Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rhynchophylline alleviates cognitive deficits in multiple transgenic mouse models of Alzheimer’s disease via modulating neuropathology and gut microbiota

Abstract

Amyloid-beta (Aβ) aggregation, phosphorylated tau accumulation and neuroinflammation are considered as three hallmarks of Alzheimer’s disease (AD). Rhynchophylline (RN), the major alkaloid of a Chinese medicinal plant Uncaria rhynchophylla, has been shown to possess potent anti-AD effects. This study explored the effects of RN on Aβ pathology, tauopathy, and neuroinflammation using three AD mouse models, including TgCRND8, 3×Tg-AD, and 5×FAD, with RN treatment lasting for 4, 6, and 6 months, respectively, followed by behavioral tests and biological assays. In addition, BV2 cells were employed to further evaluate the biological effects of RN. RN treatment improved cognitive functions by reducing anxiety-like behaviors, enhancing recognition ability, and ameliorating learning impairments. It modulated Aβ processing through reducing the Aβ-producing enzyme activities and enhancing degradation enzyme activities, thereby diminishing Aβ accumulation. RN also decreased hyperphosphorylated tau proteins at Thr181, Thr205, Ser396, and Ser404 sites. Moreover, RN diminished neuroinflammation by reducing microglia and astrocyte activation and lowering the release of inflammatory cytokines. Furthermore, RN treatment could restore gut microbiota dysbiosis in 5×FAD mice. In BV2 cells, knockdown of p53, HDAC2, and Galectin-3 markedly enhanced the anti-inflammatory effects of RN. Overall, the anti-AD properties of RN were attributed to its regulation of multiple biological pathways, including regulation of the p53/PINK1 signaling pathway, inhibition of the HDAC2/AMPK signaling pathway, suppression of the Galectin-3/C/EBPβ/AEP signaling pathway, and modulation of gut microflora dysbiosis. This pioneering study unambiguously revealed the effects of RN on cognitive impairments, APP processing, tauopathy, and neuroinflammation in different transgenic mouse models with differing AD burdens, highlighting its potential as an anti-AD therapeutic agent and enhancing the scientific basis for its clinical use in treating AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the experiment procedures on the investigation of the neuroprotective effects of RN.
Fig. 2: RN ameliorated cognitive impairments and behaviors of TgCRND8 mice.
Fig. 3: RN alleviated the Aβ and tau pathology, inhibited neuroinflammation, and modulated p53/PINK1 pathway in TgCRND8 mice.
Fig. 4: RN ameliorated the cognitive impairments and behaviors of 3×Tg-AD mice.
Fig. 5: RN suppressed the Aβ and tau pathology, decreased the neuroinflammation, and inhibited the activation of Galectin-3/C/EBPβ/AEP pathway in 3×Tg-AD mice.
Fig. 6: Effects of RN on the cognitive impairments and behaviors of 5×FAD mice.
Fig. 7: RN reduced the Aβ and tau pathology, alleviated the neuroinflammation and suppressed the activation of HDAC2/AMPKα1 pathway in 5×FAD mice.
Fig. 8: RN regulated the gut microbiota imbalance of 5×FAD mice.
Fig. 9: Silencing of p53, Galectin-3, and HDAC2 enhanced the inhibitory effects of RN against inflammatory response.
Fig. 10: Silencing of p53, Galectin-3, and HDAC2 enhanced the regulatory effects of RN against the activation of the p53/PINK1 pathway, Galectin-3/C/EBPβ/AEP pathway, and HDAC2/AMPKα1 pathway in the Αβ42-stimulated BV2 cells, respectively.
Fig. 11: The molecular mechanisms underlying the anti-AD effects of RN in the TgCRND8, 3×Tg-AD, and 5×FAD transgenic AD mouse models (Created with BioRender.com).

Similar content being viewed by others

Data availability

All data supporting the conclusions of this article are included with this article.

References

  1. Iyaswamy A, Wang X, Zhang H, Vasudevan K, Wankhar D, Lu K, et al. Molecular engineering of a theranostic molecule that detects Aβ plaques, inhibits Iowa and Dutch mutation Aβ self-aggregation and promotes lysosomal biogenesis for Alzheimer’s disease. J Mater Chem B. 2024;12:7543–56.

