Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apolipoprotein B100 acts as a tumor suppressor in ovarian cancer via lipid/ER stress axis-induced blockade of autophagy

Abstract

Ovarian cancer presents a significant treatment challenge due to its insidious nature and high malignancy. As autophagy is a vital cellular process for maintaining homeostasis, targeting the autophagic pathway has emerged as an avenue for cancer therapy. In the present study, we identify apolipoprotein B100 (ApoB100), a key modulator of lipid metabolism, as a potential prognostic biomarker of ovarian cancer. ApoB100 functioned as a tumor suppressor in ovarian cancer, and the knockdown of ApoB100 promoted ovarian cancer progression in vivo. Moreover, ApoB100 blocked autophagic flux, which was dependent on interfering with the lipid accumulation/endoplasmic reticulum (ER) stress axis. The effects of LFG-500, a novel synthetic flavonoid, on ApoB100 induction were confirmed using proteomics and lipidomics analyses. Herein, LFG-500 induced lipid accumulation and ER stress and subsequently blocked autophagy by upregulating ApoB100. Moreover, data from in vivo experiments further demonstrated that ApoB100, as well as the induction of the lipid/ER stress axis and subsequent blockade of autophagy, were responsible for the anti-tumor effects of LFG-500 on ovarian cancer. Hence, our findings support that ApoB100 is a feasible target of ovarian cancer associated with lipid-regulated autophagy and provide evidence for using LFG-500 for ovarian cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ApoB100 is a potential prognostic biomarker of ovarian cancer.
Fig. 2: Identification of ApoB100 as a tumor suppressor in ovarian cancer.
Fig. 3: ApoB100 knockdown promotes the proliferation of ovarian cancer cells.
Fig. 4: ApoB100 suppresses ovarian cancer by blocking autophagy through the induction of the lipid/ER stress axis.
Fig. 5: Proteomics and lipidomics analyses identify LFG-500 as an ApoB100 inducer.
Fig. 6: LFG-500 suppresses ovarian cancer cells in vitro and in vivo.
Fig. 7: LFG-500 suppresses ovarian cancer through blockade of autophagy.
Fig. 8: LFG-500 upregulates ApoB100 expression to promote lipid/ER stress axis.
Fig. 9: Targeting ApoB100 by LFG-500 against ovarian cancer.
Fig. 10: Schematic diagram of LFG-500 inhibiting autophagy.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  3. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68:284–96.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365:2473–83.

    Article  CAS  PubMed  Google Scholar 

  5. Hanker LC, Loibl S, Burchardi N, Pfisterer J, Meier W, Pujade-Lauraine E, et al. The impact of second to sixth line therapy on survival of relapsed ovarian cancer after primary taxane/platinum-based therapy. Ann Oncol. 2012;23:2605–12.

    Article  CAS  PubMed  Google Scholar 

  6. Zhao S, Wang S, Cao L, Zeng H, Lin S, Lin Z, et al. Acupuncture promotes nerve repair through the benign regulation of mTOR-mediated neuronal autophagy in traumatic brain injury rats. CNS Neurosci Ther. 2023;29:458–70.

    Article  CAS  PubMed  Google Scholar 

  7. Zheng Y, Chen Z, Gu Z, Yang X, Yu M, Zhao C, et al. Starvation-induced autophagy is up-regulated via ROS-mediated ClC-3 chloride channel activation in the nasopharyngeal carcinoma cell line CNE-2Z. Biochem J. 2019;476:1323–33.

    Article  CAS  PubMed  Google Scholar 

  8. Allen EA, Baehrecke EH. Autophagy in animal development. Cell Death Differ. 2020;27:903–18.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176:11–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–41.

    Article  CAS  PubMed  Google Scholar 

  11. Duan WJ, Liu FL, He RR, Yuan WL, Li YF, Tsoi B, et al. Autophagy is involved in the effects of resveratrol on prevention of splenocyte apoptosis caused by oxidative stress in restrained mice. Mol Nutr Food Res. 2013;57:1145–57.

    Article  CAS  PubMed  Google Scholar 

  12. Yao J, Tang S, Shi C, Lin Y, Ge L, Chen Q, et al. Isoginkgetin, a potential CDK6 inhibitor, suppresses SLC2A1/GLUT1 enhancer activity to induce AMPK-ULK1-mediated cytotoxic autophagy in hepatocellular carcinoma. Autophagy. 2023;19:1221–38.

