Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Semaglutide ameliorates metabolic disorders in offspring via regulation of oocyte ROS of pre-pregnancy obesity mice

Abstract

Pre-pregnancy obesity (PPO) seriously threatens the health of both mother and offspring. Pre-pregnancy weight management is particularly important for the prevention of metabolic diseases in offspring. Semaglutide is one of the most effective glucagon-like peptide-1 agonizts for the management of obesity and metabolic diseases, but little is known about its effect on the long-term health of offspring. In this study we investigated the effects of semaglutide administered before pregnancy on the offspring health from PPO mice. PPO mice model was established by feeding with high-fat diet for 16 weeks, and then injected with semaglutide (30 nmol/kg-1·d-1, sc.) for 22 days before pregnancy. After the treatment, the mice were mated with normal males or underwent in vitro fertilization (IVF) for offspring reproduction. We showed that the semaglutide treatment not only improved the lipid and glucose metabolic disorders and fertility of PPO mice, but also significantly reversed the overweight, impaired energy balance, adipose inflammatory state, lipid and glucose metabolic disorders and insulin resistance of their IVF offspring. By conducting RNA-seq analysis, SOD activity and malondialdehyde assays in ovaries, as well as ROS staining in oocytes, we revealed that the semaglutide treatment reduced the elevated oxidative stress in ovaries and high ROS levels in oocytes from PPO mice, possibly through activating the PI3K/AKT pathway and improving the state of SOD. Interestingly, incubation of oocytes from semaglutide-treated dams with H2O2 (100 μM) in vitro during IVF blocked the protective effects of semaglultide against the metabolic disorders in the offspring. In conclusion, semaglutide treatment before pregnancy effectively alleviates obesity-related metabolic disorders in offspring. The regulation of ROS in oocytes plays a crucial role in the protective effects of semaglutide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of SEMA on body weight and energy balance in PPO dams.
Fig. 2: SEMA improves metabolism disorders as well as fertility in PPO dams.
Fig. 3: SEMA improves metabolism disorders in offspring from PPO dams.
Fig. 4: Ovarian RNA-sequencing reveals the downregulation of reactive oxygen species and upregulation of PI3K/AKT pathway after SEMA treatment.
Fig. 5: SEMA decreases the elevated oxidative stress through activating the PI3K/AKT pathway in ovaries from PPO dams.
Fig. 6: SEMA improves the adipose inflammatory state in offspring from PPO dams.
Fig. 7: Reversing anti-ROS effect of SEMA through H2O2 incubation reestablishes the metabolism disorders in offspring.
Fig. 8: Schema of the mechanism of this study.

Similar content being viewed by others

References

  1. Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM, Stephenson J, et al. Origins of lifetime health around the time of conception: causes and consequences. Lancet. 2018;391:1842–52.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Poston L, Caleyachetty R, Cnattingius S, Corvalán C, Uauy R, Herring S, et al. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol. 2016;4:1025–36.

    Article  PubMed  Google Scholar 

  3. Fraser A, Tilling K, Macdonald-Wallis C, Sattar N, Brion MJ, Benfield L, et al. Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood. Circulation. 2010;121:2557–64.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu B, Xu G, Sun Y, Du Y, Gao R, Snetselaar LG, et al. Association between maternal pre-pregnancy obesity and preterm birth according to maternal age and race or ethnicity: a population-based study. Lancet Diabetes Endocrinol. 2019;7:707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hochner H, Friedlander Y, Calderon-Margalit R, Meiner V, Sagy Y, Avgil-Tsadok M, et al. Associations of maternal prepregnancy body mass index and gestational weight gain with adult offspring cardiometabolic risk factors: the Jerusalem Perinatal Family Follow-up Study. Circulation. 2012;125:1381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sermondade N, Huberlant S, Bourhis-Lefebvre V, Arbo E, Gallot V, Colombani M, et al. Female obesity is negatively associated with live birth rate following IVF: a systematic review and meta-analysis. Hum Reprod Update. 2019;25:439–51.

    Article  CAS  PubMed  Google Scholar 

  7. Hart RJ. Physiological aspects of female fertility: role of the environment, modern lifestyle, and genetics. Physiol Rev. 2016;96:873–909.

    Article  CAS  PubMed  Google Scholar 

  8. Umehara T, Winstanley YE, Andreas E, Morimoto A, Williams EJ, Smith KM, et al. Female reproductive life span is extended by targeted removal of fibrotic collagen from the mouse ovary. Sci Adv. 2022;8:eabn4564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang Q, Wang Y, Wang H, Li H, Zhu J, Cong L, et al. NAD+ repletion attenuates obesity-induced oocyte mitochondrial dysfunction and offspring metabolic abnormalities via a SIRT3-dependent pathway. Clin Transl Med. 2021;11:e628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Philippe K, Teo S, Perrotta C, McAuliffe FM, Phillips CM. Why do preconception and pregnancy lifestyle interventions show little evidence of success in preventing overweight and obesity in children? A scoping review. Lancet Glob Health. 2023;11:S20.