    Article  PubMed  CAS  Google Scholar 

  2. Iyaswamy A, Wang X, Krishnamoorthi S, Kaliamoorthy V, Sreenivasmurthy SG, Kumar Durairajan SS, et al. Theranostic F-SLOH mitigates Alzheimer’s disease pathology involving TFEB and ameliorates cognitive functions in Alzheimer’s disease models. Redox Biol. 2022;51:102280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Guan XJ, Deng ZQ, Liu J, Su CF, Tong BC, Zhu Z, et al. Corynoxine promotes TFEB/TFE3-mediated autophagy and alleviates Aβ pathology in Alzheimer’s disease models. Acta Pharmacol Sin. 2024;45:900–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Krishnamoorthi S, Iyaswamy A, Sreenivasmurthy SG, Thakur A, Vasudevan K, Kumar G, et al. PPARɑ ligand caudatin improves cognitive functions and mitigates Alzheimer’s disease defects by inducing autophagy in mice models. J Neuroimmune Pharmacol. 2023;18:509–28.

    Article  PubMed  Google Scholar 

  5. Iyaswamy A, Krishnamoorthi SK, Zhang H, Sreenivasmurthy SG, Zhu Z, Liu J, et al. Qingyangshen mitigates amyloid-β and Tau aggregate defects involving PPARα-TFEB activation in transgenic mice of Alzheimer’s disease. Phytomedicine. 2021;91:153648.

    Article  PubMed  CAS  Google Scholar 

  6. Tan W, Qi L, Hu X, Tan Z. Research progress in traditional Chinese medicine in the treatment of Alzheimer’s disease and related dementias. Front Pharmacol. 2022;13:921794.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Griciuc A, Tanzi RE. The role of innate immune genes in Alzheimer’s disease. Curr Opin Neurol. 2021;34:228–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Iyaswamy A, Thakur A, Guan XJ, Krishnamoorthi S, Fung TY, Lu K, et al. Fe65-engineered neuronal exosomes encapsulating corynoxine-B ameliorate cognition and pathology of Alzheimer’s disease. Signal Transduct Target Ther. 2023;8:404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sun ZK, Yang HQ, Chen SD. Traditional Chinese medicine: a promising candidate for the treatment of Alzheimer’s disease. Transl Neurodegener. 2013;2:6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jiang P, Chen L, Xu J, Liu W, Feng F, Qu W. Neuroprotective effects of rhynchophylline against Aβ1-42-induced oxidative stress, neurodegeneration, and memory impairment via Nrf2-ARE activation. Neurochem Res. 2021;46:2439–50.

    Article  PubMed  CAS  Google Scholar 

  11. Xu QQ, Shaw PC, Hu Z, Yang W, Ip SP, Xian YF, et al. Comparison of the chemical constituents and anti-Alzheimer’s disease effects of Uncaria rhynchophylla and Uncaria tomentosa. Chin Med. 2021;16:110.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xian YF, Lin ZX, Mao QQ, Hu Z, Zhao M, Che CT, et al. Bioassay-guided isolation of neuroprotective compounds from Uncaria rhynchophylla against beta-amyloid-induced neurotoxicity. Evid Based Complement Altern Med. 2012;2012:802625.

    Article  Google Scholar 

  13. Li HQ, Ip SP, Yuan QJ, Zheng GQ, Tsim KKW, Dong TTX, et al. Isorhynchophylline ameliorates cognitive impairment via modulating amyloid pathology, tau hyperphosphorylation and neuroinflammation: Studies in a transgenic mouse model of Alzheimer’s disease. Brain Behav Immun. 2019;82:264–78.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang C, Wu X, Xian Y, Zhu L, Lin G, Lin ZX. Evidence on integrating pharmacokinetics to find truly therapeutic agent for Alzheimer’s disease: comparative pharmacokinetics and disposition kinetics profiles of stereoisomers isorhynchophylline and rhynchophylline in rats. Evid Based Complement Altern Med. 2019;2019:4016323.

    Google Scholar 

  15. Hu S, Mak S, Zuo X, Li H, Wang Y, Han Y. Neuroprotection against MPP+-induced cytotoxicity through the activation of PI3K/Akt/GSK3β/MEF2D signaling pathway by rhynchophylline, the major tetracyclic oxindole alkaloid isolated from Uncaria rhynchophylla. Front Pharmacol. 2018;9:768.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li H, Bi Q, Cui H, Lv C, Wang M. Suppression of autophagy through JAK2/STAT3 contributes to the therapeutic action of rhynchophylline on asthma. BMC Complement Med Ther. 2021;21:21.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou J, Zhou S. Antihypertensive and neuroprotective activities of rhynchophylline: the role of rhynchophylline in neurotransmission and ion channel activity. J Ethnopharmacol. 2010;132:15–27.

