells. J Biol Chem. 2005;280:36575–83.

    Article  Google Scholar 

  41. Nihira NT, Ogura K, Shimizu K, North BJ, Zhang J, Gao D, et al. Acetylation-dependent regulation of MDM2 E3 ligase activity dictates its oncogenic function. Sci Signal. 2017;10:eaai8026.

  42. Kim J, Chung IK. The splicing factor U2AF65 stabilizes TRF1 protein by inhibiting its ubiquitin-dependent proteolysis. Biochem Biophys Res Commun. 2014;443:1124–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 82470285, 82070283, 82170393), National Key Research and Development Program of Ministry of Science and Technology (2023YFA1800902), and Haiyan Funding of Harbin Medical University Cancer Hospital (JJYQ2024-08).

Author information

Authors and Affiliations

Authors

Contributions

YJL, ZWP, YTZ, and DYL conceived and designed the research plan. DYL, XXH, ZRT, QWN, JQL, YY, WY, and BM contributed to data acquisition, data analysis, and data interpretation. JLL and YZ contributed to development or design of methodology. DYL, XXH, YTZ, YZ, YJL, and ZWP verified the data in the study. DYL, YTZ, YJL, and ZWP drafted the manuscript and all authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Zhen-wei Pan, Yu-ting Zhuang or Yan-jie Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Dy., Hu, Xx., Tian, Zr. et al. eIF4A1 exacerbates myocardial ischemia-reperfusion injury in mice by promoting nuclear translocation of transgelin/p53. Acta Pharmacol Sin 46, 1236–1249 (2025). https://doi.org/10.1038/s41401-024-01467-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01467-6

Keywords

This article is cited by

Search

Quick links