    Article  PubMed  Google Scholar 

  11. Elmaleh-Sachs A, Schwartz JL, Bramante CT, Nicklas JM, Gudzune KA, Jay M. Obesity management in adults: a review. JAMA. 2023;330:2000–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi Q, Wang Y, Hao Q, Vandvik PO, Guyatt G, Li J, et al. Pharmacotherapy for adults with overweight and obesity: a systematic review and network meta-analysis of randomised controlled trials. Lancet. 2024;403:e21–e31.

    Article  CAS  PubMed  Google Scholar 

  13. Ornellas F, Mello VS, Mandarim-de-Lacerda CA, Aguila MB. Sexual dimorphism in fat distribution and metabolic profile in mice offspring from diet-induced obese mothers. Life Sci. 2013;93:454–63.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Zhao X, Dong X, Zhang Y, Zou H, Jin Y, et al. Activity-balanced GLP-1/GDF15 dual agonist reduces body weight and metabolic disorder in mice and non-human primates. Cell Metab. 2023;35:287–98.e4.

    Article  PubMed  Google Scholar 

  15. Nagy A. Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2003.

  16. Zhang X, Wu XQ, Lu S, Guo YL, Ma X. Deficit of mitochondria-derived ATP during oxidative stress impairs mouse MII oocyte spindles. Cell Res. 2006;16:841–50.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Q, Sun WW, Chen JC, Zhang HL, Liu J, Lin Y, et al. Phenylalanine impairs insulin signaling and inhibits glucose uptake through modification of IRβ. Nat Commun. 2022;13:4291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Igarashi Y, Nawaz A, Kado T, Bilal M, Kuwano T, Yamamoto S, et al. Partial depletion of CD206-positive M2-like macrophages induces proliferation of beige progenitors and enhances browning after cold stimulation. Sci Rep. 2018;8:14567.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Trzepizur W, Khalyfa A, Qiao Z, Popko B, Gozal D. Integrated stress response activation by sleep fragmentation during late gestation in mice leads to emergence of adverse metabolic phenotype in offspring. Metabolism. 2017;69:188–98.

    Article  CAS  PubMed  Google Scholar 

  20. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang C, Candia AA, Sferruzzi-Perri AN. Placental inflammation, oxidative stress, and fetal outcomes in maternal obesity. Trends Endocrinol Metab. 2024;35:638–47.

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Chen Y, Wei J, Guo F, Li L, Han Z, et al. Administration of nicotinamide mononucleotide improves oocyte quality of obese mice. Cell Prolif. 2022;55:e13303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li X, Luo W, Tang Y, Wu J, Zhang J, Chen S, et al. Semaglutide attenuates doxorubicin-induced cardiotoxicity by ameliorating BNIP3-Mediated mitochondrial dysfunction. Redox Biol. 2024;72:103129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sadek MA, Kandil EA, El Sayed NS, Sayed HM, Rabie MA. Semaglutide, a novel glucagon-like peptide-1 agonist, amends experimental autoimmune encephalomyelitis-induced multiple sclerosis in mice: Involvement of the PI3K/Akt/GSK-3β pathway. Int Immunopharmacol. 2023;115:109647.

    Article  CAS  PubMed  Google Scholar 

  25. Chaudhary GR, Yadav PK, Yadav AK, Tiwari M, Gupta A, Sharma A, et al. Necroptosis in stressed ovary. J Biomed Sci. 2019;26:11.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kawamura Y, Uchijima Y, Horike N, Tonami K, Nishiyama K, Amano T, et al. Sirt3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest. J Clin Invest. 2010;120:2817–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tain YL, Hsu CN. Metabolic syndrome programming and reprogramming: mechanistic aspects of oxidative stress. Antioxidants. 2022;11:2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu H, Ballantyne CM. Metabolic inflammation and insulin resistance in obesity. Circ Res. 2020;126:1549–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoffman DJ, Powell TL, Barrett ES, Hardy DB. Developmental origins of metabolic diseases. Physiol Rev. 2021;101:739–95.

    Article  CAS  PubMed  Google Scholar 

  31. Saben JL, Boudoures AL, Asghar Z, Thompson A, Drury A, Zhang W, et al. Maternal metabolic syndrome programs mitochondrial dysfunction via germline changes across three generations. Cell Rep. 2016;16:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jungheim ES, Schoeller EL, Marquard KL, Louden ED, Schaffer JE, Moley KH. Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology. 2010;151:4039–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han L, Ren C, Li L, Li X, Ge J, Wang H, et al. Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nat Genet. 2018;50:432–42.

    Article  CAS  PubMed  Google Scholar 

  34. Bohacek J, Mansuy IM. A guide to designing germline-dependent epigenetic inheritance experiments in mammals. Nat Methods. 2017;14:243–9.