    Article  PubMed  CAS  Google Scholar 

  18. Wang L, Wang Y, Chen Y, Liu B, Chou D, Bian X, et al. Rhynchophylline ameliorates cerebral ischemia by improving the synaptic plasticity in a middle cerebral artery occlusion induced stroke model. Eur J Pharmacol. 2023;940:175390.

    Article  PubMed  CAS  Google Scholar 

  19. Xu R, Wang J, Xu J, Song X, Huang H, Feng Y, et al. Rhynchophylline loaded-mPEG-PLGA nanoparticles coated with tween-80 for preliminary study in Alzheimer’s disease. Int J Nanomed. 2020;15:1149–60.

    Article  CAS  Google Scholar 

  20. Shao H, Mi Z, Ji WG, Zhang CH, Zhang T, Ren SC, et al. Rhynchophylline protects against the amyloid β-induced increase of spontaneous discharges in the hippocampal CA1 region of rats. Neurochem Res. 2015;40:2365–73.

    Article  PubMed  CAS  Google Scholar 

  21. Fu AK, Hung KW, Huang H, Gu S, Shen Y, Cheng EY, et al. Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer’s disease. Proc Natl Acad Sci USA. 2014;111:9959–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fu WY, Hung KW, Lau SF, Butt B, Yuen VW, Fu G, et al. Rhynchophylline administration ameliorates amyloid-β pathology and inflammation in an Alzheimer’s disease transgenic mouse model. ACS Chem Neurosci. 2021;12:4249–56.

    Article  PubMed  CAS  Google Scholar 

  23. Xu QQ, Su ZR, Yang W, Zhong M, Xian YF, Lin ZX. Patchouli alcohol attenuates the cognitive deficits in a transgenic mouse model of Alzheimer’s disease via modulating neuropathology and gut microbiota through suppressing C/EBPβ/AEP pathway. J Neuroinflammation. 2023;20:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. López-Gambero AJ, Pacheco-Sánchez B, Rosell-Valle C, Medina-Vera D, Navarro JA, Fernández-Arjona MDM, et al. Dietary administration of D-chiro-inositol attenuates sex-specific metabolic imbalances in the 5×FAD mouse model of Alzheimer’s disease. Biomed Pharmacother. 2022;150:112994.

    Article  PubMed  Google Scholar 

  25. Belfiore R, Rodin A, Ferreira E, Velazquez R, Branca C, Caccamo A, et al. Temporal and regional progression of Alzheimer’s disease-like pathology in 3×Tg-AD mice. Aging Cell. 2019;18:e12873.

    Article  PubMed  Google Scholar 

  26. Hongyan L, Mengjiao Z, Chunyan W, Yaruo H. Rhynchophylline attenuates neurotoxicity in Tourette syndrome rats. Neurotox Res. 2019;36:679–87.

    Article  PubMed  Google Scholar 

  27. Liu J, Zhao Y, Zhu Y, Wang Y, Liu X, Nie X, et al. Rhynchophylline regulates calcium homeostasis by antagonizing ryanodine receptor 2 phosphorylation to improve diabetic cardiomyopathy. Front Pharmacol. 2022;13:882198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1:848–58.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang Z, Song M, Liu X, Kang SS, Kwon IS, Duong DM, et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat Med. 2014;20:1254–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chen L, Huang C, Shentu J, Wang M, Yan S, Zhou F, et al. Indirubin derivative 7-bromoindirubin-3-oxime (7Bio) attenuates Aβ oligomer-induced cognitive impairments in mice. Front Mol Neurosci. 2017;10:393.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang X, Zheng M, Liu J, Huang Z, Bai Y, Ren Z, et al. Differences of first-pass effect in the liver and intestine contribute to the stereoselective pharmacokinetics of rhynchophylline and isorhynchophylline epimers in rats. J Ethnopharmacol. 2017;209:175–83.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang T, Chen D, Lee TH. Phosphorylation signaling in APP processing in Alzheimer’s disease. Int J Mol Sci. 2019;21:209.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pairojana T, Phasuk S, Suresh P, Huang SP, Pakaprot N, Chompoopong S, et al. Age and gender differences for the behavioral phenotypes of 3×Tg alzheimer’s disease mice. Brain Res. 2021;1762:147437.