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, Li ZD, Hou CY, Li ZY, Li Q, Miao SY, et al. EM-2 inhibited autophagy and promoted G2/M phase arrest and apoptosis by activating the JNK pathway in hepatocellular carcinoma cells. Acta Pharmacol Sin. 2021;42:1139–49.

    Article  CAS  PubMed  Google Scholar 

  14. Kocaturk NM, Akkoc Y, Kig C, Bayraktar O, Gozuacik D, Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. 2019;134:116–37.

    Article  CAS  PubMed  Google Scholar 

  15. Limpert AS, Lambert LJ, Bakas NA, Bata N, Brun SN, Shaw RJ, et al. Autophagy in cancer: regulation by small molecules. Trends Pharmacol Sci. 2018;39:1021–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of lipid metabolism in cancer: implications in prognosis and treatment. Front Oncol. 2020;10:577420.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Prendeville H, Lynch L. Diet, lipids, and antitumor immunity. Cell Mol Immunol. 2022;19:432–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoon H, Shaw JL, Haigis MC, Greka A. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol Cell. 2021;81:3708–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rudalska R, Zender L, Dauch D. Exploiting lipotoxicity for the treatment of liver cancer. Br J Cancer. 2021;125:1459–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lv S, Geng X, Yun HJ, Ding Y. Phenothiazines reduced autophagy in ischemic stroke through endoplasmic reticulum (ER) stress-associated PERK-eIF2α pathway. Exp Neurol. 2023;369:114524.

    Article  CAS  PubMed  Google Scholar 

  21. Fu X, Zhao W, Li K, Zhou J, Chen X. Cryptotanshinone inhibits the growth of HCT116 colorectal cancer cells through endoplasmic reticulum stress-mediated autophagy. Front Pharmacol. 2021;12:653232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi YK, Kang JI, Han S, Kim YR, Jo J, Kang YW, et al. L-ascorbic acid inhibits breast cancer growth by inducing IRE/JNK/CHOP-related endoplasmic reticulum stress-mediated p62/SQSTM1 accumulation in the nucleus. Nutrients. 2020;12:1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gugliucci A. Triglyceride-rich lipoprotein metabolism: key regulators of their flux. J Clin Med. 2023;12:4399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Behbodikhah J, Ahmed S, Elyasi A, Kasselman LJ, De Leon J, Glass AD, et al. Apolipoprotein B and cardiovascular disease: biomarker and potential therapeutic target. Metabolites. 2021;11:690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gaglione R, Pizzo E, Notomista E, de la Fuente-Nunez C, Arciello A. Host defence cryptides from human apolipoproteins: applications in medicinal chemistry. Curr Top Med Chem. 2020;20:1324–37.

    Article  CAS  PubMed  Google Scholar 

  26. Su Q, Tsai J, Xu E, Qiu W, Bereczki E, Santha M, et al. Apolipoprotein B100 acts as a molecular link between lipid-induced endoplasmic reticulum stress and hepatic insulin resistance. Hepatology. 2009;50:77–84.

    Article  CAS  PubMed  Google Scholar 

  27. Wang B, Chao S, Guo B. Integrated weighted gene co-expression network analysis reveals biomarkers associated with prognosis of high-grade serous ovarian cancer. J Clin Lab Anal. 2022;36:e24165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang D, Cao X, Wang F, Jiang H, Feng D, Guo H, et al. LFG-500, a novel synthetic flavonoid, suppresses epithelial–mesenchymal transition in human lung adenocarcinoma cells by inhibiting NLRP3 in inflammatory microenvironment. Cancer Lett. 2017;400:137–48.

    Article  CAS  PubMed  Google Scholar 

  29. Li CL, Li J, Gong SY, Huang M, Li R, Xiong GX, et al. Targeting the ILK/YAP axis by LFG-500 blocks epithelial–mesenchymal transition and metastasis. Acta Pharmacol Sin. 2021;42:1847–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yin Z, Zhao X, Yang D, Cao X, Yu Y, Jiang H, et al. LFG-500, a newly synthesized flavonoid, induces apoptosis in human ovarian carcinoma SKOV3 cells with involvement of the reactive oxygen species-mitochondria pathway. Exp Ther Med. 2017;13:2819–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oberg HH, Peters C, Kabelitz D, Wesch D. Real-time cell analysis (RTCA) to measure killer cell activity against adherent tumor cells in vitro. Methods Enzymol 2019;631:429–41.

