Abstract
Parkinson’s disease (PD) is a neurodegenerative disease, and emerging evidence has shown that iron deposition, ferroptosis and epigenetic modifications are implicated in the pathogenesis of PD. However, the interplay among these factors in PD has not been fully understood. In this review, we provide an overview of the current research progress on iron metabolism, ferroptosis and epigenetic alterations associated with PD. Furthermore, we present new frontiers concerning various epigenetic modifications related to iron metabolism and ferroptosis that might contribute to the pathology of PD. Notably, epigenetic modifications of iron metabolism and ferroptosis as both diagnostic and therapeutic targets in PD have been discussed. This opens new avenues for the regulation of iron homeostasis and ferroptosis in PD from epigenetic perspectives, and provides evidence for their potential implications in the diagnosis and treatment of PD.

This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Parkinson J. An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci. 2002;14:223–36. https://doi.org/10.1176/jnp.14.2.223.
Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med. 2013;62:132–44. https://doi.org/10.1016/j.freeradbiomed.2013.01.018.
Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross GW, et al. Prevalence of Parkinson’s disease across North America. NPJ Park Dis. 2018;4:21 https://doi.org/10.1038/s41531-018-0058-0.
Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, San Luciano M, Tanner C. The epidemiology of Parkinson’s disease. Lancet. 2024;403:283–92. https://doi.org/10.1016/s0140-6736(23)01419-8.
Collaborators GN. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80. https://doi.org/10.1016/s1474-4422(18)30499-x.
Dorsey ER, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson pandemic. J Park Dis. 2018;8:S3–s8. https://doi.org/10.3233/jpd-181474.
Wang J, Dai L, Chen S, Zhang Z, Fang X, Zhang Z. Protein-protein interactions regulating α-synuclein pathology. Trends Neurosci 2024;47:209–26. https://doi.org/10.1016/j.tins.2024.01.002.
Dickson DW, Fujishiro H, Orr C, DelleDonne A, Josephs KA, Frigerio R, et al. Neuropathology of non-motor features of Parkinson disease. Park Relat Disord. 2009;15:S1–5. https://doi.org/10.1016/s1353-8020(09)70769-2.
Cattaneo C, Jost WH. Pain in Parkinson’s disease: pathophysiology, classification and treatment. J Integr Neurosci. 2023;22:132. https://doi.org/10.31083/j.jin2205132.
Terracciano A, Luchetti M, Karakose S, Stephan Y, Sutin AR. Loneliness and risk of Parkinson disease. JAMA Neurol. 2023;80:1138–44. https://doi.org/10.1001/jamaneurol.2023.3382.
Ou R, Lin J, Liu K, Jiang Z, Wei Q, Hou Y, et al. Evolution of apathy in early Parkinson’s disease: A 4-years prospective cohort study. Front Aging Neurosci. 2020;12:620762. https://doi.org/10.3389/fnagi.2020.620762.
Broen MP, Narayen NE, Kuijf ML, Dissanayaka NN, Leentjens AF. Prevalence of anxiety in Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2016;31:1125–33. https://doi.org/10.1002/mds.26643.
Goldman JG, Sieg E. Cognitive impairment and dementia in Parkinson disease. Clin Geriatr Med. 2020;36:365–77. https://doi.org/10.1016/j.cger.2020.01.001.
Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323:548–60. https://doi.org/10.1001/jama.2019.22360.
de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5:525–35. https://doi.org/10.1016/s1474-4422(06)70471-9.
Bellou V, Belbasis L, Tzoulaki I, Evangelou E, Ioannidis JP. Environmental risk factors and Parkinson’s disease: An umbrella review of meta-analyses. Park Relat Disord. 2016;23:1–9. https://doi.org/10.1016/j.parkreldis.2015.12.008.
Morris HR, Spillantini MG, Sue CM, Williams-Gray CH. The pathogenesis of Parkinson’s disease. Lancet. 2024;403:293–304. https://doi.org/10.1016/s0140-6736(23)01478-2.
Dong-Chen X, Yong C, Yang X, Chen-Yu S, Li-Hua P. Signaling pathways in Parkinson’s disease: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023;8:73. https://doi.org/10.1038/s41392-023-01353-3.
Jyothi HJ, Vidyadhara DJ, Mahadevan A, Philip M, Parmar SK, Manohari SG, et al. Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiol Aging. 2015;36:3321–33. https://doi.org/10.1016/j.neurobiolaging.2015.08.024.
Cerri S, Mus L, Blandini F. Parkinson’s disease in women and men: what’s the difference?. J Park Dis. 2019;9:501–15. https://doi.org/10.3233/jpd-191683.
Zhu J, Cui Y, Zhang J, Yan R, Su D, Zhao D, et al. Temporal trends in the prevalence of Parkinson’s disease from 1980 to 2023: a systematic review and meta-analysis. Lancet Healthy Longev. 2024;5:e464–e479. https://doi.org/10.1016/s2666-7568(24)00094-1.
Marras C, Canning CG, Goldman SM. Environment, lifestyle, and Parkinson’s disease: Implications for prevention in the next decade. Mov Disord. 2019;34:801–11. https://doi.org/10.1002/mds.27720.
Chen R, Gu X, Wang X. α-Synuclein in Parkinson’s disease and advances in detection. Clin Chim Acta. 2022;529:76–86. https://doi.org/10.1016/j.cca.2022.02.006.
Siderowf A, Concha-Marambio L, Lafontant DE, Farris CM, Ma Y, Urenia PA, et al. Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. Lancet Neurol. 2023;22:407–17. https://doi.org/10.1016/s1474-4422(23)00109-6.
Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G. Neurodegeneration and Inflammation-An Interesting Interplay in Parkinson’s disease. Int J Mol Sci. 2020; 21:https://doi.org/10.3390/ijms21228421.
Malpartida AB, Williamson M, Narendra DP, Wade-Martins R, Ryan BJ. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: from mechanism to therapy. Trends Biochem Sci. 2021;46:329–43. https://doi.org/10.1016/j.tibs.2020.11.007.
Zhao Z, Ning J, Bao XQ, Shang M, Ma J, Li G, et al. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome. 2021;9:226. https://doi.org/10.1186/s40168-021-01107-9.
Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell. 2019;18:e13031. https://doi.org/10.1111/acel.13031.
Biondetti E, Santin MD, Valabrègue R, Mangone G, Gaurav R, Pyatigorskaya N, et al. The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson’s disease. Brain. 2021;144:3114–25. https://doi.org/10.1093/brain/awab191.
Rathore AS, Birla H, Singh SS, Zahra W, Dilnashin H, Singh R, et al. Epigenetic modulation in Parkinson’s disease and potential treatment therapies. Neurochem Res. 2021;46:1618–26. https://doi.org/10.1007/s11064-021-03334-w.
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, et al. Ferroptosis in Parkinson’s disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev. 2023;91:102077. https://doi.org/10.1016/j.arr.2023.102077.
Wang Y, Wu S, Li Q, Sun H, Wang H. Pharmacological inhibition of ferroptosis as a therapeutic target for neurodegenerative diseases and strokes. Adv Sci. 2023;10:e2300325. https://doi.org/10.1002/advs.202300325.
Zhang D, Zhang J, Wang Y, Wang G, Tang P, Liu Y, et al. Targeting epigenetic modifications in Parkinson’s disease therapy. Med Res Rev. 2023;43:1748–77. https://doi.org/10.1002/med.21962.
Wei X, Cai M, Jin L. The function of the metals in regulating epigenetics during Parkinson’s disease. Front Genet. 2020;11:616083. https://doi.org/10.3389/fgene.2020.616083.
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13:1045–60. https://doi.org/10.1016/s1474-4422(14)70117-6.
Geng H, Li Z, Li Z, Zhang Y, Gao Z, Sun L, et al. Restoring neuronal iron homeostasis revitalizes neurogenesis after spinal cord injury. Proc Natl Acad Sci USA. 2023;120:e2220300120. https://doi.org/10.1073/pnas.2220300120.
Chifman J, Laubenbacher R, Torti SV. A systems biology approach to iron metabolism. Adv Exp Med Biol. 2014;844:201–25. https://doi.org/10.1007/978-1-4939-2095-2_10.
Jiang H, Wang J, Rogers J, Xie J. Brain Iron metabolism dysfunction in Parkinson’s disease. Mol Neurobiol. 2017;54:3078–101. https://doi.org/10.1007/s12035-016-9879-1.
Song N, Wang J, Jiang H, Xie J. Astroglial and microglial contributions to iron metabolism disturbance in Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis. 2018;1864:967–73. https://doi.org/10.1016/j.bbadis.2018.01.008.
Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol. 2017;155:96–119. https://doi.org/10.1016/j.pneurobio.2015.09.012.
Pyatigorskaya N, Sharman M, Corvol JC, Valabregue R, Yahia-Cherif L, Poupon F, et al. High nigral iron deposition in LRRK2 and Parkin mutation carriers using R2* relaxometry. Mov Disord. 2015;30:1077–84. https://doi.org/10.1002/mds.26218.
Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-Ramos M. α-Synuclein expression is modulated at the translational level by iron. Neuroreport. 2012;23:576–80. https://doi.org/10.1097/WNR.0b013e328354a1f0.
Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M, Wolozin B. The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci. 2000;20:6048–54. https://doi.org/10.1523/jneurosci.20-16-06048.2000.
Kaur D, Peng J, Chinta SJ, Rajagopalan S, Di Monte DA, Cherny RA, et al. Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging. 2007;28:907–13. https://doi.org/10.1016/j.neurobiolaging.2006.04.003.
Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem. 2016;139:179–97. https://doi.org/10.1111/jnc.13425.
Guo C, Hao LJ, Yang ZH, Chai R, Zhang S, Gu Y, et al. Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp Neurol. 2016;280:13–23. https://doi.org/10.1016/j.expneurol.2016.03.016.
Ayton S, Lei P, Hare DJ, Duce JA, George JL, Adlard PA, et al. Parkinson’s disease iron deposition caused by nitric oxide-induced loss of β-amyloid precursor protein. J Neurosci. 2015;35:3591–7. https://doi.org/10.1523/jneurosci.3439-14.2015.
Grolez G, Moreau C, Sablonnière B, Garçon G, Devedjian JC, Meguig S, et al. Ceruloplasmin activity and iron chelation treatment of patients with Parkinson’s disease. BMC Neurol. 2015;15:74. https://doi.org/10.1186/s12883-015-0331-3.
Devos D, Labreuche J, Rascol O, Corvol JC, Duhamel A, Guyon Delannoy P, et al. Trial of deferiprone in Parkinson’s disease. N Engl J Med. 2022;387:2045–55. https://doi.org/10.1056/NEJMoa2209254.
Zhang N, Yu X, Song L, Xiao Z, Xie J, Xu H. Ferritin confers protection against iron-mediated neurotoxicity and ferroptosis through iron chelating mechanisms in MPP+-induced MES23.5 dopaminergic cells. Free Radic Biol Med. 2022;193:751–63. https://doi.org/10.1016/j.freeradbiomed.2022.11.018.
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. https://doi.org/10.1016/j.cell.2012.03.042.
Bayır H, Dixon SJ, Tyurina YY, Kellum JA, Kagan VE. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol. 2023;19:315–36. https://doi.org/10.1038/s41581-023-00689-x.
Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer Cell. 2024;42:513–34. https://doi.org/10.1016/j.ccell.2024.03.011.
Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 2023;8:372. https://doi.org/10.1038/s41392-023-01606-1.
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541. https://doi.org/10.1038/s41418-017-0012-4.
Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22:381–96. https://doi.org/10.1038/s41568-022-00459-0.
Li N, Jiang W, Wang W, Xiong R, Wu X, Geng Q. Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacol Res. 2021;166:105466. https://doi.org/10.1016/j.phrs.2021.105466.
Ajoolabady A, Aslkhodapasandhokmabad H, Libby P, Tuomilehto J, Lip GYH, Penninger JM, et al. Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends Endocrinol Metab. 2021;32:444–62. https://doi.org/10.1016/j.tem.2021.04.010.
Wang Y, Zhang M, Bi R, Su Y, Quan F, Lin Y, et al. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol. 2022;51:102262. https://doi.org/10.1016/j.redox.2022.102262.
Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 2021;93:312–21. https://doi.org/10.1016/j.bbi.2021.01.003.
Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ. 2021;28:1548–62. https://doi.org/10.1038/s41418-020-00685-9.
Lin ZH, Liu Y, Xue NJ, Zheng R, Yan YQ, Wang ZX, et al. Quercetin protects against MPP(+)/MPTP-induced dopaminergic neuron death in Parkinson’s disease by inhibiting ferroptosis. Oxid Med Cell Longev. 2022;2022:7769355. https://doi.org/10.1155/2022/7769355.
Chen X, Kang R, Kroemer G, Tang D. Ferroptosis in infection, inflammation, and immunity. J Exp Med. 2021; 218:https://doi.org/10.1084/jem.20210518.
Do Van B, Gouel F, Jonneaux A, Timmerman K, Gelé P, Pétrault M, et al. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis. 2016;94:169–78. https://doi.org/10.1016/j.nbd.2016.05.011.
Guiney SJ, Adlard PA, Bush AI, Finkelstein DI, Ayton S. Ferroptosis and cell death mechanisms in Parkinson’s disease. Neurochem Int. 2017;104:34–48. https://doi.org/10.1016/j.neuint.2017.01.004.
Agostini F, Bubacco L, Chakrabarti S, Bisaglia M. α-Synuclein toxicity in drosophila melanogaster is enhanced by the presence of iron: implications for Parkinson’s disease. Antioxidants. 2023; 12:https://doi.org/10.3390/antiox12020261.
Bjørklund G, Peana M, Maes M, Dadar M, Severin B. The glutathione system in Parkinson’s disease and its progression. Neurosci Biobehav Rev. 2021;120:470–8. https://doi.org/10.1016/j.neubiorev.2020.10.004.
Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol. 1994;36:348–55. https://doi.org/10.1002/ana.410360305.
Zeng X, An H, Yu F, Wang K, Zheng L, Zhou W, et al. Benefits of iron chelators in the treatment of Parkinson’s disease. Neurochem Res. 2021;46:1239–51. https://doi.org/10.1007/s11064-021-03262-9.
Faucheux BA, Martin ME, Beaumont C, Hunot S, Hauw JJ, Agid Y, et al. Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson’s disease. J Neurochem. 2002;83:320–30. https://doi.org/10.1046/j.1471-4159.2002.01118.x.
Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015;59:298–308. https://doi.org/10.1016/j.molcel.2015.06.011.
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688–92. https://doi.org/10.1038/s41586-019-1705-2.
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13:91–98. https://doi.org/10.1038/nchembio.2239.
Yuan H, Li X, Zhang X, Kang R, Tang D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 2016;478:1338–43. https://doi.org/10.1016/j.bbrc.2016.08.124.
Yue M, Wei J, Chen W, Hong D, Chen T, Fang X. Neurotrophic role of the next-generation probiotic Strain L. lactis MG1363-pMG36e-GLP-1 on Parkinson’s disease via inhibiting ferroptosis. Nutrients. 2022; 14:https://doi.org/10.3390/nu14224886.
Song LM, Xiao ZX, Zhang N, Yu XQ, Cui W, Xie JX, et al. Apoferritin improves motor deficits in MPTP-treated mice by regulating brain iron metabolism and ferroptosis. iScience. 2021;24:102431. https://doi.org/10.1016/j.isci.2021.102431.
Hu ZW, Wen YH, Ma RQ, Chen L, Zeng XL, Wen WP, et al. Ferroptosis Driver SOCS1 and Suppressor FTH1 independently correlate with M1 and M2 macrophage infiltration in head and neck squamous cell carcinoma. Front Cell Dev Biol. 2021;9:727762. https://doi.org/10.3389/fcell.2021.727762.
Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X, et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics. 2020;17:1796–812. https://doi.org/10.1007/s13311-020-00929-z.
Dai CQ, Luo TT, Luo SC, Wang JQ, Wang SM, Bai YH, et al. p53 and mitochondrial dysfunction: novel insight of neurodegenerative diseases. J Bioenerg Biomembr. 2016;48:337–47. https://doi.org/10.1007/s10863-016-9669-5.
Goiran T, Duplan E, Rouland L, El Manaa W, Lauritzen I, Dunys J, et al. Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death Differ. 2018;25:873–84. https://doi.org/10.1038/s41418-017-0016-0.
Amit M, Takahashi H, Dragomir MP, Lindemann A, Gleber-Netto FO, Pickering CR, et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature. 2020;578:449–54. https://doi.org/10.1038/s41586-020-1996-3.
Mogi M, Kondo T, Mizuno Y, Nagatsu T. p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the Parkinsonian brain. Neurosci Lett. 2007;414:94–7. https://doi.org/10.1016/j.neulet.2006.12.003.
Kamath T, Abdulraouf A, Burris SJ, Langlieb J, Gazestani V, Nadaf NM, et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat Neurosci. 2022;25:588–95. https://doi.org/10.1038/s41593-022-01061-1.
Ishii T, Bannai S, Sugita Y. Mechanism of growth stimulation of L1210 cells by 2-mercaptoethanol in vitro. Role of the mixed disulfide of 2-mercaptoethanol and cysteine. J Biol Chem. 1981;256:12387–92.
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62. https://doi.org/10.1038/nature14344.
Riegel G, Orvain C, Recberlik S, Spaety ME, Poschet G, Venkatasamy A, et al. The unfolded protein response-glutathione metabolism axis: a novel target of a cycloruthenated complexes bypassing tumor resistance mechanisms. Cancer Lett. 2024;585:216671. https://doi.org/10.1016/j.canlet.2024.216671.
Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 2015;10:1604–9. https://doi.org/10.1021/acschembio.5b00245.
Skonieczna M, Cieslar-Pobuda A, Saenko Y, Foksinski M, Olinski R, Rzeszowska-Wolny J, et al. The Impact of DIDS-Induced Inhibition of Voltage-Dependent Anion Channels (VDAC) on cellular response of lymphoblastoid cells to ionizing radiation. Med Chem. 2017;13:477–83. https://doi.org/10.2174/1573406413666170421102353.
Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta. 2015;1851:308–30. https://doi.org/10.1016/j.bbalip.2014.10.002.
Lin F, Chen W, Zhou J, Zhu J, Yao Q, Feng B, et al. Mesenchymal stem cells protect against ferroptosis via exosome-mediated stabilization of SLC7A11 in acute liver injury. Cell Death Dis. 2022;13:271. https://doi.org/10.1038/s41419-022-04708-w.
Razavi SM, Khayatan D, Arab ZN, Momtaz S, Zare K, Jafari RM, et al. Licofelone, a potent COX/5-LOX inhibitor and a novel option for treatment of neurological disorders. Prostagl Other Lipid Mediat. 2021;157:106587. https://doi.org/10.1016/j.prostaglandins.2021.106587.
Ryan SK, Zelic M, Han Y, Teeple E, Chen L, Sadeghi M, et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat Neurosci. 2023;26:12–26. https://doi.org/10.1038/s41593-022-01221-3.
Lu H, Zhang B, Yin T, Hua Y, Cao C, Ge M, et al. Ferroptosis-related immune genes in hematological diagnosis of Parkinson’s diseases. Mol Neurobiol. 2023;60:6395–409. https://doi.org/10.1007/s12035-023-03468-8.
Li K, Wang M, Huang Z-H, Wang M, Sun W-Y, Kurihara H, et al. ALOX5 inhibition protects against dopaminergic neurons undergoing ferroptosis. Pharmacol Res. 2023;193:106779. https://doi.org/10.1016/j.phrs.2023.106779.
Shi L, Huang C, Luo Q, Xia Y, Liu W, Zeng W, et al. Clioquinol improves motor and non-motor deficits in MPTP-induced monkey model of Parkinson’s disease through AKT/mTOR pathway. Aging. 2020;12:9515–33. https://doi.org/10.18632/aging.103225.
Sun Y, He L, Wang W, Xie Z, Zhang X, Wang P, et al. Activation of Atg7-dependent autophagy by a novel inhibitor of the Keap1-Nrf2 protein-protein interaction from Penthorum Chinense Pursh. attenuates 6-hydroxydopamine-induced ferroptosis in zebrafish and dopaminergic neurons. Food Funct. 2022;13:7885–7900. https://doi.org/10.1039/d2fo00357k.
Xi J, Zhang Z, Wang Z, Wu Q, He Y, Xu Y, et al. Hinokitiol functions as a ferroptosis inhibitor to confer neuroprotection. Free Radic Biol Med. 2022;190:202–15. https://doi.org/10.1016/j.freeradbiomed.2022.08.011.
Wang L, An H, Yu F, Yang J, Ding H, Bao Y, et al. The neuroprotective effects of paeoniflorin against MPP+-induced damage to dopaminergic neurons via the Akt/Nrf2/GPX4 pathway. J Chem Neuroanat. 2022;122:102103. https://doi.org/10.1016/j.jchemneu.2022.102103.
Sun Y, He L, Wang T, Hua W, Qin H, Wang J, et al. Activation of p62-Keap1-Nrf2 Pathway Protects 6-Hydroxydopamine-Induced ferroptosis in dopaminergic cells. Mol Neurobiol. 2020;57:4628–41. https://doi.org/10.1007/s12035-020-02049-3.
Liu L, Yang S, Wang H. α-Lipoic acid alleviates ferroptosis in the MPP+-induced PC12 cells via activating the PI3K/Akt/Nrf2 pathway. Cell Biol Int. 2021;45:422–31. https://doi.org/10.1002/cbin.11505.
Marupudi N, Xiong MP. Genetic targets and applications of iron chelators for neurodegeneration with brain iron accumulation. ACS Bio Med Chem Au. 2024;4:119–30. https://doi.org/10.1021/acsbiomedchemau.3c00066.
Negida A, Hassan NM, Aboeldahab H, Zain YE, Negida Y, Cadri S, et al. Efficacy of the iron-chelating agent, deferiprone, in patients with Parkinson’s disease: A systematic review and meta-analysis. CNS Neurosci Ther. 2024;30:e14607. https://doi.org/10.1111/cns.14607.
Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8. https://doi.org/10.1016/j.cell.2007.02.006.
Zhang L, Lu Q, Chang C. Epigenetics in health and disease. Adv Exp Med Biol. 2020;1253:3–55. https://doi.org/10.1007/978-81-15-3449-2_1.
Recillas-Targa F. Cancer epigenetics: an overview. Arch Med Res. 2022;53:732–40. https://doi.org/10.1016/j.arcmed.2022.11.003.
Wang G, Wang B, Yang P. Epigenetics in congenital heart disease. J Am Heart Assoc. 2022;11:e025163. https://doi.org/10.1161/jaha.121.025163.
Prasher D, Greenway SC, Singh RB. The impact of epigenetics on cardiovascular disease. Biochem Cell Biol. 2020;98:12–22. https://doi.org/10.1139/bcb-2019-0045.
Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019;29:1028–44. https://doi.org/10.1016/j.cmet.2019.03.009.
Gao X, Chen Q, Yao H, Tan J, Liu Z, Zhou Y, et al. Epigenetics in Alzheimer’s disease. Front Aging Neurosci. 2022;14:911635. https://doi.org/10.3389/fnagi.2022.911635.
Sharma R, Bisht P, Kesharwani A, Murti K, Kumar N. Epigenetic modifications in Parkinson’s disease: A critical review. Eur J Pharmacol. 2024;975:176641. https://doi.org/10.1016/j.ejphar.2024.176641.
Burgunder JM. Mechanisms underlying phenotypic variation in neurogenetic disorders. Nat Rev Neurol. 2023;19:363–70. https://doi.org/10.1038/s41582-023-00811-4.
Berson A, Nativio R, Berger SL, Bonini NM. Epigenetic regulation in neurodegenerative diseases. Trends Neurosci. 2018;41:587–98. https://doi.org/10.1016/j.tins.2018.05.005.
Li J, Jaiswal MK, Chien JF, Kozlenkov A, Jung J, Zhou P, et al. Divergent single cell transcriptome and epigenome alterations in ALS and FTD patients with C9orf72 mutation. Nat Commun. 2023;14:5714. https://doi.org/10.1038/s41467-023-41033-y.
Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem. 1948;175:315–32.
Sigurpalsdottir BD, Stefansson OA, Holley G, Beyter D, Zink F, Hardarson M, et al. A comparison of methods for detecting DNA methylation from long-read sequencing of human genomes. Genome Biol. 2024;25:69. https://doi.org/10.1186/s13059-024-03207-9.
Simmons RK, Stringfellow SA, Glover ME, Wagle AA, Clinton SM. DNA methylation markers in the postnatal developing rat brain. Brain Res. 2013;1533:26–36. https://doi.org/10.1016/j.brainres.2013.08.005.
He Y, Zheng Z, Liu C, Li W, Zhao L, Nie G, et al. Inhibiting DNA methylation alleviates cisplatin-induced hearing loss by decreasing oxidative stress-induced mitochondria-dependent apoptosis via the LRP1-PI3K/AKT pathway. Acta Pharm Sin B. 2022;12:1305–21. https://doi.org/10.1016/j.apsb.2021.11.002.
Suelves M, Carrió E, Núñez-Álvarez Y, Peinado MA. DNA methylation dynamics in cellular commitment and differentiation. Brief Funct Genomics. 2016;15:443–53. https://doi.org/10.1093/bfgp/elw017.
Jowaed A, Schmitt I, Kaut O, Wüllner U. Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci. 2010;30:6355–9. https://doi.org/10.1523/jneurosci.6119-09.2010.
Schmitt I, Evert BO, Sharma A, Khazneh H, Murgatroyd C, Wüllner U. The Alpha-Synuclein Gene (SNCA) is a genomic target of methyl-CpG Binding Protein 2 (MeCP2)-implications for Parkinson’s disease and Rett syndrome. Mol Neurobiol. 2024. https://doi.org/10.1007/s12035-024-03974-3.
Bogdanović O, Smits AH, de la Calle Mustienes E, Tena JJ, Ford E, Williams R, et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat Genet. 2016;48:417–26. https://doi.org/10.1038/ng.3522.
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther. 2023;8:297. https://doi.org/10.1038/s41392-023-01537-x.