    Article  PubMed  CAS  Google Scholar 

  34. Checler F, Goiran T, Alves da Costa C. Nuclear TP53: an unraveled function as transcriptional repressor of PINK1. Autophagy. 2018;14:1099–101.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Hooper C, Meimaridou E, Tavassoli M, Melino G, Lovestone S, Killick R. p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells. Neurosci Lett. 2007;418:34–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tan Y, Zheng Y, Xu D, Sun Z, Yang H, Yin Q. Galectin-3: a key player in microglia-mediated neuroinflammation and Alzheimer’s disease. Cell Biosci. 2021;11:78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wang X, Zhang S, Lin F, Chu W, Yue S. Elevated galectin-3 levels in the serum of patients With Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2015;30:729–32.

    Article  PubMed  Google Scholar 

  38. Boza-Serrano A, Ruiz R, Sanchez-Varo R, García-Revilla J, Yang Y, Jimenez-Ferrer I, et al. Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease. Acta Neuropathol. 2019;138:251–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liu D, Tang H, Li XY, Deng MF, Wei N, Wang X, et al. Targeting the HDAC2/HNF-4A/miR-101b/AMPK pathway rescues tauopathy and dendritic abnormalities in Alzheimer’s disease. Mol Ther. 2017;25:752–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wang DB, Kinoshita C, Kinoshita Y, Sopher BL, Uo T, Lee RJ, et al. Neuronal susceptibility to beta-amyloid toxicity and ischemic injury involves histone deacetylase-2 regulation of endophilin-B1. Brain Pathol. 2019;29:164–75.

    Article  PubMed  CAS  Google Scholar 

  41. Datta M, Staszewski O, Raschi E, Frosch M, Hagemeyer N, Tay TL, et al. Histone deacetylases 1 and 2 regulate microglia function during development, homeostasis, and neurodegeneration in a context-dependent manner. Immunity. 2018;48:514–29.e6.

    Article  PubMed  CAS  Google Scholar 

  42. Cavanagh C, Wong TP. Preventing synaptic deficits in Alzheimer’s disease by inhibiting tumor necrosis factor alpha signaling. IBRO Rep. 2018;4:18–21.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dudal S, Krzywkowski P, Paquette J, Morissette C, Lacombe D, Tremblay P, et al. Inflammation occurs early during the Abeta deposition process in TgCRND8 mice. Neurobiol Aging. 2004;25:861–71.

    Article  PubMed  CAS  Google Scholar 

  44. Tataryn NM, Singh V, Dyke JP, Berk-Rauch HE, Clausen DM, Aronowitz E, et al. Vascular endothelial growth factor associated dissimilar cerebrovascular phenotypes in two different mouse models of Alzheimer’s disease. Neurobiol Aging. 2021;107:96–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Palladino G, Nicolia V, Kovacs GG, Canterini S, Ciraci V, Fuso A, et al. Sexually dimorphic expression of reelin in the brain of a mouse model of Alzheimer disease. J Mol Neurosci. 2017;61:359–67.

    Article  PubMed  CAS  Google Scholar 

  46. Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem. 2001;276:21562–70.

    Article  PubMed  CAS  Google Scholar 

  47. López-Gambero AJ, Rosell-Valle C, Medina-Vera D, Navarro JA, Vargas A, Rivera P, et al. A negative energy balance is associated with metabolic dysfunctions in the hypothalamus of a humanized preclinical model of Alzheimer’s disease, the 5×FAD mouse. Int J Mol Sci. 2021;22:5365.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kameno K, Hasegawa Y, Hayashi K, Takemoto Y, Uchikawa H, Mukasa A, et al. Loss of body weight in old 5×FAD mice and the alteration of gut microbiota composition. Exp Gerontol. 2022;166:111885.

    Article  PubMed  Google Scholar 

  49. Pádua MS, Guil-Guerrero JL, Lopes PA. Behaviour hallmarks in Alzheimer’s disease 5×FAD mouse model. Int J Mol Sci. 2024;25:6766.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kanno T, Tsuchiya A, Nishizaki T. Hyperphosphorylation of Tau at Ser396 occurs in the much earlier stage than appearance of learning and memory disorders in 5×FAD mice. Behav Brain Res. 2014;274:302–6.

