Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GABA transporter 1 is a promising drug target for CUL4B mutation-associated epilepsy

Abstract

Cullin 4B (CUL4B) is the scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex. Loss-of-function mutations in the human CUL4B gene result in syndromic X-linked intellectual disability (XLID). In addition to intellectual disability, patients with CUL4B mutations exhibit epilepsy. To date, the mechanism underlying epilepsy associated with CUL4B mutation has not been elucidated. Here, we show that male mice with Cul4b deleted in the nervous system are more susceptible to both pentylenetetrazole (PTZ)- and kainic acid (KA)-induced epilepsy and exhibit spontaneous epilepsy without any chemical inducers. We identify the CRL4B complex as an E3 ubiquitin ligase that targets GABA transporter 1 (GAT1). CUL4B deletion in male mice results in GAT1 accumulation and increased GABA reuptake, leading to impaired GABA-mediated inhibitory synaptic transmission. Treating CUL4B-deficient mice with the GAT1 inhibitor tiagabine effectively reverses the increased susceptibility to chemical-induced epilepsy and attenuates spontaneous epilepsy without the use of chemical inducers. We further confirm the role of CUL4B in the regulation of GAT1 levels and GABA uptake in neurons and astrocytes differentiated from induced pluripotent stem cells (iPSCs) derived from patients with CUL4B loss-of-function mutations. Our work reveals a novel mechanism underlying the pathogenesis of epilepsy and identifies a promising drug target for treating CUL4B mutation-associated epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lack of CUL4B in the nervous system increases epilepsy susceptibility in mice.
Fig. 2: Loss of CUL4B impairs inhibitory synaptic transmission.
Fig. 3: Lack of CUL4B in the nervous system results in increased GAT1 levels and GABA uptake.
Fig. 4: GAT1 inhibition blocks decreased tonic inhibition and increased seizure susceptibility caused by depletion of CUL4B.
Fig. 5: CRL4B functions as an E3 ligase for GAT1.
Fig. 6: Lack of CUL4B enhances GAT1 expression and GABA uptake in human iPSCs, iPSC-derived neurons, and iPSC-derived astrocytes.
Fig. 7: The mechanism underlying epilepsy associated with CUL4B mutations.

Similar content being viewed by others

Data availability

All the raw data supporting the findings of this study are available from the corresponding authors upon request.

References

  1. Tarpey PS, Raymond FL, O’Meara S, Edkins S, Teague J, Butler A, et al. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am J Hum Genet. 2007;80:345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zou Y, Liu Q, Chen B, Zhang X, Guo C, Zhou H, et al. Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation. Am J Hum Genet. 2007;80:561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tarpey PS, Smith R, Pleasance E, Whibley A, Edkins S, Hardy C, et al. A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet. 2009;41:535–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen CY, Tsai MS, Lin CY, Yu IS, Chen YT, Lin SR, et al. Rescue of the genetically engineered Cul4b mutant mouse as a potential model for human X-linked mental retardation. Hum Mol Genet. 2012;21:4270–85.

    Article  CAS  PubMed  Google Scholar 

  5. Jackson S, Xiong Y. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci. 2009;34:562–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu L, Yin Y, Li Y, Prevedel L, Lacy EH, Ma L, et al. Essential role of the CUL4B ubiquitin ligase in extra-embryonic tissue development during mouse embryogenesis. Cell Res. 2012;22:1258–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang B, Zhao W, Yuan J, Qian Y, Sun W, Zou Y, et al. Lack of Cul4b, an E3 ubiquitin ligase component, leads to embryonic lethality and abnormal placental development. PLoS One. 2012;7:e37070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin CY, Chen CY, Yu CH, Yu IS, Lin SR, Wu JT, et al. Human X-linked intellectual disability factor CUL4B is required for post-meiotic sperm development and male fertility. Sci Rep. 2016;6:20227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yin Y, Liu L, Yang C, Lin C, Veith GM, Wang C, et al. Cell autonomous and nonautonomous function of CUL4B in mouse spermatogenesis. J Biol Chem. 2016;291:6923–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li P, Song Y, Zan W, Qin L, Han S, Jiang B, et al. Lack of CUL4B in adipocytes promotes PPARgamma-mediated adipose tissue expansion and insulin sensitivity. Diabetes. 2017;66:300–13.

    Article  CAS  PubMed  Google Scholar 

  11. Hu H, Yang Y, Ji Q, Zhao W, Jiang B, Liu R, et al. CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis. Cancer Cell. 2012;22:781–95.