    Article  PubMed  Google Scholar 

  32. Kim KH, Sederstrom JM. Assaying cell cycle status using flow cytometry. Curr Protoc Mol Biol. 2015;111:28.6.1–28.6.11.

    Article  PubMed  Google Scholar 

  33. McKinnon KM. Flow cytometry: an overview. Curr Protoc Immunol. 2018;120:5.1.1–5.1.11.

    Article  PubMed  Google Scholar 

  34. Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998;19:1853–61.

    Article  CAS  PubMed  Google Scholar 

  35. Yin Z, Yang JH, Ning R, Liu YJ, Feng MX, Gu CM, et al. Signal pathways, diseases, and functions associated with the miR-19a/92a cluster and the use of berberine to modulate the expression of this cluster in multiple myeloma cells. J Biochem Mol Toxicol. 2018;32:e22057.

    Article  PubMed  Google Scholar 

  36. Ma LW, Lu H, Gao XF, Su Y, Feng YZ, Zhang QY, et al. Adenovirus-mediated Sirt1 and Tgfbr2 gene therapy improves fertility in natural ovarian aging and doxorubicin-induced premature ovarian insufficiency mice. Mater Des. 2024;238:112693.

    Article  CAS  Google Scholar 

  37. Ramírez-Zacarías JL, Castro-Muñozledo F, Kuri-Harcuch W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O. Histochemistry. 1992;97:493–7.

    Article  PubMed  Google Scholar 

  38. Magaki S, Hojat SA, Wei B, So A, Yong WH. An introduction to the performance of immunohistochemistry. Methods Mol Biol. 2019;1897:289–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tanwar PS, Kaneko-Tarui T, Lee HJ, Zhang L, Teixeira JM. PTEN loss and HOXA10 expression are associated with ovarian endometrioid adenocarcinoma differentiation and progression. Carcinogenesis. 2013;34:893–901.

    Article  CAS  PubMed  Google Scholar 

  40. Wu R, Hendrix-Lucas N, Kuick R, Zhai Y, Schwartz DR, Akyol A, et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/β-Catenin and PI3K/Pten signaling pathways. Cancer Cell. 2007;11:321–33.

    Article  CAS  PubMed  Google Scholar 

  41. Li M, Ding X, Zhang Y, Li X, Zhou H, Yang L, et al. Antisense oligonucleotides targeting lncRNA AC104041.1 induces antitumor activity through Wnt2B/β-catenin pathway in head and neck squamous cell carcinomas. Cell Death Dis. 2020;11:672.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pham D, Tilija Pun N, Park P. Autophagy activation and SREBP-1 induction contribute to fatty acid metabolic reprogramming by leptin in breast cancer cells. Mol Oncol. 2021;15:657–78.

    Article  CAS  PubMed  Google Scholar 

  43. Su G, Yang W, Wang S, Geng C, Guan X. SIRT1-autophagy axis inhibits excess iron-induced ferroptosis of foam cells and subsequently increases IL-1Β and IL-18. Biochem Biophys Res Commun. 2021;561:33–9.

    Article  CAS  PubMed  Google Scholar 

  44. Sun H, Hu C, Zheng X, Zhuang J, Wei X, Cai J. Correlation between serum lipid levels and endocrine resistance in patients with ER-positive breast cancer. Medicine. 2023;102:e35048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Geng Y, Faber KN, de Meijer VE, Blokzijl H, Moshage H. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol Int. 2021;15:21–35.

    Article  PubMed  Google Scholar 

  46. Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res. 2016;57:1329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest. 2008;118:316–32.

    Article  CAS  PubMed  Google Scholar 

  48. Li J, Li X, Liu D, Zhang S, Tan N, Yokota H, et al. Phosphorylation of eIF2α signaling pathway attenuates obesity-induced non-alcoholic fatty liver disease in an ER stress and autophagy-dependent manner. Cell Death Dis. 2020;11:1069.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Verfaillie T, Salazar M, Velasco G, Agostinis P. Linking ER stress to autophagy: potential implications for cancer therapy. Int J Cell Biol. 2010;2020:930509.

    Google Scholar 

  50. Rashid HO, Yadav RK, Kim HR, Chae HJ. ER stress: autophagy induction, inhibition and selection. Autophagy. 2015;11:1956–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moncan M, Mnich K, Blomme A, Almanza A, Samali A, Gorman AM. Regulation of lipid metabolism by the unfolded protein response. J Cell Mol Med. 2021;25:1359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garg AD, Maes H, van Vliet AR, Agostinis P. Targeting the hallmarks of cancer with therapy-induced endoplasmic reticulum (ER) stress. Mol Cell Oncol. 2015;2:e975089.