Guhathakurta S, Song MK, Basu S, Je G, Cristovao AC, Kim YS. Regulation of αlpha-synuclein gene (SNCA) by epigenetic modifier TET1 in Parkinson disease. Int Neurourol J. 2022;26:S85–93. https://doi.org/10.5213/inj.2222206.103.
Kaas GA, Zhong C, Eason DE, Ross DL, Vachhani RV, Ming GL, et al. TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron. 2013;79:1086–93. https://doi.org/10.1016/j.neuron.2013.08.032.
Li Y, Qu C, Song H, Li T, Zheng J, Wu L, et al. Enriched environment priors to TET1 hippocampal administration for regulating psychiatric behaviors via glial reactivity in chronic cerebral hypoperfusion models. J Affect Disord. 2022;310:198–212. https://doi.org/10.1016/j.jad.2022.04.087.
Shu L, Qin L, Min S, Pan H, Zhong J, Guo J, et al. Genetic analysis of DNA methylation and hydroxymethylation genes in Parkinson’s disease. Neurobiol Aging. 2019;84:242.e13–242.e16. https://doi.org/10.1016/j.neurobiolaging.2019.02.025.
Kaut O, Schmitt I, Tost J, Busato F, Liu Y, Hofmann P, et al. Epigenome-wide DNA methylation analysis in siblings and monozygotic twins discordant for sporadic Parkinson’s disease revealed different epigenetic patterns in peripheral blood mononuclear cells. Neurogenetics. 2017;18:7–22. https://doi.org/10.1007/s10048-016-0497-x.
Bate C, Williams A. cAMP-inhibits cytoplasmic phospholipase A2 and protects neurons against Amyloid-β-induced synapse damage. Biology. 2015;4:591–606. https://doi.org/10.3390/biology4030591.
Gurevich VV, Gurevich EV. A boost in learning by removing nuclear phosphodiesterases and enhancing nuclear cAMP signaling. Sci Signal. 2023;16:eadg9504. https://doi.org/10.1126/scisignal.adg9504.
Morató X, Garcia-Esparcia P, Argerich J, Llorens F, Zerr I, Paslawski W, et al. Ecto-GPR37: a potential biomarker for Parkinson’s disease. Transl Neurodegener. 2021;10:8. https://doi.org/10.1186/s40035-021-00232-7.
Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41:1308–12. https://doi.org/10.1038/ng.487.
Reed LA, Wszolek ZK, Hutton M. Phenotypic correlations in FTDP-17. Neurobiol Aging. 2001;22:89–107. https://doi.org/10.1016/s0197-4580(00)00202-5.
Soutar MPM, Melandri D, O’Callaghan B, Annuario E, Monaghan AE, Welsh NJ, et al. Regulation of mitophagy by the NSL complex underlies genetic risk for Parkinson’s disease at 16q11.2 and MAPT H1 loci. Brain. 2022;145:4349–67. https://doi.org/10.1093/brain/awac325.
Su X, Chu Y, Kordower JH, Li B, Cao H, Huang L, et al. PGC-1α promoter methylation in Parkinson’s disease. PLoS One. 2015;10:e0134087. https://doi.org/10.1371/journal.pone.0134087.
Henderson AR, Wang Q, Meechoovet B, Siniard AL, Naymik M, De Both M, et al. DNA methylation and expression profiles of whole blood in Parkinson’s disease. Front Genet. 2021;12:640266. https://doi.org/10.3389/fgene.2021.640266.
Kochmanski J, Kuhn NC, Bernstein AI. Parkinson’s disease-associated, sex-specific changes in DNA methylation at PARK7 (DJ-1), SLC17A6 (VGLUT2), PTPRN2 (IA-2β), and NR4A2 (NURR1) in cortical neurons. NPJ Park Dis. 2022;8:120. https://doi.org/10.1038/s41531-022-00355-2.
Lin Q, Ding H, Zheng Z, Gu Z, Ma J, Chen L, et al. Promoter methylation analysis of seven clock genes in Parkinson’s disease. Neurosci Lett. 2012;507:147–50. https://doi.org/10.1016/j.neulet.2011.12.007.
Kaut O, Schmitt I, Wüllner U. Genome-scale methylation analysis of Parkinson’s disease patients’ brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics. 2012;13:87–91. https://doi.org/10.1007/s10048-011-0308-3
Searles Nielsen S, Checkoway H, Criswell SR, Farin FM, Stapleton PL, Sheppard L, et al. Inducible nitric oxide synthase gene methylation and parkinsonism in manganese-exposed welders. Parkinsonism Relat Disord. 2015;21:355–60. https://doi.org/10.1016/j.parkreldis.2015.01.007.
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389:251–60. https://doi.org/10.1038/38444.
Weake VM, Workman JL. Histone ubiquitination: triggering gene activity. Mol Cell. 2008;29:653–63. https://doi.org/10.1016/j.molcel.2008.02.014.
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95. https://doi.org/10.1038/cr.2011.22.
Gopalan S, Wang Y, Harper NW, Garber M, Fazzio TG. Simultaneous profiling of multiple chromatin proteins in the same cells. Mol Cell. 2021;81:4736–.e5. https://doi.org/10.1016/j.molcel.2021.09.019.
Bartosovic M, Castelo-Branco G. Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag. Nat Biotechnol. 2023;41:794–805. https://doi.org/10.1038/s41587-022-01535-4.
Meers MP, Llagas G, Janssens DH, Codomo CA, Henikoff S. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag. Nat Biotechnol. 2023;41:708–16. https://doi.org/10.1038/s41587-022-01522-9.
Stuart T, Hao S, Zhang B, Mekerishvili L, Landau DA, Maniatis S, et al. Nanobody-tethered transposition enables multifactorial chromatin profiling at single-cell resolution. Nat Biotechnol. 2023;41:806–12. https://doi.org/10.1038/s41587-022-01588-5.
Xiong H, Wang Q, Li CC, He A. Single-cell joint profiling of multiple epigenetic proteins and gene transcription. Sci Adv. 2024;10:eadi3664. https://doi.org/10.1126/sciadv.adi3664.
Yue X, Xie Z, Li M, Wang K, Li X, Zhang X, et al. Simultaneous profiling of histone modifications and DNA methylation via nanopore sequencing. Nat Commun. 2022;13:7939. https://doi.org/10.1038/s41467-022-35650-2.
Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10:295–304. https://doi.org/10.1038/nrg2540.
Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705. https://doi.org/10.1016/j.cell.2007.02.005.
Evans LW, Stratton MS, Ferguson BS. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat Prod Rep. 2020;37:653–76. https://doi.org/10.1039/c9np00057g.
Wu Y, Ma J, Yang X, Nan F, Zhang T, Ji S, et al. Neutrophil profiling illuminates anti-tumor antigen-presenting potency. Cell. 2024;187:1422–.e24. https://doi.org/10.1016/j.cell.2024.02.005.
Zhang S, Zhang Y, Duan X, Wang B, Zhan Z. Targeting NPM1 epigenetically promotes postinfarction cardiac repair by reprogramming reparative macrophage metabolism. Circulation. 2024;149:1982–2001. https://doi.org/10.1161/circulationaha.123.065506.
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, et al. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther. 2023;8:98. https://doi.org/10.1038/s41392-023-01333-7.
Sanacora G, Yan Z, Popoli M. The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci. 2022;23:86–103. https://doi.org/10.1038/s41583-021-00540-x.
Mazzocchi M, Goulding SR, Morales-Prieto N, Foley T, Collins LM, Sullivan AM, et al. Peripheral administration of the Class-IIa HDAC inhibitor MC1568 partially protects against nigrostriatal neurodegeneration in the striatal 6-OHDA rat model of Parkinson’s disease. Brain Behav Immun. 2022;102:151–60. https://doi.org/10.1016/j.bbi.2022.02.025.
Pradeepa MM, Grimes GR, Kumar Y, Olley G, Taylor GC, Schneider R, et al. Histone H3 globular domain acetylation identifies a new class of enhancers. Nat Genet. 2016;48:681–6. https://doi.org/10.1038/ng.3550.
Pandey R, Müller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA, et al. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 2002;30:5036–55. https://doi.org/10.1093/nar/gkf660.
Kumar V, Kundu S, Singh A, Singh S. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: current targets and future perspective. Curr Neuropharmacol. 2022;20:158–78. https://doi.org/10.2174/1570159x19666210609160017.
Sardoiwala MN, Sood A, Biswal L, Roy Choudhury S, Karmakar S. Reconstituted super paramagnetic protein “magnetotransferrin” for brain targeting to attenuate Parkinsonism. ACS Appl Mater Interfaces. 2023;15:12708–18. https://doi.org/10.1021/acsami.2c20990.
Marinho D, Ferreira IL, Lorenzoni R, Cardoso SM, Santana I, Rego AC. Reduction of class I histone deacetylases ameliorates ER-mitochondria cross-talk in Alzheimer’s disease. Aging Cell. 2023;22:e13895. https://doi.org/10.1111/acel.13895.
