Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of 5-imidazole-3-methylbenz[d]isoxazole derivatives as potent and selective CBP/p300 bromodomain inhibitors for the treatment of acute myeloid leukemia

Abstract

Inhibition of the bromodomain of the cAMP response element binding protein (CREB)-binding protein (CBP) and its homologue p300 is an attractive therapeutic approach in oncology, particularly in acute myeloid leukemia (AML). In this study we describe the design, optimization, and evaluation of 5-imidazole-3-methylbenz[d]isoxazoles as novel, potent and selective CBP/p300 bromodomain inhibitors. Two of the representative compounds, 16t (Y16524) and 16u (Y16526), bound to the p300 bromodomain with IC50 values of 0.01 and 0.03 μM, respectively. Furthermore, 16t and 16u potently inhibited the growth of AML cell lines, particularly MV4;11 cells with IC50 values of 0.49 and 0.26 μM, respectively. The potent CBP/p300 bromodomain inhibitors represent a new class of compounds for the development of potential therapeutics against AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of representative CBP/p300 bromodomain inhibitors.
Fig. 2: Flowchart summarizing the discovery and optimization strategy for novel 5-imidazole-3-methylbenz[d]isoxazole-containing CBP/p300 bromodomain inhibitors.
Scheme 1
Scheme 2
Fig. 3: Cocrystal structure of 16t bound to p300 bromodomain.
Fig. 4: Thermal stability shift analysis for selected compounds against bromodomains of CBP/p300 and BET proteins.
Fig. 5: Growth inhibitory effects of CBP/p300 inhibitors in different AML cell lines.
Fig. 6: Compounds 16t and 16 u inhibit the expression of c-Myc and PARP proteins.

Similar content being viewed by others

References

  1. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;85:953–9.

    Article  Google Scholar 

  2. Arany Z, Sellers WR, Livingston DM, Eckner R. E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell. 1994;77:799–800.

    Article  CAS  PubMed  Google Scholar 

  3. Dancy BM, Cole PA. Protein lysine acetylation by p300/CBP. Chem Rev. 2015;115:2419–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 2000;14:1553–77.

    Article  CAS  PubMed  Google Scholar 

  5. Shiama N. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 1997;7:230–6.

    Article  CAS  PubMed  Google Scholar 

  6. Chan HM, Thangue NBL. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci. 2001;114:2363–73.

    Article  CAS  PubMed  Google Scholar 

  7. Narita T, Ito S, Higashijima Y, Chu WK, Neumann K, Walter J, et al. Enhancers are activated by p300/CBP activity-dependent PIC assembly, RNAPII recruitment, and pause release. Mol Cell. 2021;81:2166–82.

    Article  CAS  PubMed  Google Scholar 

  8. Faiola F, Liu X, Lo S, Pan S, Zhang K, Lymar E, et al. Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol. 2005;25:10220–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Conery AR, Centore RC, Neiss A, Keller PJ, Joshi S, Spillane KL, et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. eLife. 2016;5:10483.

    Article  Google Scholar 

  10. Iyer NG, Ozdag H, Caldas C. p300/CBP and cancer. Oncogene. 2004;23:4225–31.

    Article  CAS  PubMed  Google Scholar 

  11. Welti J, Sharp A, Brooks N, Yuan W, McNair C, Chand SN, et al. Targeting the p300/CBP axis in lethal prostate cancer. Cancer Discov. 2021;11:1118–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tabayashi T, Takahashi Y, Kimura Y, Tomikawa T, Sagawa M, Nemoto T, et al. Targeting the Wnt/β-catenin signaling pathway in multiple myeloma: a possible new therapeutic approach to overcome bortezomib-resistance. Blood. 2014;124:3372.

    Article  Google Scholar 

  13. Brooks N, Raja M, Young BW, Spencer GJ, Somervaille TC, Pegg NA. CCS1477: a novel small molecule inhibitor of p300/CBP bromodomain for the treatment of acute myeloid leukaemia and multiple myeloma. Blood. 2019;134:2560.