    Article  CAS  PubMed  Google Scholar 

  12. Qian Y, Yuan J, Hu H, Yang Q, Li J, Zhang S, et al. The CUL4B/AKT/beta-catenin axis restricts the accumulation of myeloid-derived suppressor cells to prohibit the establishment of a tumor-permissive microenvironment. Cancer Res. 2015;75:5070–83.

    Article  CAS  PubMed  Google Scholar 

  13. Petroff OA. GABA and glutamate in the human brain. Neuroscientist. 2002;8:562–73.

    Article  CAS  PubMed  Google Scholar 

  14. Ghit A, Assal D, Al-Shami AS, Hussein DEE. GABA(A) receptors: structure, function, pharmacology, and related disorders. J Genet Eng Biotechnol. 2021;19:123.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Evenseth LSM, Gabrielsen M, Sylte I. The GABA(B) receptor-structure, ligand binding and drug development. Molecules. 2020;25:3093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang X, Jaenisch R, Sur M. The role of GABAergic signalling in neurodevelopmental disorders. Nat Rev Neurosci. 2021;22:290–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koh W, Kwak H, Cheong E, Lee CJ. GABA tone regulation and its cognitive functions in the brain. Nat Rev Neurosci. 2023;24:523–39.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Wang Y, Chen Z. Double-edged GABAergic synaptic transmission in seizures: the importance of chloride plasticity. Brain Res. 2018;1701:126–36.

    Article  CAS  PubMed  Google Scholar 

  19. Mermer F, Poliquin S, Rigsby K, Rastogi A, Shen W, Romero-Morales A, et al. Common molecular mechanisms of SLC6A1 variant-mediated neurodevelopmental disorders in astrocytes and neurons. Brain. 2021;144:2499–512.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lyu S, Guo Y, Zhang L, Wang Y, Tang G, Li R, et al. Blockade of GABA transporter-1 and GABA transporter-3 in the lateral habenula improves depressive-like behaviors in a rat model of Parkinson’s disease. Neuropharmacology. 2020;181:108369.

    Article  CAS  PubMed  Google Scholar 

  21. Yang X, Hou D, Jiang W, Zhang C. Intercellular protein-protein interactions at synapses. Protein Cell. 2014;5:420–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, et al. Cloning and expression of a rat brain GABA transporter. Science. 1990;249:1303–6.

    Article  CAS  PubMed  Google Scholar 

  23. Fattorini G, Melone M, Conti F. A reappraisal of GAT-1 localization in neocortex. Front Cell Neurosci. 2020;14:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Madsen KK, White HS, Schousboe A. Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol Ther. 2010;125:394–401.

    Article  CAS  PubMed  Google Scholar 

  25. Motiwala Z, Aduri NG, Shaye H, Han GW, Lam JH, Katritch V, et al. Structural basis of GABA reuptake inhibition. Nature. 2022;606:820–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mandhane SN, Aavula K, Rajamannar T. Timed pentylenetetrazol infusion test: a comparative analysis with s.c.PTZ and MES models of anticonvulsant screening in mice. Seizure. 2007;16:636–44.

    Article  PubMed  Google Scholar 

  27. Wang HT, Zhu ZA, Li YY, Lou SS, Yang G, Feng X, et al. CDKL5 deficiency in forebrain glutamatergic neurons results in recurrent spontaneous seizures. Epilepsia. 2021;62:517–28.

    Article  CAS  PubMed  Google Scholar 

  28. Yang Q, Zheng F, Hu Y, Yang Y, Li Y, Chen G, et al. ZDHHC8 critically regulates seizure susceptibility in epilepsy. Cell Death Dis. 2018;9:795.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jiang CH, Wei M, Zhang C, Shi YS. The amino-terminal domain of GluA1 mediates LTP maintenance via interaction with neuroplastin-65. Proc Natl Acad Sci USA. 2021;118:e2019194118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Y, Zhu K, Li N, Wang X, Xiao X, Li L, et al. Reversible GABAergic dysfunction involved in hippocampal hyperactivity predicts early-stage Alzheimer disease in a mouse model. Alzheimers Res Ther. 2021;13:114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Egawa K, Kitagawa K, Inoue K, Takayama M, Takayama C, Saitoh S, et al. Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome. Sci Transl Med. 2012;4:163ra157.