Lang C, Campbell KR, Ryan BJ, Carling P, Attar M, Vowles J, et al. Single-cell sequencing of iPSC-dopamine neurons reconstructs disease progression and identifies HDAC4 as a regulator of Parkinson cell phenotypes. Cell Stem Cell. 2019;24:93–106.e6. https://doi.org/10.1016/j.stem.2018.10.023.
Dai X, Lin A, Zhuang L, Zeng Q, Cai L, Wei Y, et al. Targeting SIK3 to modulate hippocampal synaptic plasticity and cognitive function by regulating the transcription of HDAC4 in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2024;49:942–52. https://doi.org/10.1038/s41386-023-01775-1.
Mondal P, Bai P, Gomm A, Bakiasi G, Lin CJ, Wang Y, et al. Structure-based discovery of a small molecule inhibitor of histone deacetylase 6 (HDAC6) that significantly reduces Alzheimer’s disease neuropathology. Adv Sci. 2024;11:e2304545. https://doi.org/10.1002/advs.202304545.
Lee SH, Lee JH, Lee HY, Min KJ. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019;52:24–34. https://doi.org/10.5483/BMBRep.2019.52.1.290.
Wang Y, Lv D, Liu W, Li S, Chen J, Shen Y, et al. Disruption of the circadian clock alters antioxidative defense via the SIRT1-BMAL1 Pathway in 6-OHDA-induced models of Parkinson’s disease. Oxid Med Cell Longev. 2018;2018:4854732. https://doi.org/10.1155/2018/4854732.
Singh P, Hanson PS, Morris CM. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson’s disease. BMC Neurosci. 2017;18:46. https://doi.org/10.1186/s12868-017-0364-1.
Li X, Feng Y, Wang XX, Truong D, Wu YC. The critical role of SIRT1 in Parkinson’s disease: mechanism and therapeutic considerations. Aging Dis. 2020;11:1608–22. https://doi.org/10.14336/ad.2020.0216.
Arbo BD, André-Miral C, Nasre-Nasser RG, Schimith LE, Santos MG, Costa-Silva D, et al. Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s disease. Front Aging Neurosci. 2020;12:103. https://doi.org/10.3389/fnagi.2020.00103.
Sun F, Wang J, Meng L, Zhou Z, Xu Y, Yang M, et al. AdipoRon promotes amyloid-β clearance through enhancing autophagy via nuclear GAPDH-induced sirtuin 1 activation in Alzheimer’s disease. Br J Pharmacol. 2024;181:3039–63. https://doi.org/10.1111/bph.16400.
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Hassan Almalki W, et al. The role of sirtuin 1 in ageing and neurodegenerative disease: A molecular perspective. Ageing Res Rev. 2024;102:102545. https://doi.org/10.1016/j.arr.2024.102545.
Gebremedhin KG, Rademacher DJ. Histone H3 acetylation in the postmortem Parkinson’s disease primary motor cortex. Neurosci Lett. 2016;627:121–5. https://doi.org/10.1016/j.neulet.2016.05.060.
Toker L, Tran GT, Sundaresan J, Tysnes OB, Alves G, Haugarvoll K, et al. Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson’s disease brain. Mol Neurodegener. 2021;16:31. https://doi.org/10.1186/s13024-021-00450-7.
Huang M, Lou D, Charli A, Kong D, Jin H, Zenitsky G, et al. Mitochondrial dysfunction-induced H3K27 hyperacetylation perturbs enhancers in Parkinson’s disease. JCI Insight. 2021; 6:https://doi.org/10.1172/jci.insight.138088.
Gardian G, Yang L, Cleren C, Calingasan NY, Klivenyi P, Beal MF. Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity. Neuromolecular Med. 2004;5:235–41. https://doi.org/10.1385/nmm:5:3:235.
Zhou W, Bercury K, Cummiskey J, Luong N, Lebin J, Freed CR. Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J Biol Chem. 2011;286:14941–51. https://doi.org/10.1074/jbc.M110.211029.
Kulkarni A, Preeti K, Tryphena KP, Srivastava S, Singh SB, Khatri DK. Proteostasis in Parkinson’s disease: Recent development and possible implication in diagnosis and therapeutics. Ageing Res Rev. 2023;84:101816. https://doi.org/10.1016/j.arr.2022.101816.
Meka ST, Bojja SL, Kumar G, Birangal SR, Rao CM. Novel HDAC inhibitors provide neuroprotection in MPTP-induced Parkinson’s disease model of rats. Eur J Pharmacol. 2023;959:176067. https://doi.org/10.1016/j.ejphar.2023.176067.
Toledano-Pinedo M, Porro-Pérez A, Schäker-Hübner L, Romero F, Dong M, Samadi A, et al. Contilisant+Tubastatin A Hybrids: polyfunctionalized indole derivatives as new HDAC inhibitor-based multitarget small molecules with in vitro and in vivo activity in neurodegenerative diseases. J Med Chem. 2024;67:16533–55. https://doi.org/10.1021/acs.jmedchem.4c01367.
Fnu S, Williamson EA, De Haro LP, Brenneman M, Wray J, Shaheen M, et al. Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining. Proc Natl Acad Sci USA. 2011;108:540–5. https://doi.org/10.1073/pnas.1013571108.
Sugeno N, Jäckel S, Voigt A, Wassouf Z, Schulze-Hentrich J, Kahle PJ. α-Synuclein enhances histone H3 lysine-9 dimethylation and H3K9me2-dependent transcriptional responses. Sci Rep. 2016;6:36328. https://doi.org/10.1038/srep36328.
Guhathakurta S, Kim J, Adams L, Basu S, Song MK, Adler E, et al. Targeted attenuation of elevated histone marks at SNCA alleviates α-synuclein in Parkinson’s disease. EMBO Mol Med. 2021;13:e12188. https://doi.org/10.15252/emmm.202012188.
Mu MD, Qian ZM, Yang SX, Rong KL, Yung WH, Ke Y. Therapeutic effect of a histone demethylase inhibitor in Parkinson’s disease. Cell Death Dis. 2020;11:927. https://doi.org/10.1038/s41419-020-03105-5.
Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–79. https://doi.org/10.1146/annurev.biochem.67.1.425.
Srivastava AK, Choudhury SR, Karmakar S. Neuronal Bmi-1 is critical for melatonin induced ubiquitination and proteasomal degradation of α-synuclein in experimental Parkinson’s disease models. Neuropharmacology. 2021;194:108372. https://doi.org/10.1016/j.neuropharm.2020.108372.
Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 2007;317:1220–4. https://doi.org/10.1126/science.1140481.
Chen Q, Deng N, Lu K, Liao Q, Long X, Gou D, et al. Elevated plasma miR-133b and miR-221-3p as biomarkers for early Parkinson’s disease. Sci Rep. 2021;11:15268. https://doi.org/10.1038/s41598-021-94734-z.
Doxakis E. Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem. 2010;285:12726–34. https://doi.org/10.1074/jbc.M109.086827.
Thome AD, Harms AS, Volpicelli-Daley LA, Standaert DG. microRNA-155 regulates alpha-synuclein-induced inflammatory responses in models of Parkinson disease. J Neurosci. 2016;36:2383–90. https://doi.org/10.1523/jneurosci.3900-15.2016.
McMillan KJ, Murray TK, Bengoa-Vergniory N, Cordero-Llana O, Cooper J, Buckley A, et al. Loss of microRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo. Mol Ther. 2017;25:2404–14. https://doi.org/10.1016/j.ymthe.2017.08.017.
Kabaria S, Choi DC, Chaudhuri AD, Mouradian MM, Junn E. Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Lett. 2015;589:319–25. https://doi.org/10.1016/j.febslet.2014.12.014.
Citterio LA, Mancuso R, Agostini S, Meloni M, Clerici M. Serum and exosomal miR-7-1-5p and miR-223-3p as possible biomarkers for Parkinson’s disease. Biomolecules. 2023; 13:https://doi.org/10.3390/biom13050865.
Vallelunga A, Ragusa M, Di Mauro S, Iannitti T, Pilleri M, Biundo R, et al. Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and Multiple System Atrophy. Front Cell Neurosci. 2014;8:156. https://doi.org/10.3389/fncel.2014.00156.
Chen Y, Gao C, Sun Q, Pan H, Huang P, Ding J, et al. MicroRNA-4639 Is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson’s disease. Front Aging Neurosci. 2017;9:232. https://doi.org/10.3389/fnagi.2017.00232.
He L, Chen Y, Lin S, Shen R, Pan H, Zhou Y, et al. Regulation of Hsa-miR-4639-5p expression and its potential role in the pathogenesis of Parkinson’s disease. Aging Cell. 2023;22:e13840. https://doi.org/10.1111/acel.13840.
Goh SY, Chao YX, Dheen ST, Tan EK, Tay SS. Role of MicroRNAs in Parkinson’s disease. Int J Mol Sci. 2019;20:5649. https://doi.org/10.3390/ijms20225649.
