Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calycosin synergizes with methotrexate in the treatment of Sjögren’s disease by targeting BATF in T follicular helper cells

Abstract

T follicular helper (Tfh) cells are crucially involved in the pathogenesis of autoimmune disorders, including Sjögren’s disease (SjD, also known as Sjögren’s syndrome), by promoting effector B cell responses and autoantibodies production. However, targeting Tfh cells remains challenging. In this study, we identified that calycosin (Caly), a natural flavonoid, effectively suppressed pathogenic Tfh cell responses, although it did not affect the plasmacytic differentiation of B cells. Under Tfh polarization conditions, Caly rapidly bound to the master transcription factor, BATF, in both human and murine CD4+ T cells and thus potently disrupted BATF-mediated Maf gene transcription. Methotrexate (MTX), a first-line medication in the treatment of autoimmune disorders, mainly suppresses B cell responses but fails to target Tfh cells. In a mouse model of experimental Sjögren’s syndrome (ESS) that we previously established, MTX synergized with Caly in attenuating the disease pathology and autoantibodies in ESS mice with chronic inflammation, with signs of disease remission. This immunomodulatory function was also validated in peripheral blood mononuclear cells from patients with SjD. Thus, Caly may serve as a novel inhibitor of BATF in suppressing Tfh-cell-mediated humoral autoimmunity and elicit a synergistic effect in combination with B-cell-targeting strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Caly treatment alleviated the development of ESS in mice.
Fig. 2: Caly inhibited the Tfh-cell-mediated humoral immune response in mice with ESS.
Fig. 3: Caly bound to BATF and disrupted c-Maf transcription upon IL-6 stimulation.
Fig. 4: Caly bound to BATF and disrupted c-Maf transcription in Tfh cells.
Fig. 5: Caly inhibited the BATF/c-Maf axis in human Tfh cells.
Fig. 6: Methotrexate synergized with Caly in the treatment of chronic ESS.
Fig. 7: MTX synergized with Caly in the suppression of effector subsets in PBMCs from patients with SjD.
Fig. 8: Schematic diagram illustration of the effect and mechanism of Caly on Tfh cells.

Similar content being viewed by others

References

  1. Bowman SJ. Primary Sjogren’s syndrome. Lupus. 2018;27:32–5.

    Article  CAS  PubMed  Google Scholar 

  2. Mavragani CP, Moutsopoulos HM. The geoepidemiology of Sjogren’s syndrome. Autoimmun Rev. 2010;9:A305–10.

    Article  PubMed  Google Scholar 

  3. Seror R, Nocturne G, Mariette X. Current and future therapies for primary Sjogren syndrome. Nat Rev Rheumatol. 2021;17:475–86.

    Article  PubMed  Google Scholar 

  4. Verstappen GM, Corneth OBJ, Bootsma H, Kroese FGM. Th17 cells in primary Sjogren’s syndrome: pathogenicity and plasticity. J Autoimmun. 2018;87:16–25.

    Article  CAS  PubMed  Google Scholar 

  5. Qi J, Liu C, Bai Z, Li X, Yao G. T follicular helper cells and T follicular regulatory cells in autoimmune diseases. Front Immunol. 2023;14:1178792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014;41:529–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Craft JE. Follicular helper T cells in immunity and systemic autoimmunity. Nat Rev Rheumatol. 2012;8:337–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin X, Rui K, Deng J, Tian J, Wang X, Wang S, et al. Th17 cells play a critical role in the development of experimental Sjogren’s syndrome. Ann Rheum Dis. 2015;74:1302–10.

    Article  CAS  PubMed  Google Scholar 

  9. Fu W, Liu X, Lin X, Feng H, Sun L, Li S, et al. Deficiency in T follicular regulatory cells promotes autoimmunity. J Exp Med. 2018;215:815–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramos-Casals M, Brito-Zeron P, Bombardieri S, Bootsma H, De Vita S, Dorner T, et al. EULAR recommendations for the management of Sjogren’s syndrome with topical and systemic therapies. Ann Rheum Dis. 2020;79:3–18.

    Article  CAS  PubMed  Google Scholar 

  11. Qi H. T follicular helper cells in space-time. Nat Rev Immunol. 2016;16:612–25.

    Article  CAS  PubMed  Google Scholar 

  12. Korn T, Hiltensperger M. Role of IL-6 in the commitment of T cell subsets. Cytokine. 2021;146:155654.

    Article  CAS  PubMed  Google Scholar 

  13. Andris F, Denanglaire S, Anciaux M, Hercor M, Hussein H, Leo O. The transcription factor c-Maf promotes the differentiation of follicular Helper T cells. Front Immunol. 2017;8:480.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bauquet AT, Jin H, Paterson AM, Mitsdoerffer M, Ho IC, Sharpe AH, et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol. 2009;10:167–75.