    Article  PubMed  Google Scholar 

  32. Jiang W, Wei M, Liu M, Pan Y, Cao D, Yang X, et al. Identification of protein tyrosine phosphatase receptor type O (PTPRO) as a synaptic adhesion molecule that promotes synapse formation. J Neurosci. 2017;37:9828–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma Y, Hu JH, Zhao WJ, Fei J, Yu Y, Zhou XG, et al. Overexpression of gamma-aminobutyric acid transporter subtype I leads to susceptibility to kainic acid-induced seizure in transgenic mice. Cell Res. 2001;11:61–7.

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Yang X, Li Y, Wang X, Ma J, Jiang W, et al. Generation of patient-specific pluripotent induced stem cell line SDUBMSI002-A from a patient with X-linked mental retardation syndrome. Stem Cell Res. 2020;43:101724.

    Article  CAS  PubMed  Google Scholar 

  35. Guan J, Liu X, Zhang H, Lv Y, Wang X, Yang X, et al. Generation of an iPSC line (SDQLCHi015-A) from peripheral blood mononuclear cells of a patient with mental retardation type 15 carrying c.1007_1011del, p.(Ile336fs) in CUL4B gene. Stem Cell Res. 2019;41:101628.

    Article  CAS  PubMed  Google Scholar 

  36. Ma Y, Liu X, Zhou M, Sun W, Jiang B, Liu Q, et al. CUL4B mutations impair human cortical neurogenesis through PP2A-dependent inhibition of AKT and ERK. Cell Death Dis. 2024;15:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Liu H, Sauvey C, Yao L, Zarnowska ED, Zhang SC. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc. 2013;8:1670–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao W, Jiang B, Hu H, Zhang S, Lv S, Yuan J, et al. Lack of CUL4B leads to increased abundance of GFAP-positive cells that is mediated by PTGDS in mouse brain. Hum Mol Genet. 2015;24:4686–97.

    Article  CAS  PubMed  Google Scholar 

  39. Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci USA. 2004;101:9861–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Della Vecchia S, Lopergolo D, Trovato R, Pasquariello R, Ferrari AR, Bartolini E. CUL4B-associated epilepsy: report of a novel truncating variant promoting drug-resistant seizures and systematic review of the literature. Seizure. 2023;104:32–37.

    Article  PubMed  Google Scholar 

  41. Zhao WJ, Ma YH, Fei J, Mei ZT, Guo LH. Increase in drug-induced seizure susceptibility of transgenic mice overexpressing GABA transporter-1. Acta Pharmacol Sin. 2003;24:991–5.

    CAS  PubMed  Google Scholar 

  42. Richerson GB, Wu Y. Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol. 2003;90:1363–74.

    Article  CAS  PubMed  Google Scholar 

  43. Wu Y, Wang W, Richerson GB. GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter. J Neurosci. 2001;21:2630–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu Y, Wang W, Díez-Sampedro A, Richerson GB. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron. 2007;56:851–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Savtchenko L, Megalogeni M, Rusakov DA, Walker MC, Pavlov I. Synaptic GABA release prevents GABA transporter type-1 reversal during excessive network activity. Nat Commun. 2015;6:6597.

    Article  CAS  PubMed  Google Scholar 

  46. Bhatt M, Gauthier-Manuel L, Lazzarin E, Zerlotti R, Ziegler C, Bazzone A, et al. A comparative review on the well-studied GAT1 and the understudied BGT-1 in the brain. Front Physiol. 2023;14:1145973.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Translational Medicine Core Facility of Shandong University and the School of Basic Medical Sciences Core Facility of Shandong University for consultation and instrument availability. This work was supported by grants from the National Key R&D Program of China (2022YFC2703700 [2022YFC2703701] to YQG and 2022YFC2703700 [2022YFC2703703] to GPS) and the National Natural Science Foundation of China (32370652 and 82171851 to YQG; 31970559 to BCJ).

Author information

Authors and Affiliations

Authors

Contributions

YQG, BCJ, and GPS conceived the study concept and design. WJ performed most of the experiments. YYM helped establish the iPSCs. YFW, SQJ, RQY, SXC, and YFG helped establish the experiments. CZ, YZ, MLW, YXZ, QL, and YS participated in the acquisition, analysis, and interpretation of the data. YQG, BCJ, and GPS wrote and revised the manuscript.

Corresponding authors

Correspondence to Gong-ping Sun, Bai-chun Jiang or Yao-qin Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Ma, Yy., Wang, Yf. et al. GABA transporter 1 is a promising drug target for CUL4B mutation-associated epilepsy. Acta Pharmacol Sin 46, 1580–1591 (2025). https://doi.org/10.1038/s41401-025-01490-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01490-1

Keywords

Search

Quick links