Schulz J, Takousis P, Wohlers I, Itua IOG, Dobricic V, Rücker G, et al. Meta-analyses identify differentially expressed microRNAs in Parkinson’s disease. Ann Neurol. 2019;85:835–51. https://doi.org/10.1002/ana.25490.
Yang Z, Li T, Cui Y, Li S, Cheng C, Shen B, et al. Elevated Plasma microRNA-105-5p level in patients with idiopathic Parkinson’s disease: a potential disease biomarker. Front Neurosci. 2019;13:218. https://doi.org/10.3389/fnins.2019.00218.
Schließer P, Struebing FL, Northoff BH, Kurz A, Rémi J, Holdt L, et al. Detection of a Parkinson’s disease-specific MicroRNA signature in nasal and oral swabs. Mov Disord. 2023;38:1706–15. https://doi.org/10.1002/mds.29515.
Li T, Tan X, Tian L, Jia C, Cheng C, Chen X, et al. The role of Nurr1-miR-30e-5p-NLRP3 axis in inflammation-mediated neurodegeneration: insights from mouse models and patients’ studies in Parkinson’s disease. J Neuroinflammation. 2023;20:274. https://doi.org/10.1186/s12974-023-02956-x.
Pollini L, Galosi S, Nardecchia F, Musacchia F, Castello R, Nigro V, et al. Parkinsonism, intellectual disability, and catatonia in a young male with MECP2 variant. Mov Disord Clin Pract. 2020;7:118–9. https://doi.org/10.1002/mdc3.12865.
Cao Q, Zou Q, Zhao X, Zhang Y, Qu Y, Wang N, et al. Regulation of BDNF transcription by Nrf2 and MeCP2 ameliorates MPTP-induced neurotoxicity. Cell Death Discov. 2022;8:267. https://doi.org/10.1038/s41420-022-01063-9.
Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell. 2022;185:62–76. https://doi.org/10.1016/j.cell.2021.12.003.
Brauer R, Wei L, Ma T, Athauda D, Girges C, Vijiaratnam N, et al. Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain. 2020;143:3067–76. https://doi.org/10.1093/brain/awaa262.
Jan TY, Wong LC, Yang MT, Huang CJ, Hsu CJ, Peng SS, et al. Correlation of dystonia severity and iron accumulation in Rett syndrome. Sci Rep. 2021;11:838. https://doi.org/10.1038/s41598-020-80723-1.
Zhang X, Huang Z, Xie Z, Chen Y, Zheng Z, Wei X, et al. Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radic Biol Med. 2020;160:552–65. https://doi.org/10.1016/j.freeradbiomed.2020.08.029.
Periñán MT, Macías-García D, Jesús S, Martín-Rodríguez JF, Muñoz-Delgado L, Jimenez-Jaraba MV, et al. Homocysteine levels, genetic background, and cognitive impairment in Parkinson’s disease. J Neurol. 2023;270:477–85. https://doi.org/10.1007/s00415-022-11361-y.
Bai L, Yan F, Deng R, Gu R, Zhang X, Bai J. Thioredoxin-1 rescues MPP+/MPTP-Induced ferroptosis by increasing glutathione peroxidase 4. Mol Neurobiol. 2021;58:3187–97. https://doi.org/10.1007/s12035-021-02320-1.
Huang Z, Han J, Wu P, Wu C, Fan Y, Zhao L, et al. Sorting nexin 5 plays an important role in promoting ferroptosis in Parkinson’s Disease. Oxid Med Cell Longev. 2022;2022:5463134. https://doi.org/10.1155/2022/5463134.
Shi Q, Liu R, Chen L. Ferroptosis inhibitor ferrostatin‑1 alleviates homocysteine‑induced ovarian granulosa cell injury by regulating TET activity and DNA methylation. Mol Med Rep. 2022;25:130. https://doi.org/10.3892/mmr.2022.12645.
Lee JY, Nam M, Son HY, Hyun K, Jang SY, Kim JW, et al. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc Natl Acad Sci USA. 2020;117:32433–42. https://doi.org/10.1073/pnas.2006828117.
Nakamura S. Integrated pathophysiology of schizophrenia, major depression, and bipolar disorder as monoamine axon disorder. Front Biosci 2022;14:4. https://doi.org/10.31083/j.fbs1401004.
Yamamoto H, Lee-Okada, Ikeda M, Nakamura T, Saito T, Takata A, et al. GWAS-identified bipolar disorder risk allele in the FADS1/2 gene region links mood episodes and unsaturated fatty acid metabolism in mutant mice. Mol Psychiatry. 2023;. https://doi.org/10.1038/s41380-023-01988-2.
Pontel LB, Bueno-Costa A, Morellato AE, Carvalho Santos J, Roué G, Esteller M. Acute lymphoblastic leukemia necessitates GSH-dependent ferroptosis defenses to overcome FSP1-epigenetic silencing. Redox Biol. 2022;55:102408. https://doi.org/10.1016/j.redox.2022.102408.
Chen L, Xie J. Ferroptosis-Suppressor-Protein 1: A potential neuroprotective target for combating ferroptosis. Mov Disord. 2020;35:400. https://doi.org/10.1002/mds.27990.
Vallerga CL, Zhang F, Fowdar J, McRae AF, Qi T, Nabais MF, et al. Analysis of DNA methylation associates the cystine-glutamate antiporter SLC7A11 with risk of Parkinson’s disease. Nat Commun. 2020;11:1238. https://doi.org/10.1038/s41467-020-15065-7.
Itou M, Kawaguchi T, Taniguchi E, Sata M. Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol. 2013;19:2298–306. https://doi.org/10.3748/wjg.v19.i15.2298.
Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 2017;20:1692–704. https://doi.org/10.1016/j.celrep.2017.07.055.
Turcot V, Bouchard L, Faucher G, Tchernof A, Deshaies Y, Pérusse L, et al. DPP4 gene DNA methylation in the omentum is associated with its gene expression and plasma lipid profile in severe obesity. Obesity. 2011;19:388–95. https://doi.org/10.1038/oby.2010.198.
Wang Z, Zhang Y, Fang J, Yu F, Heng D, Fan Y, et al. Decreased methylation level of H3K27me3 increases seizure susceptibility. Mol Neurobiol. 2017;54:7343–52. https://doi.org/10.1007/s12035-016-0197-4.
Cui X, Yun X, Sun M, Li R, Lyu X, Lao Y, et al. HMGCL-induced β-hydroxybutyrate production attenuates hepatocellular carcinoma via DPP4-mediated ferroptosis susceptibility. Hepatol Int. 2023;17:377–92. https://doi.org/10.1007/s12072-022-10459-9.
Sharma S, Taliyan R. Targeting histone deacetylases: a novel approach in Parkinson’s disease. Park Dis. 2015;2015:303294. https://doi.org/10.1155/2015/303294.
Logie E, Van Puyvelde B, Cuypers B, Schepers A, Berghmans H, Verdonck J, et al. Ferroptosis induction in multiple myeloma cells triggers DNA methylation and histone modification changes associated with cellular senescence. Int J Mol Sci. 2021; 22:https://doi.org/10.3390/ijms222212234.
Tong ZB, Kim H, El Touny L, Simeonov A, Gerhold D. LUHMES dopaminergic neurons are uniquely susceptible to ferroptosis. Neurotox Res. 2022;40:1526–36. https://doi.org/10.1007/s12640-022-00538-y.
Cousu C, Mulot E, De Smet A, Formichetti S, Lecoeuche D, Ren J, et al. Germinal center output is sustained by HELLS-dependent DNA-methylation-maintenance in B cells. Nat Commun. 2023;14:5695. https://doi.org/10.1038/s41467-023-41317-3.
Jiang Y, Mao C, Yang R, Yan B, Shi Y, Liu X, et al. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics. 2017;7:3293–305. https://doi.org/10.7150/thno.19988.
Wang P, Chen Q, Tang Z, Wang L, Gong B, Li M, et al. Uncovering ferroptosis in Parkinson’s disease via bioinformatics and machine learning, and reversed deducing potential therapeutic natural products. Front Genet. 2023;14:1231707. https://doi.org/10.3389/fgene.2023.1231707.
Kim J, Zhao H, Dan J, Kim S, Hardikar S, Hollowell D, et al. Maternal Setdb1 Is required for meiotic progression and preimplantation development in mouse. PLoS Genet. 2016;12:e1005970. https://doi.org/10.1371/journal.pgen.1005970.
Liu T, Xu P, Ke S, Dong H, Zhan M, Hu Q, et al. Histone methyltransferase SETDB1 inhibits TGF-β-induced epithelial-mesenchymal transition in pulmonary fibrosis by regulating SNAI1 expression and the ferroptosis signaling pathway. Arch Biochem Biophys. 2022;715:109087. https://doi.org/10.1016/j.abb.2021.109087.