    Article  Google Scholar 

  14. Giotopoulos G, Chan WI, Horton SJ, Ruau D, Gallipoli P, Fowler A, et al. The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia. Oncogene. 2015;35:279–89.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen Q, Yang B, Liu X, Zhang XD, Zhang L, Liu T. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics. 2022;12:4935–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–19.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wysota M, Konopleva M, Mitchell S. Novel therapeutic targets in acute myeloid leukemia (AML). Curr Oncol Rep. 2024;26:409–20.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kitabayashi I, Aikawa Y, Yokoyama A, Hosoda F, Nagai M, Kakazu N, et al. Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation. Leukemia. 2001;15:89–94.

    Article  CAS  PubMed  Google Scholar 

  19. Taki T, Sako M, Tsuchida M, Hayashi Y. The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood. 1997;89:3945–50.

    Article  CAS  PubMed  Google Scholar 

  20. Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11; 22)(q23; q13). Blood. 1997;90:4699–704.

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Gural A, Sun XJ, Zhao X, Perna F, Huang G, et al. The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science. 2011;333:765–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roe JS, Mercan F, Rivera K, Pappin DJ, Vakoc CR. BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol Cell. 2015;58:1028–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hay DA, Fedorov O, Martin S, Singleton DC, Tallant C, Wells C, et al. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. J Am Chem Soc. 2014;136:9308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taylor AM, Cote A, Hewitt MC, Pastor R, Leblanc Y, Nasveschuk CG, et al. Fragment-based discovery of a selective and cell-active benzodiazepinone CBP/EP300 bromodomain inhibitor (CPI-637). ACS Med Chem Lett. 2016;7:531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Romero FA, Murray J, Lai KW, Tsui V, Albrecht BK, An L, et al. GNE-781, a highly advanced potent and selective bromodomain inhibitor of cyclic adenosine monophosphate response element binding protein, binding protein (CBP). J Med Chem. 2017;60:9162–83.

    Article  CAS  PubMed  Google Scholar 

  26. Lai KW, Romero FA, Tsui V, Beresini MH, de Leon Boenig G, Bronner SM, et al. Design and synthesis of a biaryl series as inhibitors for the bromodomains of CBP/P300. Bioorg Med Chem Lett. 2018;28:15–23.

    Article  CAS  PubMed  Google Scholar 

  27. Zou LJ, Xiang QP, Xue XQ, Zhang C, Li CC, Wang C, et al. Y08197 is a novel and selective CBP/EP300 bromodomain inhibitor for the treatment of prostate cancer. Acta Pharmacol Sin. 2019;40:1436–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muthengi A, Wimalasena VK, Yosief HO, Bikowitz MJ, Sigua LH, Wang T, et al. Development of dimethylisoxazole-attached imidazo[1,2-a]pyridines as potent and selective CBP/P300 inhibitors. J Med Chem. 2021;64:5787–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiang QP, Wang C, Wu TB, Zhang C, Hu QQ, Luo GL, et al. Design, synthesis, and biological evaluation of 1-(indolizin-3-yl)ethan-1-ones as CBP bromodomain inhibitors for the treatment of prostate cancer. J Med Chem. 2022;65:785–810.

    Article  CAS  PubMed  Google Scholar 

  30. Xiang QP, Wu TB, Zhang C, Wang C, Xu HR, Hu QQ, et al. Discovery of a potent and selective CBP bromodomain inhibitor (Y08262) for treating acute myeloid leukemia. Bioorg Chem. 2024;142:106950–62.

    Article  CAS  PubMed  Google Scholar 

  31. Crabb S, Plummer R, Greystoke A, Carter L, Pacey S, Walter H, et al. A phase I/IIa study to evaluate the safety and efficacy of CCS1477, a first in clinic inhibitor of p300/CBP, as monotherapy in patients with selected molecular alterations. Ann Oncol. 2021;32:S617.

    Article  Google Scholar 

  32. Xiang QP, Zhou Y, Zhang Y, Xu Y. CBP/p300 bromodomain: new promising epigenetic target. Visualized Cancer Med. 2022;3:3–10.

    Article  Google Scholar 

  33. Xue XQ, Zhang Y, Liu ZX, Song M, Xing YL, Xiang QP, et al. Discovery of benzo[cd]indol-2(1H)-ones as potent and specific BET bromodomain inhibitors: structure-based virtual screening, optimization, and biological evaluation. J Med Chem. 2016;59:1565–79.

