Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting neurodegenerative disease-associated protein aggregation with proximity-inducing modalities

Abstract

Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunction and anatomical changes caused by neuron loss and gliosis, ultimately leading to severe declines in brain function. While these disorders arise from a variety of pathological mechanisms, a common molecular feature is the accumulation of misfolded proteins, which occurs both inside and outside neurons. For example, Alzheimer’s disease (AD) is defined by extracellular β-amyloid plaques and intracellular tau neurofibrillary tangles. These pathological protein aggregates are often resistant to traditional small molecule drugs. Recent advances in proximity-inducing chimeras such as proteolysis-targeting chimeras (PROTACs), lysosome-targeting chimeras (LYTACs), autophagy-targeted chimeras (AUTOTACs), dephosphorylation-targeting chimeras (DEPTACs) and ribonuclease-targeting chimeras (RIBOTACs) offer promising strategies to eliminate pathological proteins or mRNAs through intracellular degradation pathways. These innovative approaches open avenues for developing new therapies for NDDs. In this review we summarize the regulatory mechanisms of protein aggregation, highlight the advancements in proximity-inducing modalities for NDDs, and discuss the current challenges and future directions in therapeutic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the mechanisms and applications of proximity-inducing modalities against NDDs.
Fig. 2: Schematic illustration of the PROTAC-mediated protein degradation mechanisms.
Fig. 3: Schematic illustration of HyT-mediated protein degradation mechanisms and the representative chemicals.
Fig. 4: Schematic diagrams indicating the structure and mechanisms of action of the TRIM21-based modalities.
Fig. 5: Schematic illustration of the mechanisms of action of AUTOTAC, ATTEC, and CMATAC.
Fig. 6: Schematic illustration of the mechanisms of action of DEPTAC and the chemicals of tau DEPTACs.
Fig. 7: Schematic illustration of the mechanisms of action of RIBOTAC and the representative chemicals.

Similar content being viewed by others

References

  1. Wilson DM 3rd, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I. Hallmarks of neurodegenerative diseases. Cell. 2023;186:693–714.

    Article  CAS  PubMed  Google Scholar 

  2. Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell. 2023;30:512–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wendimu MY, Hooks SB. Microglia phenotypes in aging and neurodegenerative diseases. Cells. 2022;11:2091–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther. 2022;7:391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21:181–200.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ahn G, Riley NM, Kamber RA, Wisnovsky S, Moncayo von Hase S, Bassik MC, et al. Elucidating the cellular determinants of targeted membrane protein degradation by lysosome-targeting chimeras. Science. 2023;382:eadf6249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li YY, Yang Y, Zhang RS, Ge RX, Xie SB. Targeted degradation of membrane and extracellular proteins with LYTACs. Acta Pharmacol Sin. 2025;46:1–7.

    Article  PubMed  Google Scholar 

  8. Ji CH, Kim HY, Lee MJ, Heo AJ, Park DY, Lim S, et al. The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system. Nat Commun. 2022;13:904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tan S, Wang D, Fu Y, Zheng H, Liu Y, Lu B. Targeted clearance of mitochondria by an autophagy-tethering compound (ATTEC) and its potential therapeutic effects. Sci Bull. 2023;68:3013–26.

    Article  Google Scholar 

  10. Su JF, Xiao Y, Wei LY, Lei HY, Sun F, Wang WX, et al. A new tau dephosphorylation-targeting chimera for the treatment of tauopathies. Acta Pharmacol Sin. 2024;45:2267–76.

    Article  CAS  PubMed  Google Scholar 

  11. Bonet-Aleta J, Maehara T, Craig BA, Bernardes GJL. Small molecule RNA degraders. Angew Chem Int Ed Engl. 2024;63:e202412925.

    Article  CAS  PubMed  Google Scholar 

  12. Kiss L, Rhinesmith T, Luptak J, Dickson CF, Weidenhausen J, Smyly S, et al. Trim-Away ubiquitinates and degrades lysine-less and N-terminally acetylated substrates. Nat Commun. 2023;14:2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu W, Zhang W, Chen J, Tong Y, Xu F, Pang J. Discovery of effective dual PROTAC degraders for neurodegenerative disease-associated aggregates. J Med Chem. 2024;67:3448–66.

    Article  CAS  PubMed  Google Scholar 

  14. Fang Y, Wang J, Zhao M, Zheng Q, Ren C, Wang Y, et al. Progress and challenges in targeted protein degradation for neurodegenerative disease therapy. J Med Chem. 2022;65:11454–77.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao L, Zhao J, Zhong K, Tong A, Jia D. Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther. 2022;7:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh J, Habean ML, Panicker N. Inflammasome assembly in neurodegenerative diseases. Trends Neurosci. 2023;46:814–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hung ST, Linares GR, Chang WH, Eoh Y, Krishnan G, Mendonca S, et al. PIKFYVE inhibition mitigates disease in models of diverse forms of ALS. Cell. 2023;186:786–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Y, Song S, Parhizkar S, Lord J, Zhu Y, Strickland MR, et al. APOE3ch alters microglial response and suppresses Aβ-induced tau seeding and spread. Cell. 2024;187:428–45.