    Article  CAS  PubMed  Google Scholar 

  15. Ise W, Kohyama M, Schraml BU, Zhang T, Schwer B, Basu U, et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nat Immunol. 2011;12:536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu S, Zhou X, Liu R, Xu X, Ma D, Feng Y, et al. Immunomodulatory effects of Yu-Ping-Feng formula on primary Sjögren’s syndrome: interrogating the T cell response. J Leukoc Biol. 2025;117:qiae155.

  17. Deng M, Chen H, Long J, Song J, Xie L, Li X. Calycosin: a review of its pharmacological effects and application prospects. Expert Rev Anti Infect Ther. 2021;19:911–25.

    Article  CAS  PubMed  Google Scholar 

  18. Xia Y, Zhao L, Yun W, Zhang Q, Li WH, WL, et al. Determination of isoflavone glucoside in Radix astagali in Baotou region by high performance liquid chromatography. J Food Saf Qual Inspection. 2018;9:2501–6.

    Google Scholar 

  19. Nair A, Morsy MA, Jacob S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev Res. 2018;79:373–82.

    Article  CAS  PubMed  Google Scholar 

  20. Chang X, Chen X, Guo Y, Gong P, Pei S, Wang D, et al. Advances in chemical composition, extraction techniques, analytical methods, and biological activity of astragali radix. Molecules. 2022;27:1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krane CM, Melvin JE, Nguyen HV, Richardson L, Towne JE, Doetschman T, et al. Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J Biol Chem. 2001;276:23413–20.

    Article  CAS  PubMed  Google Scholar 

  22. Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem. 1999;274:20071–4.

    Article  CAS  PubMed  Google Scholar 

  23. D’Agostino C, Parisis D, Chivasso C, Hajiabbas M, Soyfoo MS, Delporte C. Aquaporin-5 dynamic regulation. Int J Mol Sci. 2023;24:1889.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tian X, Chen S, Zhang Y, Chen L, Guo X, Xu Z, et al. Absorption, liver first-pass effect, pharmacokinetics and tissue distribution of calycosin-7-O-ss-d-glucopyranoside (C7G) and its major active metabolite, calycosin, following oral administration of C7G in rats by LC-MS/MS. J Pharm Biomed Anal. 2018;148:350–4.

    Article  CAS  PubMed  Google Scholar 

  25. Liu XH, Zhu RJ, Hu F, Guo L, Yang YL, Feng SL. Tissue distribution of six major bio-active components after oral administration of Zhenqi Fuzheng capsules to rats using ultra-pressure liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2015;986–987:44–53.

    Article  Google Scholar 

  26. Lee WY, Chen HY, Chen KC, Chen CY. Treatment of rheumatoid arthritis with traditional chinese medicine. Biomed Res Int. 2014;2014:528018.

    PubMed  PubMed Central  Google Scholar 

  27. Yu SL, Kuan WP, Wong CK, Li EK, Tam LS. Immunopathological roles of cytokines, chemokines, signaling molecules, and pattern-recognition receptors in systemic lupus erythematosus. Clin Dev Immunol. 2012;2012:715190.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hodes GE, Menard C, Russo SJ. Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiol Stress. 2016;4:15–22.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Niu Q, Huang ZC, Wu XJ, Jin YX, An YF, Li YM, et al. Enhanced IL-6/phosphorylated STAT3 signaling is related to the imbalance of circulating T follicular helper/T follicular regulatory cells in patients with rheumatoid arthritis. Arthritis Res Ther. 2018;20:200.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jogdand GM, Mohanty S, Devadas S. Regulators of Tfh cell differentiation. Front Immunol. 2016;7:520.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen X, Cai Y, Hu X, Ding C, He L, Zhang X, et al. Differential metabolic requirement governed by transcription factor c-Maf dictates innate gammadeltaT17 effector functionality in mice and humans. Sci Adv. 2022;8:eabm9120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sahoo A, Wali S, Nurieva R. T helper 2 and T follicular helper cells: regulation and function of interleukin-4. Cytokine Growth Factor Rev. 2016;30:29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ellyard JI, Vinuesa CG. A BATF-ling connection between B cells and follicular helper T cells. Nat Immunol. 2011;12:519–20.

    Article  CAS  PubMed  Google Scholar 

  34. Yukawa M, Jagannathan S, Vallabh S, Kartashov AV, Chen X, Weirauch MT, et al. AP-1 activity induced by co-stimulation is required for chromatin opening during T cell activation. J Exp Med. 2020;217:e20182009.

