Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ginsenoside Rg1 alleviates chronic stress-induced depression in rats by targeting Cx43-YAP axis

Abstract

Although significant progress has been made in the development of antidepressants, a large subpopulation of individuals remains unresponsive to existing treatments. Ginsenoside Rg1 (Rg1), a natural compound with well-defined antidepressant effects and low-cost administrations, holds therapeutic promise but requires mechanistic elucidation for clinical translation. Based on our previous finding that Rg1 rescued astrocytic connexin43 (Cx43) downregulation in depression models, we investigated its brain-wide effects and molecular mechanisms in chronic unpredictable stress (CUS)-induced rats. Male rats subjected to CUS received Rg1 (40 mg· kg−1 ·d−1, i.g.) for 8 weeks. Multimodal neuroimaging (fMRI and PET/CT) revealed that Rg1 restored functional connectivity and ameliorated neuroinflammation in CUS rats, with the prelimbic area identified as a critical target region. Through integrated proteomic profiling, molecular docking, and surface plasmon resonance analyses, we pinpointed Cx43-mediated gap junction as the primary target underlying Rg1’s therapeutic action. Mechanistically, we showed that Yes-associated protein (YAP), the primary effector of the Hippo pathway, was translocated into the nucleus to promote the expression of specific genes including those involved in inflammation. Notably, we demonstrated that Rg1 potentiated the Cx43-YAP interaction in the cytoplasm and restricted YAP nuclear translocation activity. The degradation of Cx43 and potentiation of YAP nuclear translocation might represent a novel mechanism for the pathogenesis of depression. Specific blockade of Cx43-based gap junctions, knockdown of Cx43 expression in primary cultured astrocytes, and conditional knockout of astrocytic Cx43 in mice promoted YAP nuclear translocation and retarded the antidepressant effects of Rg1. Accordingly, the Cx43-YAP connection may represent a potential therapeutic target for the antidepressant mechanism of Rg1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rg1 attenuated depression-like behaviors in CUS rats.
Fig. 2: Rg1 improved resting-state FC in CUS rats.
Fig. 3: Rg1 reduced the degree of CUS-induced neuroinflammation in the PrL.
Fig. 4: Rg1 targeted Cx43-GJs to exert antidepressant effects.
Fig. 5: Rg1 restored GJ function and Cx43 expression after CUS injury.
Fig. 6: Rg1 inhibited YAP nuclear translocation by Cx43-GJs after stress stimulation.
Fig. 7: Cx43-GJ dysfunction accelerated YAP nuclear translocation.
Fig. 8: Rg1 regulated YAP nuclear translocation through Cx43.
Fig. 9: Rg1 targeted astrocytic Cx43-YAP interaction to mitigate depression.

Similar content being viewed by others

References

  1. Marx W, Penninx BWJH, Solmi M, Furukawa TA, Firth J, Carvalho AF, et al. Major depressive disorder. Nat Rev Dis Prim. 2023;9:44

    Article  PubMed  Google Scholar 

  2. Stecher C, Cloonan S, Domino ME. The economics of treatment for depression. Annu Rev Public Heal. 2024;45:527–51.

    Article  Google Scholar 

  3. Wang HQ, Wang ZZ, Chen NH. The receptor hypothesis and the pathogenesis of depression: genetic bases and biological correlates. Pharmacol Res. 2021;167:105542

    Article  PubMed  CAS  Google Scholar 

  4. Kishi T, Ikuta T, Sakuma K, Okuya M, Hatano M, Matsuda Y, et al. Antidepressants for the treatment of adults with major depressive disorder in the maintenance phase: a systematic review and network meta-analysis. Mol Psychiatry. 2023;28:402–9.

    Article  PubMed  CAS  Google Scholar 

  5. Lewis G, Lewis G. Discontinuation symptoms of antidepressants. Lancet Psychiatry. 2024;11:485–6.

    Article  PubMed  Google Scholar 

  6. Yang IH, Chen YS, Li JJ, Liang YJ, Lin TC, Jakfar S, et al. The development of laminin-alginate microspheres encapsulated with ginsenoside Rg1 and ADSCs for breast reconstruction after lumpectomy. Bioact Mater. 2021;6:1699–710.

    PubMed  CAS  Google Scholar 

  7. Liu Q, Zhang FG, Zhang WS, Pan A, Yang YL, Liu JF, et al. Ginsenoside Rg1 inhibits glucagon-induced hepatic gluconeogenesis through Akt-FoxO1 interaction. Theranostics. 2017;7:4001–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lynch CJ, Elbau IG, Ng T, Ayaz A, Zhu S, Wolk D, et al. Frontostriatal salience network expansion in individuals in depression. Nature. 2024;633:624–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gordon EM, Chauvin RJ, Van AN, Rajesh A, Nielsen A, Newbold DJ, et al. A somato-cognitive action network alternates with effector regions in motor cortex. Nature. 2023;617:351–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Herzog S, Bartlett EA, Zanderigo F, Galfalvy HC, Burke A, Mintz A, et al. Neuroinflammation, stress-related suicidal ideation, and negative mood in depression. JAMA Psychiatry. 2024;82:e243543.