Al Chiblak M, Steinbeck F, Thiesen HJ, Lorenz P. DUF3669, a “domain of unknown function” within ZNF746 and ZNF777, oligomerizes and contributes to transcriptional repression. BMC Mol Cell Biol. 2019;20:60. https://doi.org/10.1186/s12860-019-0243-y.
Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell. 2011;144:689–702. https://doi.org/10.1016/j.cell.2011.02.010.
Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13:37–50. https://doi.org/10.1038/nrc3409.
Zhou L, Jia X, Shang Y, Sun Y, Liu Z, Liu J, et al. PRMT1 inhibition promotes ferroptosis sensitivity via ACSL1 upregulation in acute myeloid leukemia. Mol Carcinog. 2023;62:1119–35. https://doi.org/10.1002/mc.23550.
Nho JH, Park MJ, Park HJ, Lee JH, Choi JH, Oh SJ, et al. Protein arginine methyltransferase-1 stimulates dopaminergic neuronal cell death in a Parkinson’s disease model. Biochem Biophys Res Commun. 2020;530:389–95. https://doi.org/10.1016/j.bbrc.2020.05.016.
Shukla S, Tekwani BL. Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front Pharmacol. 2020;11:537. https://doi.org/10.3389/fphar.2020.00537.
Zhang M, Wang J, Li J, Kong F, Lin S. miR-101-3p improves neuronal morphology and attenuates neuronal apoptosis in ischemic stroke in young mice by downregulating HDAC9. Transl Neurosci. 2023;14:20220286. https://doi.org/10.1515/tnsci-2022-0286.
Sanguigno L, Guida N, Anzilotti S, Cuomo O, Mascolo L, Serani A, et al. Stroke by inducing HDAC9-dependent deacetylation of HIF-1 and Sp1, promotes TfR1 transcription and GPX4 reduction, thus determining ferroptotic neuronal death. Int J Biol Sci. 2023;19:2695–710. https://doi.org/10.7150/ijbs.80735.
Mazzocchi M, Wyatt SL, Mercatelli D, Morari M, Morales-Prieto N, Collins LM, et al. Gene co-expression analysis identifies histone deacetylase 5 and 9 expression in midbrain dopamine neurons and as regulators of neurite growth via bone morphogenetic protein signaling. Front Cell Dev Biol. 2019;7:191. https://doi.org/10.3389/fcell.2019.00191.
Pastore D, Pacifici F, Capuani B, Palmirotta R, Dong C, Coppola A, et al. Sex-genetic interaction in the risk for cerebrovascular disease. Curr Med Chem. 2017;24:2687–99. https://doi.org/10.2174/0929867324666170417100318.
Bazan N, Bhattacharjee S, Kala-Bhattacharjee S, Ledet A, Mukherjee P. Elovanoids are neural resiliency epigenomic regulators targeting histone modifications, DNA methylation, tau phosphorylation, telomere integrity, senescence programming, and dendrite integrity. Res Sq. 2023;. https://doi.org/10.21203/rs.3.rs-3185942/v1.
Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem. 2003;278:43807–17. https://doi.org/10.1074/jbc.M305841200.
Bazan NG. Docosanoids and elovanoids from omega-3 fatty acids are pro-homeostatic modulators of inflammatory responses, cell damage and neuroprotection. Mol Aspects Med. 2018;64:18–33. https://doi.org/10.1016/j.mam.2018.09.003.
Calandria JM, Sharp MW, Bazan NG. The docosanoid neuroprotectin D1 Induces TH-positive neuronal survival in a cellular model of Parkinson’s disease. Cell Mol Neurobiol. 2015;35:1127–36. https://doi.org/10.1007/s10571-015-0206-6.
Feng Z, Lin M, Wu R. The regulation of aging and longevity: a new and complex role of p53. Genes Cancer. 2011;2:443–52. https://doi.org/10.1177/1947601911410223.
Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9:749–58. https://doi.org/10.1038/nrc2723.
Rodriguez-Meira A, Norfo R, Wen S, Chédeville AL, Rahman H, O’Sullivan J, et al. Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution. Nat Genet. 2023;55:1531–41. https://doi.org/10.1038/s41588-023-01480-1.
Ng HH, Xu RM, Zhang Y, Struhl K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem. 2002;277:34655–7. https://doi.org/10.1074/jbc.C200433200.
Sun ZW, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature. 2002;418:104–8. https://doi.org/10.1038/nature00883.
Cole AJ, Dickson KA, Liddle C, Stirzaker C, Shah JS, Clifton-Bligh R, et al. Ubiquitin chromatin remodelling after DNA damage is associated with the expression of key cancer genes and pathways. Cell Mol Life Sci. 2021;78:1011–27. https://doi.org/10.1007/s00018-020-03552-5.
Wang S-J, Li D, Ou Y, Jiang L, Chen Y, Zhao Y, et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep. 2016;17:366–73. https://doi.org/10.1016/j.celrep.2016.09.022.
Yang Y, Ma Y, Li Q, Ling Y, Zhou Y, Chu K, et al. STAT6 inhibits ferroptosis and alleviates acute lung injury via regulating P53/SLC7A11 pathway. Cell Death Dis. 2022;13:530. https://doi.org/10.1038/s41419-022-04971-x.
Li S, Wang M, Wang Y, Guo Y, Tao X, Wang X, et al. p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells. Toxicol Vitro. 2021;73:105146. https://doi.org/10.1016/j.tiv.2021.105146.
Zhao J, Jia Y, Mahmut D, Deik AA, Jeanfavre S, Clish CB, et al. Human hematopoietic stem cell vulnerability to ferroptosis. Cell. 2023;186:732–.e16. https://doi.org/10.1016/j.cell.2023.01.020.
Oki M, Aihara H, Ito T. Role of histone phosphorylation in chromatin dynamics and its implications in diseases. Subcell Biochem. 2007;41:319–36.
Liu S, Yao S, Yang H, Liu S, Wang Y. Autophagy: regulator of cell death. Cell Death Dis. 2023;14:648. https://doi.org/10.1038/s41419-023-06154-8.
Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–21. https://doi.org/10.1126/science.290.5497.1717.
Dai Y, Zhu C, Xiao W, Huang K, Wang X, Shi C, et al. Mycobacterium tuberculosis hijacks host TRIM21- and NCOA4-dependent ferritinophagy to enhance intracellular growth. J Clin Invest. 2023;133:e159941. https://doi.org/10.1172/jci159941.
Chen W, Yang W, Zhang C, Liu T, Zhu J, Wang H, et al. Modulation of the p38 MAPK Pathway by anisomycin promotes ferroptosis of hepatocellular carcinoma through phosphorylation of H3S10. Oxid Med Cell Longev. 2022;2022:6986445. https://doi.org/10.1155/2022/6986445.
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12:1425. https://doi.org/10.1080/15548627.2016.1187366.
Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26:1021–32. https://doi.org/10.1038/cr.2016.95.
Jiang Y, Xie G, Alimujiang A, Xie H, Yang W, Yin F. et al. Protective effects of quercetin against MPP+-induced dopaminergic neurons Injury via the Nrf2 signaling pathway. Front Biosci. 2023;28:42. https://doi.org/10.31083/j.fbl2803042.
Li L, Xie K, Xie H, Wang L, Li Z, Lu Q, et al. AURKB promotes colorectal cancer progression by triggering the phosphorylation of histone H3 at serine 10 to activate CCNE1 expression. Aging. 2024;16:8019–30. https://doi.org/10.18632/aging.205801.
Komar D, Juszczynski P. Rebelled epigenome: histone H3S10 phosphorylation and H3S10 kinases in cancer biology and therapy. Clin Epigenetics. 2020;12:147. https://doi.org/10.1186/s13148-020-00941-2.
Li B, Huang G, Zhang X, Li R, Wang J, Dong Z, et al. Increased phosphorylation of histone H3 at serine 10 is involved in Epstein-Barr virus latent membrane protein-1-induced carcinogenesis of nasopharyngeal carcinoma. BMC Cancer. 2013;13:124. https://doi.org/10.1186/1471-2407-13-124.
Pacaud R, Cheray M, Nadaradjane A, Vallette FM, Cartron PF. Histone H3 phosphorylation in GBM: a new rationale to guide the use of kinase inhibitors in anti-GBM therapy. Theranostics. 2015;5:12–22. https://doi.org/10.7150/thno.8799.
Makeyev EV, Maniatis T. Multilevel regulation of gene expression by microRNAs. Science. 2008;319:1789–90. https://doi.org/10.1126/science.1152326.
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33. https://doi.org/10.1016/j.cell.2009.01.002.
Angelopoulou E, Paudel YN, Piperi C. miR-124 and Parkinson’s disease: A biomarker with therapeutic potential. Pharmacol Res. 2019;150:104515. https://doi.org/10.1016/j.phrs.2019.104515.
Esteves M, Abreu R, Fernandes H, Serra-Almeida C, Martins PAT, Barão M, et al. MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson’s disease. Mol Ther. 2022;30:3176–92. https://doi.org/10.1016/j.ymthe.2022.06.003.