    Article  PubMed  Google Scholar 

  35. Leal AS, Hung PY, Chowdhury AS, Liby KT. Retinoid X Receptor agonists as selective modulators of the immune system for the treatment of cancer. Pharmacol Ther. 2023;252:108561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016;11:905–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Williams KL, Nanda I, Lyons GE, Kuo CT, Schmid M, Leiden JM, et al. Characterization of murine BATF: a negative regulator of activator protein-1 activity in the thymus. Eur J Immunol. 2001;31:1620–7.

    Article  CAS  PubMed  Google Scholar 

  38. Gao X, Lin L, Yu D. ex vivo culture assay to measure human follicular helper T (Tfh) cell-mediated human B cell proliferation and differentiation. Methods Mol Biol. 2018;1707:111–9.

    Article  CAS  PubMed  Google Scholar 

  39. Glaesener S, Quach TD, Onken N, Weller-Heinemann F, Dressler F, Huppertz HI, et al. Distinct effects of methotrexate and etanercept on the B cell compartment in patients with juvenile idiopathic arthritis. Arthritis Rheumatol. 2014;66:2590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu S, Xie J, Li PH, Chen Y, Tang IY, Lin X. Therapeutic potential of interleukin-17 neutralization in a novel humanized mouse model of Sjögren’s disease. Pharmacol Res. 2024;210:107524.

    Article  CAS  PubMed  Google Scholar 

  41. Ma K, Li J, Wang X, Lin X, Du W, Yang X, et al. TLR4+CXCR4+ plasma cells drive nephritis development in systemic lupus erythematosus. Ann Rheum Dis. 2018;77:1498–506.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao L, Nocturne G, Haskett S, Boudaoud S, Lazure T, Le Pajolec C, et al. Clinical relevance of RORgamma positive and negative subsets of CD161+CD4+ T cells in primary Sjogren’s syndrome. Rheumatology (Oxford). 2017;56:303–12.

    Article  CAS  PubMed  Google Scholar 

  43. Wei X, Niu X. T follicular helper cells in autoimmune diseases. J Autoimmun. 2023;134:102976.

    Article  CAS  PubMed  Google Scholar 

  44. Blanco P, Ueno H, Schmitt N. T follicular helper (Tfh) cells in lupus: Activation and involvement in SLE pathogenesis. Eur J Immunol. 2016;46:281–90.

    Article  CAS  PubMed  Google Scholar 

  45. Dong W, Zhu P, Wang Y, Wang Z. Follicular helper T cells in systemic lupus erythematosus: a potential therapeutic target. Autoimmun Rev. 2011;10:299–304.

    Article  CAS  PubMed  Google Scholar 

  46. Szabo K, Papp G, Szanto A, Tarr T, Zeher M. A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjogren’s syndrome and systemic lupus erythematosus. Clin Exp Immunol. 2016;183:76–89.

    Article  CAS  PubMed  Google Scholar 

  47. Pontarini E, Murray-Brown WJ, Croia C, Lucchesi D, Conway J, Rivellese F, et al. Unique expansion of IL-21+ Tfh and Tph cells under control of ICOS identifies Sjogren’s syndrome with ectopic germinal centres and MALT lymphoma. Ann Rheum Dis. 2020;79:1588–99.

    Article  CAS  PubMed  Google Scholar 

  48. Lin X, Wang X, Xiao F, Ma K, Liu L, Wang X, et al. IL-10-producing regulatory B cells restrain the T follicular helper cell response in primary Sjogren’s syndrome. Cell Mol Immunol. 2019;16:921–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng W, Zhou X, Yu S, Liu R, Quek CWN, Yu H, et al. The future of targeted treatment of primary Sjögren’s syndrome: a focus on extra-glandular pathology. Int J Mol Sci. 2022;23:14135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sage PT, Paterson AM, Lovitch SB, Sharpe AH. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity. 2014;41:1026–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Verstappen GM, Meiners PM, Corneth OBJ, Visser A, Arends S, Abdulahad WH, et al. Attenuation of follicular helper T cell-dependent B cell hyperactivity by abatacept treatment in primary Sjögren’s syndrome. Arthritis Rheumatol. 2017;69:1850–61.

    Article  CAS  PubMed  Google Scholar 

  52. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular helper T cells. Annu Rev Immunol. 2016;34:335–68.