    Article  PubMed  Google Scholar 

  53. Yang Y, Wang Q, Song D, Zen R, Zhang L, Wang Y, et al. Lysosomal dysfunction and autophagy blockade contribute to autophagy-related cancer suppressing peptide-induced cytotoxic death of cervical cancer cells through the AMPK/mTOR pathway. J Exp Clin Cancer Res. 2020;39:197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu B, Wen X, Cheng Y. Survival or death: disequilibrating the oncogenic and tumor suppressive autophagy in cancer. Cell Death Dis. 2013;4:e892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Duszka K, Gregor A, Guillou H, König J, Wahli W. Peroxisome proliferator-activated receptors and caloric restriction-common pathways affecting metabolism, health, and longevity. Cells. 2020;9:1708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Su Q, Baker C, Christian P, Naples M, Tong X, Zhang K, et al. Hepatic mitochondrial and ER stress induced by defective PPARα signaling in the pathogenesis of hepatic steatosis. Am J Physiol Endocrinol Metab. 2014;306:E1264–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Olofsson SO, Borèn J. Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J Intern Med. 2005;258:395–410.

    Article  CAS  PubMed  Google Scholar 

  58. Chen Y, Le Cahérec F, Chuck SL. Calnexin and other factors that alter translocation affect the rapid binding of ubiquitin to ApoB in the Sec61 complex. J Biol Chem. 1998;273:11887–94.

    Article  CAS  PubMed  Google Scholar 

  59. Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, et al. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther. 2023;8:220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang Y, Zhang R, Tang L, Yang L. Nonviral delivery systems of mRNA vaccines for cancer gene therapy. Pharmaceutics. 2022;14:512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin Z, Ji X, Tian N, Gan Y, Ke L. APOB is a potential prognostic biomarker in hepatocellular carcinoma. Discov Oncol. 2024;15:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee G, Jeong YS, Kim DW, Kwak MJ, Koh J, Joo EW, et al. Clinical significance of APOB inactivation in hepatocellular carcinoma. Exp Mol Med. 2018;50:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Qing-long Guo from China Pharmaceutical University for the generous provision of LFG-500. We also thank Dr. Xue Zhao for her dedicated contributions as an advisor/expert for the whole story with invaluable insights and innovative ideas. We also extend our gratitude to Prof. Wu-yang Wang and Dr. Yan-hong Xing for their insightful guidance and expertise in the field of autophagy. We sincerely thank Dr. Fu-xing Dong from the Public Experimental Research Center for his enthusiastic help in the experiment of laser scanning confocal microscopy. Additionally, we are thankful for the contributions of Ms. Gui-xiang Xiong for her support as a technician/expert. We would like to thank MogoEdit (https://www.mogoedit.com) for its English editing during the preparation of this manuscript.

Funding

This study was supported by the Jiangsu Province Traditional Chinese Medicine Science Foundation (ZT202114), the Jiangsu Province Science and Technology Project (BE2019636), the Guangdong Basic and Applied Basic Research Foundation (2024A1515013108), the Medical Joint Fund of Jinan University (YXJC2022002), the Fundamental Research Funds for the Central Universities (21623109), and the Xuzhou Clinical Expert Team Introduction Project (2019TD005).

Author information

Authors and Affiliations

Authors

Contributions

CLL, BZ, QQ, and ZYY conceived the project, designed the experiments, and revised the manuscript. ZYY and SMH performed major experiments, analyzed major data and wrote the manuscript. XYZ (Xin-yuan Zhang), XCY and KXS performed a part of Western blot. TF and BXH performed a part of immunohistochemistry. XYZ (Xin-yuan Zhang), LX and YXJ performed the bioinformatics analysis. JAA, YMQ, JBZ, YYL, QW, BBZ and XYZ (Xue-yan Zhou) helped with the analysis.

Corresponding authors

Correspondence to Qi Qi, Bei Zhang or Cheng-lin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Zy., He, Sm., Zhang, Xy. et al. Apolipoprotein B100 acts as a tumor suppressor in ovarian cancer via lipid/ER stress axis-induced blockade of autophagy. Acta Pharmacol Sin 46, 1445–1461 (2025). https://doi.org/10.1038/s41401-024-01470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01470-x

Keywords

Search

Quick links