Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deletion of smooth muscle ZFP36 promotes neointimal hyperplasia in mice

Abstract

Platelet-derived growth factor (PDGF-BB) released from the injured intima induces the proliferation and migration of vascular smooth muscle cells (VSMCs), which is the key mechanism of neointimal hyperplasia. Zinc finger 36 (ZFP36), a widespread RNA-binding protein, is important for pathological processes in many diseases. In this study we investigated the role of ZFP36 in VSMCs proliferation, migration and neointimal hyperplasia in mice. We generated smooth muscle-specific Zfp36 knockout (Zfp36SMKO) mice, and established restenosis mouse models by ligation of left carotid artery in Zfp36SMKO mice. We showed that the expression levels of ZFP36 were significantly decreased in human atherosclerotic coronary arteries and murine injured carotid arteries compared with controls. Compared to control Zfp36fl/fl mice, Zfp36SMKO mice displayed accelerated neointimal hyperplasia. In cultured mouse VSMCs, PDGF-BB (20 ng/mL) significantly downregulated ZFP36 expression through KLF4 binding site in Zfp36 promoter. We revealed that ZFP36 could bind to the mRNA of cell migration-inducing protein (CEMIP) and promoted its degradation in VSMCs, thereby reducing the expression of CEMIP protein. Knockdown of Cemip inhibited VSMCs proliferation and migration induced by Zfp36 knockout, thereby suppressing neointimal hyperplasia in Zfp36SMKO mice. We conclude that vascular smooth muscle ZFP36 has a protective effect against neointimal hyperplasia by reducing CEMIP expression. ZFP36 is downregulated by vascular injury and PDGF-BB treatment, which promotes VSMCs proliferation and migration and neointima formation. The results suggest that targeting ZFP36 may represent a novel therapeutic strategy for preventing or treating neointimal hyperplasia and related cardiovascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ZFP36 expression is decreased in proliferative VSMCs.
Fig. 2: PDGF-BB inhibits ZFP36 expression through KLF4.
Fig. 3: VSMC-specific deletion of Zfp36 accelerates neointimal formation in mice.
Fig. 4: ZFP36 inhibits VSMC proliferation and migration.
Fig. 5: ZFP36 inhibits CEMIP expression by promoting its mRNA decay.
Fig. 6: ZFP36 regulates VSMC proliferation and migration through CEMIP in vitro.
Fig. 7: ZFP36 regulates neointimal hyperplasia through CEMIP in vivo.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request. The RNA-seq datasets have been deposited in the NCBI Gene Expression Omnibus and are accessible through the accession number GSE286906.

References

  1. Glagov S. Intimal hyperplasia, vascular modeling, and the restenosis problem. Circulation. 1994;89:2888–91.

    Article  CAS  PubMed  Google Scholar 

  2. Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, et al. Vasa vasorum angiogenesis: key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front Immunol. 2018;9:706.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Melnik T, Jordan O, Corpataux JM, Delie F, Saucy F. Pharmacological prevention of intimal hyperplasia: A state-of-the-art review. Pharmacol Ther. 2022;235:108157.

    Article  CAS  PubMed  Google Scholar 

  4. Jaminon A, Reesink K, Kroon A, Schurgers L. The role of vascular smooth muscle cells in arterial remodeling: focus on calcification-related processes. Int J Mol Sci. 2019;20:5694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marmur JD, Poon M, Rossikhina M, MB Taubman. Induction of PDGF-responsive genes in vascular smooth muscle. Implications for the early response to vessel injury. Circulation. 1992;86:III53–60.

    CAS  PubMed  Google Scholar 

  6. Pidkovka NA, Cherepanova OA, Yoshida T, Alexander MR, Deaton RA, Thomas JA, et al. Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ Res. 2007;101:792–801.

    Article  CAS  PubMed  Google Scholar 

  7. Ferns GA, Raines EW, Sprugel KH, Motani AS, Reidy MA, Ross R. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science. 1991;253:1129–32.

    Article  CAS  PubMed  Google Scholar 

  8. Tanizawa S, Ueda M, van der Loos CM, van der Wal AC, Becker AE. Expression of platelet derived growth factor B chain and beta receptor in human coronary arteries after percutaneous transluminal coronary angioplasty: an immunohistochemical study. Heart. 1996;75:549–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu Y, Sinha S, McDonald OG, Shang Y, Hoofnagle MH, Owens GK. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem. 2005;280:9719–27.