    Article  CAS  PubMed  Google Scholar 

  53. Betz BC, Jordan-Williams KL, Wang C, Kang SG, Liao J, Logan MR, et al. Batf coordinates multiple aspects of B and T cell function required for normal antibody responses. J Exp Med. 2010;207:933–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Uchihashi S, Fukumoto H, Onoda M, Hayakawa H, Ikushiro S, Sakaki T. Metabolism of the c-Fos/activator protein-1 inhibitor T-5224 by multiple human UDP-glucuronosyltransferase isoforms. Drug Metab Dispos. 2011;39:803–13.

    Article  CAS  PubMed  Google Scholar 

  55. Kamide D, Yamashita T, Araki K, Tomifuji M, Tanaka Y, Tanaka S, et al. Selective activator protein-1 inhibitor T-5224 prevents lymph node metastasis in an oral cancer model. Cancer Sci. 2016;107:666–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ye J, Huang Y, Jiang X, Shen P, Zhang C, Zhang J. Research on the interaction of astragaloside IV and calycosin in Astragalus membranaceus with HMGB1. Chin Med. 2023;18:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen G, Xu H, Xu T, Ding W, Zhang G, Hua Y, et al. Calycosin reduces myocardial fibrosis and improves cardiac function in post-myocardial infarction mice by suppressing TGFBR1 signaling pathways. Phytomedicine. 2022;104:154277.

    Article  CAS  PubMed  Google Scholar 

  58. Su X, Huang Q, Chen J, Wang M, Pan H, Wang R, et al. Calycosin suppresses expression of pro-inflammatory cytokines via the activation of p62/Nrf2-linked heme oxygenase 1 in rheumatoid arthritis synovial fibroblasts. Pharm Res. 2016;113:695–704.

    Article  CAS  Google Scholar 

  59. Chen C, Cui J, Ji X, Yao L. Neuroprotective functions of calycosin against intracerebral hemorrhage-induced oxidative stress and neuroinflammation. Future Med Chem. 2020;12:583–92.

    Article  CAS  PubMed  Google Scholar 

  60. Pan L, Zhang XF, Wei WS, Zhang J, Li ZZ. The cardiovascular protective effect and mechanism of calycosin and its derivatives. Chin J Nat Med. 2020;18:907–15.

    CAS  PubMed  Google Scholar 

  61. Li M, Han B, Zhao H, Xu C, Xu D, Sieniawska E, et al. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. Phytomedicine. 2022;98:153918.

    Article  CAS  PubMed  Google Scholar 

  62. Hamed KM, Dighriri IM, Baomar AF, Alharthy BT, Alenazi FE, Alali GH, et al. Overview of methotrexate toxicity: a comprehensive literature review. Cureus. 2022;14:e29518.

    PubMed  PubMed Central  Google Scholar 

  63. Musameh I, Al-Bakri F, Ezzeldin A. Low serum level and chronic toxicity for methotrexate. Case report. Qatar Med J. 2023;2023:31.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thanked the staff of Faculty Core Facility, Li Ka Shing Faculty of Medicine, the University of Hong Kong for their kind support. We thank the kind help of Dr. Sarah Pringle, University Medical Center Groningen, Netherland. This work was supported by grants through National Key Research and Development Program of China (2023YFE0203100), Mainland-Hong Kong Joint Funding Scheme (MHP/104/22), General Research Fund, Hong Kong Research Grants Council (17116521, 27111820 and 17109123), Health and Medical Research Fund (19201121 and 20212601), Hong Kong Research Grants Council Area of Excellence Scheme 2016/2017 (No.467 AoE/P-705/16).

Author information

Authors and Affiliations

Authors

Contributions

XL: Conceptualization, Methodology, Visualization, Writing—original draft, Writing—review & editing, Funding acquisition, Project administration, Investigation, Software, Supervision. JGS: Writing—review & editing, Funding acquisition, Supervision. SLY, MLW: Investigation, Formal analysis, Software, Validation, Writing—original draft. PHL: Resources, YCC, JX, XYX, DBM: Investigation, Validation. All authors approved the final manuscript. YF: Writing—review & editing, Funding acquisition.

Corresponding authors

Correspondence to Jian-gang Shen or Xiang Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study involves human participants and was approved by Institutional Review Board of Queen Mary Hospital, the University of Hong Kong (IRB UW 20-579). Informed consent was obtained from all patients.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Sl., Wu, Ml., Li, P.H. et al. Calycosin synergizes with methotrexate in the treatment of Sjögren’s disease by targeting BATF in T follicular helper cells. Acta Pharmacol Sin 46, 1990–2005 (2025). https://doi.org/10.1038/s41401-025-01536-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01536-4

Keywords

Search

Quick links