    Article  CAS  PubMed  Google Scholar 

  19. Ossenkoppele R, van der Kant R, Hansson O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 2022;21:726–34.

    Article  CAS  PubMed  Google Scholar 

  20. Li Q, Pan W, Zhou J, Yu H, Xie S. Targeting protein aggregation for the treatment of neurodegenerative diseases. Med Plus. 2024;1:100005.

    Article  Google Scholar 

  21. Morris HR, Spillantini MG, Sue CM, Williams-Gray CH. The pathogenesis of Parkinson’s disease. Lancet. 2024;403:293–304.

    Article  CAS  PubMed  Google Scholar 

  22. Tabrizi SJ, Estevez-Fraga C, van Roon-Mom WMC, Flower MD, Scahill RI, Wild EJ, et al. Potential disease-modifying therapies for Huntington’s disease: lessons learned and future opportunities. Lancet Neurol. 2022;21:645–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jucker M, Walker LC. Alzheimer’s disease: from immunotherapy to immunoprevention. Cell. 2023;186:4260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Knezevic E, Nenic K, Milanovic V, Knezevic NN. The role of cortisol in chronic stress, neurodegenerative diseases, and psychological disorders. Cells. 2023;12:2726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol. 2024;25:845–64.

    Article  CAS  PubMed  Google Scholar 

  26. Duan P, Dregni AJ, Mammeri NE, Hong M. Structure of the nonhelical filament of the Alzheimer’s disease tau core. Proc Natl Acad Sci USA. 2023;120:e2310067120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sathasivam K, Neueder A, Gipson TA, Landles C, Benjamin AC, Bondulich MK, et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci USA. 2013;110:2366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell. 2006;125:1179–91.

    Article  CAS  PubMed  Google Scholar 

  29. Aldous SG, Smith EJ, Landles C, Osborne GF, Cañibano-Pico M, Nita IM, et al. A CAG repeat threshold for therapeutics targeting somatic instability in Huntington’s disease. Brain. 2024;147:1784–98.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Aviner R, Lee TT, Masto VB, Li KH, Andino R, Frydman J. Polyglutamine-mediated ribotoxicity disrupts proteostasis and stress responses in Huntington’s disease. Nat Cell Biol. 2024;26:892–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harel I, Chen YR, Ziv I, Singh PP, Heinzer D, Navarro Negredo P, et al. Identification of protein aggregates in the aging vertebrate brain with prion-like and phase-separation properties. Cell Rep. 2024;43:112787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu M, Williamson N, Mishra A, Michel CH, Kaminski CF, Tunnacliffe A, et al. Structural progression of amyloid-β Arctic mutant aggregation in cells revealed by multiparametric imaging. J Biol Chem. 2019;294:1478–87.

    Article  CAS  PubMed  Google Scholar 

  33. Goutman SA, Hardiman O, Al-Chalabi A, Chió A, Savelieff MG, Kiernan MC, et al. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. Lancet Neurol. 2022;21:480–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA. 2001;98:8554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang Z, Pang Q, Zhou J, Xuan C, Xie S. Leveraging aptamers for targeted protein degradation. Trends Pharmacol Sci. 2023;44:776–85.

    Article  CAS  PubMed  Google Scholar 

  36. Chen M, Zhou P, Kong Y, Li J, Li Y, Zhang Y, et al. Inducible degradation of oncogenic nucleolin using an aptamer-based PROTAC. J Med Chem. 2023;66:1339–48.

    Article  CAS  PubMed  Google Scholar 

  37. Kong L, Meng F, Zhou P, Ge R, Geng X, Yang Z, et al. An engineered DNA aptamer-based PROTAC for precise therapy of p53-R175H hotspot mutant-driven cancer. Sci Bull. 2024;69:2122–35.

    Article  CAS  Google Scholar 

  38. Chu TT, Gao N, Li QQ, Chen PG, Yang XF, Chen YX, et al. Specific Knockdown of endogenous Tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem Biol. 2016;23:453–61.

    Article  CAS  PubMed  Google Scholar 

  39. Lu M, Liu T, Jiao Q, Ji J, Tao M, Liu Y, et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur J Med Chem. 2018;146:251–9.

    Article  CAS  PubMed  Google Scholar 

  40. Silva MC, Nandi G, Donovan KA, Cai Q, Berry BC, Nowak RP, et al. Discovery and optimization of Tau targeted protein degraders enabled by patient induced pluripotent stem cells-derived neuronal models of tauopathy. Front Cell Neurosci. 2022;16:801179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang W, Zhou Q, Jiang T, Li S, Ye J, Zheng J, et al. A novel small-molecule PROTAC selectively promotes tau clearance to improve cognitive functions in Alzheimer-like models. Theranostics. 2021;11:5279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qu J, Ren X, Xue F, He Y, Zhang R, Zheng Y, et al. Specific knockdown of α-synuclein by peptide-directed proteasome degradation rescued its associated neurotoxicity. Cell Chem Biol. 2020;27:763.