  11. Li X, Ramos-Rolón AP, Kass G, Pereira-Rufino LS, Shifman N, Shi Z, et al. Imaging neuroinflammation in individuals with substance use disorders. J Clin Invest. 2024;134:e172884.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lou YX, Wang ZZ, Xia CY, Mou Z, Ren Q, Liu DD, et al. The protective effect of ginsenoside Rg1 on depression may benefit from the gap junction function in hippocampal astrocytes. Eur J Pharmacol. 2020;882:173309

    Article  PubMed  CAS  Google Scholar 

  13. Simard M, Couldwell WT, Zhang W, Song H, Liu S, Cotrina ML, et al. Glucocorticoids - potent modulators of astrocytic calcium signaling. Glia. 1999;28:1–12.

    Article  PubMed  CAS  Google Scholar 

  14. Levin M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell. 2021;184:1971–89.

    Article  PubMed  CAS  Google Scholar 

  15. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci. 2010;11:87–99.

    Article  PubMed  CAS  Google Scholar 

  16. Wang HQ, Yang XY, Lai HQ, Sun Y, Yan X, Ai Q, et al. Novel antidepressant mechanism of hypericin: role of connexin 43-based gap junctions. Biomed Pharmacother. 2023;167:115545

    Article  PubMed  CAS  Google Scholar 

  17. Sun JD, Liu Y, Yuan YH, Li J, Chen NH. Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology. 2012;37:1305–20.

    Article  PubMed  CAS  Google Scholar 

  18. Slavi N, Toychiev AH, Kosmidis S, Ackert J, Bloomfield SA, Wulff H, et al. Suppression of connexin 43 phosphorylation promotes astrocyte survival and vascular regeneration in proliferative retinopathy. Proc Natl Acad Sci USA. 2018;115:E5934–43.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fumagalli A, Heuninck J, Pizzoccaro A, Moutin E, Koenen J, Séveno M, et al. The atypical chemokine receptor 3 interacts with Connexin 43 inhibiting astrocytic gap junctional intercellular communication. Nat Commun. 2020;11:4855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Fan W, Jurado‐Arjona J, Alanis‐Lobato G, Péron S, Berger C, Andrade‐Navarro MA, et al. The transcriptional co‐activator Yap1 promotes adult hippocampal neural stem cell activation. EMBO J. 2023;42:1–14.

    Article  Google Scholar 

  21. Fang L, Teng H, Wang Y, Liao G, Weng L, Li Y, et al. SET1A-mediated mono-methylation at K342 regulates YAP activation by blocking its nuclear export and promotes tumorigenesis. Cancer Cell. 2018;34:103–18.e9.

    Article  PubMed  CAS  Google Scholar 

  22. Kowalczyk W, Romanelli L, Atkins M, Hillen H, González-Blas CB, Jacobs J, et al. Hippo signaling instructs ectopic but not normal organ growth. Science. 2022;378:eabg3679

    Article  PubMed  CAS  Google Scholar 

  23. Moya IM, Halder G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol. 2019;20:211–26.

    Article  PubMed  CAS  Google Scholar 

  24. Wang HQ, Yang SW, Gao Y, Liu YJ, Li X, Ai QD, et al. Novel antidepressant mechanism of ginsenoside Rg1: regulating biosynthesis and degradation of connexin43. J Ethnopharmacol. 2021;278:114212

    Article  PubMed  CAS  Google Scholar 

  25. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554:317–22.

    Article  PubMed  CAS  Google Scholar 

  26. MacAskill MG, Stadulyte A, Williams L, Morgan TEF, Sloan NL, Alcaide-Corral CJ, et al. Quantification of macrophage-driven inflammation during myocardial infarction with 18F-LW223, a novel TSPO radiotracer with binding independent of the rs6971 human polymorphism. J Nucl Med. 2021;62:536–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Tan Z, Haider A, Zhang S, Chen J, Wei J, Liao K, et al. Quantitative assessment of translocator protein (TSPO) in the non-human primate brain and clinical translation of [18F]LW223 as a TSPO-targeted PET radioligand. Pharmacol Res. 2023;189:106681.

    Article  PubMed  CAS  Google Scholar 

  28. Dyring-Andersen B, Løvendorf MB, Coscia F, Santos A, Møller LBP, Colaço AR, et al. Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. Nat Commun. 2020;11:5587.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Prada I, Gabrielli M, Turola E, Iorio A, D’Arrigo G, Parolisi R, et al. Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol. 2018;135:529–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Xia CY, Wang ZZ, Zhang Z, Chen J, Wang YY, Lou YX, et al. Corticosterone impairs gap junctions in the prefrontal cortical and hippocampal astrocytes via different mechanisms. Neuropharmacology. 2018;131:20–30.