Wu L, Tian X, Zuo H, Zheng W, Li X, Yuan M, et al. miR-124-3p delivered by exosomes from heme oxygenase-1 modified bone marrow mesenchymal stem cells inhibits ferroptosis to attenuate ischemia-reperfusion injury in steatotic grafts. J Nanobiotechnol. 2022;20:196. https://doi.org/10.1186/s12951-022-01407-8.
Zhang Y, Li Y. Long non-coding RNA NORAD contributes to the proliferation, invasion and EMT progression of prostate cancer via the miR-30a-5p/RAB11A/WNT/β-catenin pathway. Cancer Cell Int. 2020;20:571. https://doi.org/10.1186/s12935-020-01665-2.
Zhang H, He Y, Wang JX, Chen MH, Xu JJ, Jiang MH, et al. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia. Redox Biol. 2020;29:101402. https://doi.org/10.1016/j.redox.2019.101402.
Vallelunga A, Iannitti T, Dati G, Capece S, Maugeri M, Tocci E, et al. Serum miR-30c-5p is a potential biomarker for multiple system atrophy. Mol Biol Rep. 2019;46:1661–6. https://doi.org/10.1007/s11033-019-04614-z.
Jayaprakash S, Le LTM, Sander B, Golas MM. Expression of the Neural REST/NRSF-SIN3 Transcriptional Corepressor complex as a target for small-molecule inhibitors. Mol Biotechnol. 2021;63:53–62. https://doi.org/10.1007/s12033-020-00283-7.
Nassar A, Satarker S, Gurram PC, Upadhya D, Fayaz SM, Nampoothiri M. Repressor Element-1 Binding Transcription Factor (REST) as a possible epigenetic regulator of neurodegeneration and microRNA-based therapeutic strategies. Mol Neurobiol. 2023;60:5557–77. https://doi.org/10.1007/s12035-023-03437-1.
Ma J, Li X, Fan Y, Yang D, Gu Q, Li D, et al. miR-494-3p promotes erastin-induced ferroptosis by targeting REST to activate the Interplay between SP1 and ACSL4 in Parkinson’s Disease. Oxid Med Cell Longev. 2022;2022:7671324. https://doi.org/10.1155/2022/7671324.
Li L, Ren J, Pan C, Li Y, Xu J, Dong H, et al. Serum miR-214 serves as a biomarker for prodromal Parkinson’s disease. Front Aging Neurosci. 2021;13:700959. https://doi.org/10.3389/fnagi.2021.700959.
Luo J, Song G, Chen N, Xie M, Niu X, Zhou S, et al. Ferroptosis contributes to ethanol-induced hepatic cell death via labile iron accumulation and GPx4 inactivation. Cell Death Discov. 2023;9:311. https://doi.org/10.1038/s41420-023-01608-6.
Rocha EM, Keeney MT, Di Maio R, De Miranda BR, Greenamyre JT. LRRK2 and idiopathic Parkinson’s disease. Trends Neurosci. 2022;45:224–36. https://doi.org/10.1016/j.tins.2021.12.002.
Ye H, Robak LA, Yu M, Cykowski M, Shulman JM. Genetics and pathogenesis of Parkinson’s syndrome. Annu Rev Pathol. 2023;18:95–121. https://doi.org/10.1146/annurev-pathmechdis-031521-4145.
Simuni T, Chahine LM, Poston K, Brumm M, Buracchio T, Campbell M, et al. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol. 2024;23:178–90. https://doi.org/10.1016/s1474-4422(23)00405-2.
Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021;20:385–97. https://doi.org/10.1016/s1474-4422(21)00030-2.
Bae YJ, Kim JM, Sohn CH, Choi JH, Choi BS, Song YS, et al. Imaging the substantia nigra in Parkinson disease and other Parkinsonian syndromes. Radiology. 2021;300:260–78. https://doi.org/10.1148/radiol.2021203341.
Meissner WG, Remy P, Giordana C, Maltête D, Derkinderen P, Houéto JL, et al. Trial of lixisenatide in early Parkinson’s disease. N Engl J Med. 2024;390:1176–85. https://doi.org/10.1056/NEJMoa2312323.
Zhang D, Deng Y, Kukanja P, Agirre E, Bartosovic M, Dong M, et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature. 2023;616:113–22. https://doi.org/10.1038/s41586-023-05795-1.
Mendes Serrão E, Klug M, Moloney BM, Jhaveri A, Lo Gullo R, Pinker K, et al. Current status of cancer genomics and imaging phenotypes: what radiologists need to know. Radiol Imaging Cancer. 2023;5:e220153. https://doi.org/10.1148/rycan.220153.
Schirinzi T, Maftei D, Passali FM, Grillo P, Zenuni H, Mascioli D, et al. Olfactory neuron prokineticin-2 as a potential target in Parkinson’s disease. Ann Neurol. 2023;93:196–204. https://doi.org/10.1002/ana.26526.
Trentin S, Oliveira BSF, Borges YFF, Rieder CRM. Evaluation of the complete Sniffin Sticks Test versus its subtests in differentiating Parkinson’s disease patients from healthy controls. Arq Neuropsiquiatr. 2022;80:908–13. https://doi.org/10.1055/s-0042-1755268.
Hill DR, Huters AD, Towne TB, Reddy RE, Fogle JL, Voight EA, et al. Parkinson’s disease: advances in treatment and the syntheses of various classes of pharmaceutical drug substances. Chem Rev. 2023;123:13693–712. https://doi.org/10.1021/acs.chemrev.3c00479.
Li J, Hao D, Wang L, Wang H, Wang Y, Zhao Z, et al. Epigenetic targeting drugs potentiate chemotherapeutic effects in solid tumor therapy. Sci Rep. 2017;7:4035. https://doi.org/10.1038/s41598-017-04406-0.
Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours - past lessons and future promise. Nat Rev Clin Oncol. 2020;17:91–107. https://doi.org/10.1038/s41571-019-0267-4.
Burtscher J, Moraud EM, Malatesta D, Millet GP, Bally JF, Patoz A. Exercise and gait/movement analyses in treatment and diagnosis of Parkinson’s Disease. Ageing Res Rev. 2024;93:102147. https://doi.org/10.1016/j.arr.2023.102147.
Ernst M, Folkerts AK, Gollan R, Lieker E, Caro-Valenzuela J, Adams A, et al. Physical exercise for people with Parkinson’s disease: a systematic review and network meta-analysis. Cochrane Database Syst Rev. 2023;1:Cd013856. https://doi.org/10.1002/14651858.CD013856.pub2.
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575–80. https://doi.org/10.1038/s41586-019-1678-1.
Pan RY, He L, Zhang J, Liu X, Liao Y, Gao J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 2022;34:634–.e6. https://doi.org/10.1016/j.cmet.2022.02.013.
Zou W, Gao F, Meng Z, Cai X, Chen W, Zheng Y, et al. Lactic acid responsive sequential production of hydrogen peroxide and consumption of glutathione for enhanced ferroptosis tumor therapy. J Colloid Interface Sci. 2024;663:787–800. https://doi.org/10.1016/j.jcis.2024.03.001.
Li J, Chen L, Qin Q, Wang D, Zhao J, Gao H, et al. Upregulated hexokinase 2 expression induces the apoptosis of dopaminergic neurons by promoting lactate production in Parkinson’s disease. Neurobiol Dis. 2022;163:105605. https://doi.org/10.1016/j.nbd.2021.105605.
Yu Y, Huang X, Liang C, Zhang P. Evodiamine impairs HIF1A histone lactylation to inhibit Sema3A-mediated angiogenesis and PD-L1 by inducing ferroptosis in prostate cancer. Eur J Pharmacol. 2023;957:176007. https://doi.org/10.1016/j.ejphar.2023.176007.
Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20:490–507. https://doi.org/10.1038/s41580-019-0131-5.
Nuñez JK, Chen J, Pommier GC, Cogan JZ, Replogle JM, Adriaens C, et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 2021;184:2503–.e17. https://doi.org/10.1016/j.cell.2021.03.025.
Acknowledgements
This article was supported by the National Natural Science Foundation of China (32371187, 32471049), Excellent Innovative Team of Shandong Province (2020KJK007), and Taishan Scholars Construction Project, Shandong.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gao, Xd., Ding, Je., Xie, Jx. et al. Epigenetic regulation of iron metabolism and ferroptosis in Parkinson’s disease: Identifying novel epigenetic targets. Acta Pharmacol Sin 46, 2075–2092 (2025). https://doi.org/10.1038/s41401-025-01499-6
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41401-025-01499-6
Keywords
This article is cited by
-
Salicylaldehyde Benzoylhydrazone Protects Against Ferroptosis in Models of Neurotoxicity and Behavioural Dysfunction, In Vitro and In Vivo
Journal of Molecular Neuroscience (2025)