    Article  CAS  PubMed  Google Scholar 

  34. Xiang QP, Wang C, Zhang Y, Xue XQ, Song M, Zhang C, et al. Discovery and optimization of 1-(1H-indol-1-yl)ethanone derivatives as CBP/EP300 bromodomain inhibitors for the treatment of castration-resistant prostate cancer. Eur J Med Chem. 2018;147:238–52.

    Article  CAS  PubMed  Google Scholar 

  35. Hu JK, Xu HR, Wu TB, Zhang C, Shen H, Dong RB, et al. Discovery of highly potent and efficient CBP/p300 degraders with strong in vivo antitumor activity. J Med Chem. 2024;67:6952–86.

    Article  CAS  PubMed  Google Scholar 

  36. Leslie AGW, Powell HR. Processing diffraction data with MOSFLM. Evolv Methods Macromol Crystallogr. 2007;245:41–51.

    Article  Google Scholar 

  37. Yu F, Wang QS, Li MJ, Zhou H, Liu K, Zhang KH, et al. Aquarium: an automatic data-processing and experiment information management system for biological macromolecular crystallography beamlines. J Appl Crystallogr. 2019;52:472–7.

    Article  CAS  Google Scholar 

  38. Bailey S. The CCP4 suite: programs for protein crystallography. Acta Crystallogr Sect D Biol Crystallogr. 1994;50:760–3.

    Article  Google Scholar 

  39. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–32.

    Article  PubMed  Google Scholar 

  42. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66:12–21.

    Article  CAS  PubMed  Google Scholar 

  43. Picaud S, Fedorov O, Thanasopoulou A, Leonards K, Jones K, Meier J, et al. Generation of a selective small molecule inhibitor of the CBP/p300 bromodomain for leukemia therapy. Cancer Res. 2015;75:5106–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crawford TD, Romero FA, Lai KW, Tsui V, Taylor AM, de Leon Boenig G, et al. Discovery of a potent and selective in vivo probe (GNE-272) for the bromodomains of CBP/EP300. J Med Chem. 2016;59:10549–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Key R&D Program of China (grant 2022YFE0210600), the Guangdong Province Grant for Belt and Road Joint Laboratory (grant 2022B1212050004), the Basic Research Project of Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (grant GIBHBRP24-04 and GIBHBRP24-03), research initiation project of Guoke Ningbo Life Science and Health Industry Research Institute (grant 2021YJY1007 and 2022YJY0206), the Zhu Xiu Shan Talent Project of Ningbo No. 2 Hospital (grant 2023HMYQ21), Youth Innovation Promotion Association CAS (grant No. 2023372), the National Natural Science Foundation of China (grants 22007088). We thank the staff at BL19U1/BL02U1 beamlines at SSRF of the National Facility for Protein Science in Shanghai (NFPS), Shanghai Advanced Research Institute, Chinese Academy of Sciences, for providing technical support in X-ray diffraction data collection and analysis. We gratefully acknowledge the support from the Guangzhou Branch of the Supercomputing Center, the Analysis and Testing Center and the Laboratory Animal Research Center of Chinese Academy of Sciences. We also thank the Scientific Data Center of Guangzhou Institutes of Biomedicine and Health, CAS (No. 011).

Author information

Authors and Affiliations

Authors

Contributions

YX, QPX, and YZ conceived and designed the research. JKH, XT, GLL, CZ, TBW, CW, HS, XFZ, XSW, and YZ conduct the research. QPX, YX, YZ, and JKH wrote the manuscript. QPX, YX, YZ, JBS, and JKH revised the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Yong Xu, Yan Zhang or Qiu-ping Xiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Jk., Tang, X., Luo, Gl. et al. Discovery of 5-imidazole-3-methylbenz[d]isoxazole derivatives as potent and selective CBP/p300 bromodomain inhibitors for the treatment of acute myeloid leukemia. Acta Pharmacol Sin 46, 1706–1721 (2025). https://doi.org/10.1038/s41401-025-01478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01478-x

Keywords

Search

Quick links