    Article  PubMed  CAS  Google Scholar 

  31. Kong R, Patel AS, Sato T, Jiang F, Yoo S, Bao L, et al. Transcriptional circuitry of NKX2-1 and SOX1 defines an unrecognized lineage subtype of small-cell lung cancer. Am J Respir Crit Care Med. 2022;206:1480–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Larga JGB, Munabirul WT, Moin AT. Cutting-edge Bioinformatics strategies for synthesizing Cyclotriazadisulfonamide (CADA) analogs in next-Generation HIV therapies. Sci Rep. 2024;14:29764.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hoh JH, Lal R, John SA, Revel JP, Arnsdorf MF. Atomic force microscopy and dissection of gap junctions. Science. 1991;253:1405–8.

    Article  PubMed  CAS  Google Scholar 

  34. Yang Y, Ren J, Sun Y, Xue Y, Zhang Z, Gong A, et al. A connexin43/YAP axis regulates astroglial-mesenchymal transition in hemoglobin induced astrocyte activation. Cell Death Differ. 2018;25:1870–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Fisher YE, Marquis M, D’Alessandro I, Wilson RI. Dopamine promotes head direction plasticity during orienting movements. Nature. 2022;612:316–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Drevets WC, Wittenberg GM, Bullmore ET, Manji HK. Immune targets for therapeutic development in depression: towards precision medicine. Nat Rev Drug Discov. 2022;21:224–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Costa RO, Martins LF, Tahiri E, Duarte CB. Brain-derived neurotrophic factor-induced regulation of RNA metabolism in neuronal development and synaptic plasticity. Wiley Interdiscip Rev RNA. 2022;13:e1713.

    Article  PubMed  CAS  Google Scholar 

  38. Dupuis JP, Nicole O, Groc L. NMDA receptor functions in health and disease: old actor, new dimensions. Neuron. 2023;111:2312–28.

    Article  PubMed  CAS  Google Scholar 

  39. Ishtiak-Ahmed K, Musliner KL, Christensen KS, Mortensen EL, Nierenberg AA, Gasse C. Real-world evidence on clinical outcomes of commonly used antidepressants in older adults initiating antidepressants for depression: a nationwide cohort study in denmark. Am J Psychiatry. 2024;181:47–56.

    Article  PubMed  Google Scholar 

  40. Yang SJ, Wang JJ, Cheng P, Chen LJ, Hu JM, Zhu GQ. Ginsenoside Rg1 in neurological diseases: from bench to bedside. Acta Pharmacol Sin. 2023;44:913–30.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang NN, Jiang H, Wang HQ, Wang YT, Peng Y, Liu YB, et al. Novel antidepressant mechanism of ginsenoside Rg1 in regulating the dysfunction of the glutamatergic system in astrocytes. Int J Mol Sci. 2023;24:1–15.

    Google Scholar 

  42. Zhai K, Duan H, Wang W, Zhao S, Khan GJ, Wang M, et al. Ginsenoside Rg1 ameliorates blood-brain barrier disruption and traumatic brain injury via attenuating macrophages derived exosomes miR-21 release. Acta Pharm Sin B. 2021;11:3493–507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lin SS, Zhou B, Chen BJ, Jiang RT, Li B, Illes P, et al. Electroacupuncture prevents astrocyte atrophy to alleviate depression. Cell Death Dis. 2023;14:343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Meghwani H, Berk BC. MST1 kinase-Cx43-YAP/TAZ pathway mediates disturbed flow endothelial dysfunction. Circ Res. 2022;131:765–7.

    Article  PubMed  CAS  Google Scholar 

  45. Huang HC, Wang TY, Rousseau J, Orlando M, Mungaray M, Michaud C, et al. Biomimetic nanodrug targets inflammation and suppresses YAP/TAZ to ameliorate atherosclerosis. Biomaterials. 2024;306:122505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration. Nature. 2016;529:307–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ibar C, Irvine KD. Integration of Hippo-YAP signaling with metabolism. Dev Cell. 2020;54:256–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Symons RA, Colella F, Collins FL, Rafipay AJ, Kania K, McClure JJ, et al. Targeting the IL-6-Yap-Snail signalling axis in synovial fibroblasts ameliorates inflammatory arthritis. Ann Rheum Dis. 2022;81:214–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (82130109, U2202214), Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2021-I2M-1-020), Hunan University of Chinese Medicine First-Class Discipline Construction Project of Chinese Material Medica (201803).

Author information

Authors and Affiliations

Authors

Contributions

NHC and HQW conceived and designed this study. HQW performed experiments, analyzed data, and wrote the manuscript. RFZ, QDA, SWY, XYY, APC, and QY performed experiments and verified data. XY, ZZ, JGX, and SFC provided materials and administrated project. ZZW, YTY, and NHC revised the manuscript and were responsible for funding investigation, data curation, and supervision. All the authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Zhen-zhen Wang, Yan-tao Yang or Nai-hong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hq., Zheng, Rf., Ai, Qd. et al. Ginsenoside Rg1 alleviates chronic stress-induced depression in rats by targeting Cx43-YAP axis. Acta Pharmacol Sin 46, 1877–1891 (2025). https://doi.org/10.1038/s41401-025-01515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01515-9

Keywords

Search

Quick links