    Article  CAS  PubMed  Google Scholar 

  10. Yoshida T, Kaestner KH, Owens GK. Conditional deletion of Kruppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ Res. 2008;102:1548–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xue Q, Wang X, Deng X, Huang Y, Tian W. CEMIP regulates the proliferation and migration of vascular smooth muscle cells in atherosclerosis through the WNT-beta-catenin signaling pathway. Biochem Cell Biol. 2020;98:249–57.

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez-Gomez G, Paredes-Villa A, Cervantes-Badillo MG, Gomez-Sonora JP, Jorge-Perez JH, Cervantes-Roldan R, et al. Tristetraprolin: A cytosolic regulator of mRNA turnover moonlighting as transcriptional corepressor of gene expression. Mol Genet Metab. 2021;133:137–47.

    Article  CAS  PubMed  Google Scholar 

  13. Makita S, Takatori H, Nakajima H. Post-transcriptional regulation of immune responses and inflammatory diseases by RNA-binding ZFP36 family proteins. Front Immunol. 2021;12:711633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saini Y, Chen J, Patial S. The tristetraprolin family of RNA-binding proteins in cancer: progress and future prospects. Cancers (Basel). 2020;12:1539.

    Article  CAS  PubMed  Google Scholar 

  15. Snyder BL, Blackshear PJ. Clinical implications of tristetraprolin (TTP) modulation in the treatment of inflammatory diseases. Pharmacol Ther. 2022;239:108198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ji E, Hu S, Lu Q, Zhang M, Jiang M. Hydrogen peroxide positively regulates ABA signaling via oxidative modification of the C2H2-type zinc finger protein ZFP36 in rice. Plant Physiol Biochem. 2024;213:108844.

    Article  CAS  PubMed  Google Scholar 

  17. Taylor GA, Carballo E, Lee DM, Lai WS, Thompson MJ, Patel DD, et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity. 1996;4:445–54.

    Article  CAS  PubMed  Google Scholar 

  18. Carballo E, Blackshear PJ. Roles of tumor necrosis factor-alpha receptor subtypes in the pathogenesis of the tristetraprolin-deficiency syndrome. Blood. 2001;98:2389–95.

    Article  CAS  PubMed  Google Scholar 

  19. Park J, Rah SY, An HS, Lee JY, Roh GS, Ryter SW, et al. Metformin-induced TTP mediates communication between Kupffer cells and hepatocytes to alleviate hepatic steatosis by regulating lipophagy and necroptosis. Metabolism. 2023;141:155516.

    Article  CAS  PubMed  Google Scholar 

  20. Saaoud F, Wang J, Iwanowycz S, Wang Y, Altomare D, Shao Y, et al. Bone marrow deficiency of mRNA decaying protein tristetraprolin increases inflammation and mitochondrial ROS but reduces hepatic lipoprotein production in LDLR knockout mice. Redox Biol. 2020;37:101609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kafasla P, Skliris A, Kontoyiannis DL. Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nat Immunol. 2014;15:492–502.

    Article  CAS  PubMed  Google Scholar 

  22. Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, Blackshear PJ. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol. 1999;19:4311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao W, Liu M, D’Silva NJ, Kirkwood KL. Tristetraprolin regulates interleukin-6 expression through p38 MAPK-dependent affinity changes with mRNA 3’ untranslated region. J Interferon Cytokine Res. 2011;31:629–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cicchetto AC, Jacobson EC, Sunshine H, Wilde BR, Krall AS, Jarrett KE, et al. ZFP36-mediated mRNA decay regulates metabolism. Cell Rep. 2023;42:112411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim DJ, Vo MT, Choi SH, Lee JH, Jeong SY, Hong CH, et al. Tristetraprolin-mediated hexokinase 2 expression regulation contributes to glycolysis in cancer cells. Mol Biol Cell. 2019;30:542–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jang JH, Kim DJ, Ham SY, Vo MT, Jeong SY, Choi SH, et al. Tristetraprolin posttranscriptionally downregulates PFKFB3 in cancer cells. Biochem Biophys Res Commun. 2020;521:389–94.

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Yan W, Han P, Tian D. The emerging role of KIAA1199 in cancer development and therapy. Biomed Pharmacother. 2021;138:111507.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao L, Zhang D, Shen Q, Jin M, Lin Z, Ma H, et al. KIAA1199 promotes metastasis of colorectal cancer cells via microtubule destabilization regulated by a PP2A/stathmin pathway. Oncogene. 2019;38:935–49.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang D, Zhao L, Shen Q, Lv Q, Jin M, Ma H, et al. Down-regulation of KIAA1199/CEMIP by miR-216a suppresses tumor invasion and metastasis in colorectal cancer. Int J Cancer. 2017;140:2298–309.