    Article  PubMed  CAS  Google Scholar 

  51. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26:10129–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Fernandes A, Caldeira C, Cunha C, Ferreiro E, Vaz AR, Brites D. Differences in immune-related genes underlie temporal and regional pathological progression in 3×Tg-AD mice. Cells. 2022;11:137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39:409–21.

    Article  PubMed  CAS  Google Scholar 

  54. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging. 2003;24:1063–70.

    Article  PubMed  CAS  Google Scholar 

  55. Stimmell AC, Baglietto-Vargas D, Moseley SC, Lapointe V, Thompson LM, LaFerla FM, et al. Impaired spatial reorientation in the 3×Tg-AD mouse model of Alzheimer’s disease. Sci Rep. 2019;9:1311.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Caruso D, Barron AM, Brown MA, Abbiati F, Carrero P, Pike CJ, et al. Age-related changes in neuroactive steroid levels in 3×Tg-AD mice. Neurobiol Aging. 2013;34:1080–9.

    Article  PubMed  CAS  Google Scholar 

  57. Dennison JL, Ricciardi NR, Lohse I, Volmar CH, Wahlestedt C. Sexual dimorphism in the 3×Tg-AD mouse model and its impact on pre-clinical research. J Alzheimers Dis. 2021;80:41–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yang JT, Wang ZJ, Cai HY, Yuan L, Hu MM, Wu MN, et al. Sex differences in neuropathology and cognitive behavior in APP/PS1/tau triple-transgenic mouse model of Alzheimer’s disease. Neurosci Bull. 2018;34:736–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Roda AR, Serra-Mir G, Montoliu-Gaya L, Tiessler L, Villegas S. Amyloid-beta peptide and tau protein crosstalk in Alzheimer’s disease. Neural Regen Res. 2022;17:1666–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gu L, Guo Z. Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. J Neurochem. 2013;126:305–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kwak SS, Washicosky KJ, Brand E, von Maydell D, Aronson J, Kim S, et al. Amyloid-β42/40 ratio drives tau pathology in 3D human neural cell culture models of Alzheimer’s disease. Nat Commun. 2020;11:1377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Qu C, Li QP, Su ZR, Ip SP, Yuan QJ, Xie YL, et al. Nano-Honokiol ameliorates the cognitive deficits in TgCRND8 mice of Alzheimer’s disease via inhibiting neuropathology and modulating gut microbiota. J Adv Res. 2021;35:231–43.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179:312–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Stathas S, Alvarez VE, Xia W, Nicks R, Meng G, Daley S, et al. Tau phosphorylation sites serine202 and serine396 are differently altered in chronic traumatic encephalopathy and Alzheimer’s disease. Alzheimers Dement. 2022;18:1511–22.

    Article  PubMed  CAS  Google Scholar 

  65. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018;4:575–90.

    Google Scholar 

  66. Davidson R, Krider RI, Borsellino P, Noorda K, Alhwayek G, Vida TA. Untangling tau: molecular insights into neuroinflammation, pathophysiology, and emerging immunotherapies. Curr Issues Mol Biol. 2023;45:8816–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Avila-Muñoz E, Arias C. When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res Rev. 2014;18:29–40.

    Article  PubMed  Google Scholar 

  68. Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, et al. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J Immunol. 2011;187:6539–49.

    Article  PubMed  CAS  Google Scholar 

  69. Kitazawa M, Trinh DN, LaFerla FM. Inflammation induces tau pathology in inclusion body myositis model via glycogen synthase kinase-3beta. Ann Neurol. 2008;64:15–24.

    Article  PubMed  CAS  Google Scholar 

  70. Gao J, Liu J, Li Y, Liu J, Wang H, Chai M, et al. Targeting p53 for neuroinflammation: new therapeutic strategies in ischemic stroke. J Neurosci Res. 2023;101:1393–408.

    Article  PubMed  CAS  Google Scholar 

  71. Prins CA, Almeida FM, Martinez AM. Absence of galectin-3 attenuates neuroinflammation improving functional recovery after spinal cord injury. Neural Regen Res. 2016;11:92–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Stajic D, Selakovic D, Jovicic N, Joksimovic J, Arsenijevic N, Lukic ML, et al. The role of galectin-3 in modulation of anxiety state level in mice. Brain Behav Immun. 2019;78:177–87.