    Article  CAS  PubMed  Google Scholar 

  35. Huypens P, Sass S, Wu M, Dyckhoff D, Tschöp M, Theis F, et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet. 2016;48:497–9.

    Article  CAS  PubMed  Google Scholar 

  36. Haire-Joshu D, Tabak R. Preventing obesity across generations: evidence for early life intervention. Annu Rev Public Health. 2016;37:253–71.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Patro Golab B, Santos S, Voerman E, Lawlor DA, Jaddoe V, Gaillard R. Influence of maternal obesity on the association between common pregnancy complications and risk of childhood obesity: an individual participant data meta-analysis. Lancet Child Adolesc Health. 2018;2:812–21.

    Article  PubMed  Google Scholar 

  38. Hanson M, Barker M, Dodd JM, Kumanyika S, Norris S, Steegers E, et al. Interventions to prevent maternal obesity before conception, during pregnancy, and post partum. Lancet Diabetes Endocrinol. 2017;5:65–76.

    Article  PubMed  Google Scholar 

  39. Tobias DK, Zhang C, van Dam RM, Bowers K, Hu FB. Physical activity before and during pregnancy and risk of gestational diabetes mellitus: a meta-analysis. Diabetes Care. 2011;34:223–9.

    Article  PubMed  Google Scholar 

  40. Goldberg A, Graca S, Liu J, Rao V, Witchel SF, Pena A, et al. Anti-obesity pharmacological agents for polycystic ovary syndrome: A systematic review and meta-analysis to inform the. 2023 international evidence-based guideline. Obes Rev. 2024;25:e13704.

    Article  CAS  PubMed  Google Scholar 

  41. Butler J, Shah SJ, Petrie MC, Borlaug BA, Abildstrøm SZ, Davies MJ, et al. Semaglutide versus placebo in people with obesity-related heart failure with preserved ejection fraction: a pooled analysis of the STEP-HFpEF and STEP-HFpEF DM randomised trials. Lancet. 2024;403:1635–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pan X, Yang L, Wang S, Liu Y, Yue L, Chen S. Semaglutide ameliorates obesity-induced cardiac inflammation and oxidative stress mediated via reduction of neutrophil Cxcl2, S100a8, and S100a9 expression. Mol Cell Biochem. 2024;479:1133–47.

    Article  CAS  PubMed  Google Scholar 

  43. Goldney J, Sargeant JA, Davies MJ. Incretins and microvascular complications of diabetes: neuropathy, nephropathy, retinopathy and microangiopathy. Diabetologia. 2023;66:1832–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang X, Wang K, Lang J, Guo D, Gao H, Qiu Y, et al. Up-regulation of miR-133a-3p promotes ovary insulin resistance on granulosa cells of obese PCOS patients via inhibiting PI3K/AKT signaling. BMC Womens Health. 2022;22:412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu Y, Zhang Z, Liao X, Qi L, Liu Y, Wang Z. Effect of high-fat diet-induced obesity on the Akt/FoxO/Smad signaling pathway and the follicular development of the mouse ovary. Mol Med Rep. 2016;14:3894–900.

    Article  CAS  PubMed  Google Scholar 

  46. Vandaele L, Thys M, Bijttebier J, Van Langendonckt A, Donnay I, Maes D, et al. Short-term exposure to hydrogen peroxide during oocyte maturation improves bovine embryo development. Reproduction. 2010;139:505–11.

    Article  CAS  PubMed  Google Scholar 

  47. Saputra F, Kishida M, Hu SY. Oxidative stress induced by hydrogen peroxide disrupts zebrafish visual development by altering apoptosis, antioxidant and estrogen related genes. Sci Rep. 2024;14:14454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ghosh P, Fontanella RA, Scisciola L, Pesapane A, Taktaz F, Franzese M, et al. Targeting redox imbalance in neurodegeneration: characterizing the role of GLP-1 receptor agonists. Theranostics. 2023;13:4872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81930008); National Key R&D Program of China (2022YFA1104500); National Institutes of Health, USA (5R01DK119652 and 1R01DK134574); Natural Science Foundation of Chongqing, China (cstc2021jcyj-msxmX0933).

Author information

Authors and Affiliations

Authors

Contributions

JKZ, LG and CYZ conceived and designed the study. JKZ, XPL, YT, LPZ, XL, JLZ, CYC and SZ performed the experiments. ZZL and XG participated in data analysis. JKZ and PAJ wrote the manuscript. LG and CYZ revised the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Li Guo or Chun-yu Zeng.

Ethics declarations

Competing interests

We have no conflicting interests related to the content of this article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jk., Li, Xp., Tang, Y. et al. Semaglutide ameliorates metabolic disorders in offspring via regulation of oocyte ROS of pre-pregnancy obesity mice. Acta Pharmacol Sin 46, 1664–1675 (2025). https://doi.org/10.1038/s41401-025-01501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01501-1

Keywords

Search

Quick links