    Article  CAS  PubMed  Google Scholar 

  30. Wang H, Zhang B, Li R, Chen J, Xu G, Zhu Y, et al. KIAA1199 drives immune suppression to promote colorectal cancer liver metastasis by modulating neutrophil infiltration. Hepatology. 2022;76:967–81.

    Article  CAS  PubMed  Google Scholar 

  31. Xu Y, Xu H, Li M, Wu H, Guo Y, Chen J, et al. KIAA1199 promotes sorafenib tolerance and the metastasis of hepatocellular carcinoma by activating the EGF/EGFR-dependent epithelial-mesenchymal transition program. Cancer Lett. 2019;454:78–89.

    Article  CAS  PubMed  Google Scholar 

  32. Ohtsuki T, Hatipoglu OF, Asano K, Inagaki J, Nishida K, Hirohata S. Induction of CEMIP in chondrocytes by inflammatory cytokines: underlying mechanisms and potential involvement in osteoarthritis. Int J Mol Sci. 2020;21:3140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie G, Dong P, Chen H, Xu L, Liu Y, Ma Y, et al. Decreased expression of ATF3, orchestrated by beta-catenin/TCF3, miR-17-5p and HOXA11-AS, promoted gastric cancer progression via increased beta-catenin and CEMIP. Exp Mol Med. 2021;53:1706–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu Y, Liu B, Li X, Lu D, Yang L, Chen L, et al. ATF4/CEMIP/PKCalpha promotes anoikis resistance by enhancing protective autophagy in prostate cancer cells. Cell Death Dis. 2022;13:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cloud AS, Vargheese AM, Gunewardena S, Shimak RM, Ganeshkumar S, Kumaraswamy E, et al. Loss of REST in breast cancer promotes tumor progression through estrogen sensitization, MMP24 and CEMIP overexpression. BMC Cancer. 2022;22:180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hsieh IY, He J, Wang L, Lin B, Liang Z, Lu B, et al. H3K27me3 loss plays a vital role in CEMIP mediated carcinogenesis and progression of breast cancer with poor prognosis. Biomed Pharmacother. 2020;123:109728.

    Article  CAS  PubMed  Google Scholar 

  37. Evensen NA, Li Y, Kuscu C, Liu J, Cathcart J, Banach A, et al. Hypoxia promotes colon cancer dissemination through up-regulation of cell migration-inducing protein (CEMIP). Oncotarget. 2015;6:20723–39.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Newby AC, Zaltsman AB. Molecular mechanisms in intimal hyperplasia. J Pathol. 2000;190:300–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ji Z, Li J, Wang J. Jujuboside B inhibits neointimal hyperplasia and prevents vascular smooth muscle cell dedifferentiation, proliferation, and migration via activation of AMPK/PPAR-gamma signaling. Front Pharmacol. 2021;12:672150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang L, Zhang SM, Zhang P, Zhang XJ, Zhu LH, Chen K, et al. Interferon regulatory factor 7 protects against vascular smooth muscle cell proliferation and neointima formation. J Am Heart Assoc. 2014;3:e001309.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jain M, Dhanesha N, Doddapattar P, Chorawala MR, Nayak MK, Cornelissen A, et al. Smooth muscle cell-specific fibronectin-EDA mediates phenotypic switching and neointimal hyperplasia. J Clin Invest. 2020;130:295–314.

    Article  CAS  PubMed  Google Scholar 

  42. Huang F, Zhang F, Huang L, Zhu XB, Huang C, Li N, et al. Inositol 1,4,5-trisphosphate receptors regulate vascular smooth muscle cell proliferation and neointima formation in mice. J Am Heart Assoc. 2024;13:e034203.

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (No. 82470499, 82270457, 82300486), the Natural Science Foundation of Shandong Province (ZR2023QH398, ZR2022QH288, ZR2024ZD23), the Taishan Scholar Project of Shandong Province of China (No. tstp20240852), and the Postdoctoral Innovation Project of Shandong Province (SDCX-ZG-202400016).

Author information

Authors and Affiliations

Authors

Contributions

YL and WCZ developed and designed the study; LW, LFH, XX, ZNW, MT and YLZ developed the methodology and wrote, reviewed and revised the paper; HXL and XPJ acquired, analyzed, interpreted, and statistically analyzed the data; and GQC and PK provided technical and material support. All the authors read and approved the final paper.

Corresponding authors

Correspondence to Wencheng Zhang or Yan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., He, Lf., Xiong, X. et al. Deletion of smooth muscle ZFP36 promotes neointimal hyperplasia in mice. Acta Pharmacol Sin 46, 1317–1328 (2025). https://doi.org/10.1038/s41401-024-01473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01473-8

Keywords

Search

Quick links