    Article  PubMed  CAS  Google Scholar 

  73. Jiao FZ, Wang Y, Zhang HY, Zhang WB, Wang LW, Gong ZJ. Histone deacetylase 2 inhibitor CAY10683 alleviates lipopolysaccharide induced neuroinflammation through attenuating TLR4/NF-κB signaling pathway. Neurochem Res. 2018;43:1161–70.

    Article  PubMed  CAS  Google Scholar 

  74. Wang X, Xue Y, Yao Y, Li Y, Ji X, Chi T, et al. PINK1 regulates mitochondrial fission/fusion and neuroinflammation in β-amyloid-induced Alzheimer’s disease models. Neurochem Int. 2022;154:105298.

    Article  PubMed  CAS  Google Scholar 

  75. Sun XY, Zheng T, Yang X, Liu L, Gao SS, Xu HB, et al. HDAC2 hyperexpression alters hippocampal neuronal transcription and microglial activity in neuroinflammation-induced cognitive dysfunction. J Neuroinflammation. 2019;16:249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wu Z, Wang ZH, Liu X, Zhang Z, Gu X, Yu SP, et al. Traumatic brain injury triggers APP and Tau cleavage by delta-secretase, mediating Alzheimer’s disease pathology. Prog Neurobiol. 2020;185:101730.

    Article  PubMed  Google Scholar 

  77. Wang Y, Dykes GA. Direct modulation of the gut microbiota as a therapeutic approach for Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2022;21:14–25.

    Article  PubMed  CAS  Google Scholar 

  78. Szablewski L. Human gut microbiota in health and Alzheimer’s disease. J Alzheimers Dis. 2018;62:549–60.

    Article  PubMed  Google Scholar 

  79. O’Toole PW, Jeffery IB. Gut microbiota and aging. Science. 2015;350:1214–5.

    Article  PubMed  Google Scholar 

  80. Wang SS, Li XH, Liu P, Li J, Liu L. The relationship between Alzheimer’s disease and intestinal microflora structure and inflammatory factors. Front Aging Neurosci. 2022;14:972982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017;7:13537.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep. 2017;7:41802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Guo X, Li J, Tang R, Zhang G, Zeng H, Wood RJ, et al. High fat diet alters gut microbiota and the expression of paneth cell-antimicrobial peptides preceding changes of circulating inflammatory cytokines. Mediators Inflamm. 2017;2017:9474896.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Huang TT, Lai JB, Du YL, Xu Y, Ruan LM, Hu SH. Current understanding of gut microbiota in mood disorders: an update of human studies. Front Genet. 2019;10:98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Killingsworth J, Sawmiller D, Shytle RD. Propionate and Alzheimer’s disease. Front Aging Neurosci. 2021;12:580001.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16:90.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yun Y, Kim HN, Kim SE, Heo SG, Chang Y, Ryu S, et al. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol. 2017;17:151.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sun ZZ, Li XY, Wang S, Shen L, Ji HF. Bidirectional interactions between curcumin and gut microbiota in transgenic mice with Alzheimer’s disease. Appl Microbiol Biotechnol. 2020;104:3507–15.

    Article  PubMed  CAS  Google Scholar 

  89. Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis. 2018;63:1337–46.

    Article  PubMed  CAS  Google Scholar 

  90. Zhao W, Wang J, Latta M, Wang C, Liu Y, Ma W, et al. Rhizoma gastrodiae water extract modulates the gut microbiota and pathological changes of P-TauThr231 to protect against cognitive impairment in mice. Front Pharmacol. 2022;13:903659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Wang J, Zhu X, Li Y, Guo W, Li M. Jiedu-Yizhi formula alleviates neuroinflammation in AD rats by modulating the gut microbiota. Evid Based Complement Altern Med. 2022;2022:4023006.

    Google Scholar 

  92. Zhou H, Tai J, Xu H, Lu X, Meng D. Xanthoceraside could ameliorate Alzheimer’s disease symptoms of rats by affecting the gut microbiota composition and modulating the endogenous metabolite levels. Front Pharmacol. 2019;10:1035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Zhang Z, Tan X, Sun X, Wei J, Li QX, Wu Z. Isoorientin affects markers of Alzheimer’s disease via effects on the oral and gut microbiota in APP/PS1 mice. J Nutr. 2022;152:140–52.

    Article  PubMed  Google Scholar 

  94. Tsering J, Chen Q, Li H, Han Y, Wu J, Yin H, et al. Effects of the Tibetan medicine Byur dMar Nyer lNga Ril Bu on Alzheimer’s disease in mice models. J Ethnopharmacol. 2022;283:114724.

    Article  PubMed  CAS  Google Scholar 

  95. Li J, Liao X, Yin X, Deng Z, Hu G, Zhang W, et al. Gut microbiome and serum metabolome profiles of capsaicin with cognitive benefits in APP/PS1 mice. Nutrients. 2022;15:118.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhang J, Hao J, Liu R, Wu T, Liu R, Sui W, et al. Hawthorn flavonoid ameliorates cognitive deficit in mice with Alzheimer’s disease by increasing the levels of Bifidobacteriales in gut microbiota and docosapentaenoic acid in serum metabolites. Food Funct. 2022;13:12371–82.

    Article  PubMed  CAS  Google Scholar 

  97. Sun P, Zhu H, Li X, Shi W, Guo Y, Du X, et al. Comparative metagenomics and metabolomes reveals abnormal metabolism activity is associated with gut microbiota in Alzheimer’s disease mice. Int J Mol Sci. 2022;23:11560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Cao J, Amakye WK, Qi C, Liu X, Ma J, Ren J. Bifidobacterium lactis probio-M8 regulates gut microbiota to alleviate Alzheimer’s disease in the APP/PS1 mouse model. Eur J Nutr. 2021;60:3757–69.

    Article  PubMed  CAS  Google Scholar 

  99. Megur A, Baltriukienė D, Bukelskienė V, Burokas A. The microbiota-gut-brain axis and Alzheimer’s disease: neuroinflammation is to blame? Nutrients. 2020;13:37.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ramis IB, Vianna JS, Gonçalves CV, von Groll A, Dellagostin OA, da Silva PEA. Polymorphisms of the IL-6, IL-8 and IL-10 genes and the risk of gastric pathology in patients infected with Helicobacter pylori. J Microbiol Immunol Infect. 2017;50:153–9.

    Article  PubMed  CAS  Google Scholar 

  101. Li C, Wang N, Zheng G, Yang L. Oral administration of resveratrol-selenium-peptide nanocomposites alleviates Alzheimer’s disease-like pathogenesis by inhibiting Aβ aggregation and regulating gut microbiota. ACS Appl Mater Interfaces. 2021;13:46406–20.

    Article  PubMed  CAS  Google Scholar 

  102. Yang L, Wang Y, Li Z, Wu X, Mei J, Zheng G. Brain targeted peptide-functionalized chitosan nanoparticles for resveratrol delivery: impact on insulin resistance and gut microbiota in obesity-related Alzheimer’s disease. Carbohydr Polym. 2023;310:120714.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Project No. 82104414), Guangdong Basic and Applied Basic Research Foundation (Project No. 2019A1515011257 and 2022A1515011682), and a Direct Grant from the Faculty of Medicine, The Chinese University of Hong Kong (Project No. 2021.071).

Author information

Authors and Affiliations

Authors

Contributions

YFX and ZXL conceived the research idea and designed the experimental protocols. MZ performed the experiments and collected the experimental data. RTZ, XQH, QQX, and WY helped with the data analysis. MZ drafted the manuscript. MQH, ZXL, and YFX revised the manuscript. All authors read and approved the final manuscript. All data were generated in-house, and no paper mill was used. All authors agree to be accountable for all aspects of work ensuring integrity and accuracy.

Corresponding authors

Correspondence to Zhi-xiu Lin or Yan-fang Xian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All experimental procedures were approved by the Animal Experimentation Ethics Committee of CUHK (Ref. No.: 21/067/NSF).

Consent for publication

All authors have consented for publication.

Additional information

Consent for publication All authors have consented for publication.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Xu, Qq., Huang, Mq. et al. Rhynchophylline alleviates cognitive deficits in multiple transgenic mouse models of Alzheimer’s disease via modulating neuropathology and gut microbiota. Acta Pharmacol Sin 46, 1813–1833 (2025). https://doi.org/10.1038/s41401-025-01475-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01475-0

Keywords

Search

Quick links