    Article  CAS  PubMed  Google Scholar 

  43. Tong Y, Zhu W, Chen J, Wen T, Xu F, Pang J. Discovery of small-molecule degraders for alpha-synuclein aggregates. J Med Chem. 2023;66:7926–42.

    Article  CAS  PubMed  Google Scholar 

  44. Tomoshige S, Nomura S, Ohgane K, Hashimoto Y, Ishikawa M. Discovery of small molecules that induce the degradation of Huntingtin. Angew Chem Int Ed Engl. 2017;56:11530–3.

    Article  CAS  PubMed  Google Scholar 

  45. Tomoshige S, Nomura S, Ohgane K, Hashimoto Y, Ishikawa M. Degradation of huntingtin mediated by a hybrid molecule composed of IAP antagonist linked to phenyldiazenyl benzothiazole derivative. Bioorg Med Chem Lett. 2018;28:707–10.

    Article  CAS  PubMed  Google Scholar 

  46. Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, et al. Amyotrophic lateral sclerosis. Lancet. 2022;400:1363–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron. 2023;111:1355–80.

    Article  CAS  PubMed  Google Scholar 

  48. Tseng YL, Lu PC, Lee CC, He RY, Huang YA, Tseng YC, et al. Degradation of neurodegenerative disease-associated TDP-43 aggregates and oligomers via a proteolysis-targeting chimera. J Biomed Sci. 2023;30:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao N, Chu TT, Li QQ, Lim YJ, Qiu T, Ma MR, et al. Hydrophobic tagging-mediated degradation of Alzheimer’s disease related Tau. RSC Adv. 2017;7:40362–6.

    Article  CAS  Google Scholar 

  50. Gao N, Huang YP, Chu TT, Li QQ, Zhou B, Chen YX, et al. TDP-43 specific reduction induced by Di-hydrophobic tags conjugated peptides. Bioorg Chem. 2019;84:254–9.

    Article  CAS  PubMed  Google Scholar 

  51. Jeong J, Usman M, Li Y, Zhou XZ, Lu KP. Pin1-catalyzed conformation changes regulate protein ubiquitination and degradation. Cells. 2024;13:731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Holwek E, Opinc-Rosiak A, Sarnik J, Makowska J. Ro52/TRIM21 - From host defense to autoimmunity. Cell Immunol. 2023;393-394:104776.

    Article  CAS  PubMed  Google Scholar 

  53. Mevissen TET, Prasad AV, Walter JC. TRIM21-dependent target protein ubiquitination mediates cell-free Trim-Away. Cell Rep. 2023;42:112125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xie S, Zhang L, Dong D, Ge R, He Q, Fan C, et al. HDAC6 regulates antibody-dependent intracellular neutralization of viruses via deacetylation of TRIM21. J Biol Chem. 2020;295:14343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Benn J, Cheng S, Keeling S, Smith AE, Vaysburd MJ, Böken D, et al. Aggregate-selective removal of pathological tau by clustering-activated degraders. Science. 2024;385:1009–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miller LVC, Papa G, Vaysburd M, Cheng S, Sweeney PW, Smith A, et al. Co-opting templated aggregation to degrade pathogenic tau assemblies and improve motor function. Cell. 2024;187:5967–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dewey JA, Delalande C, Azizi SA, Lu V, Antonopoulos D, Babnigg G. Molecular glue discovery: current and future approaches. J Med Chem. 2023;66:9278–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu P, Cheng Y, Xue L, Ren X, Xu X, Chen C, et al. Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders. Cell. 2024;187:7126–42.

    Article  CAS  PubMed  Google Scholar 

  59. Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol. 2024;25:926–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fan X, Jin WY, Lu J, Wang J, Wang YT. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat Neurosci. 2014;17:471–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M, Yamada M, et al. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat Biotechnol. 2010;28:256–63.

    Article  CAS  PubMed  Google Scholar 

  62. Lee J, Sung KW, Bae EJ, Yoon D, Kim D, Lee JS, et al. Targeted degradation of α-synuclein aggregates in Parkinson’s disease using the AUTOTAC technology. Mol Neurodegener. 2023;18:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mei L, Chen X, Wei F, Huang X, Liu L, Yao J, et al. Tethering ATG16L1 or LC3 induces targeted autophagic degradation of protein aggregates and mitochondria. Autophagy. 2023;19:2997–3013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li Z, Wang C, Wang Z, Zhu C, Li J, Sha T, et al. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature. 2019;575:203–9.

    Article  CAS  PubMed  Google Scholar 

  65. He H, Zhou C, Chen X. ATNC: versatile nanobody chimeras for autophagic degradation of intracellular unligandable and undruggable proteins. J Am Chem Soc. 2023;145:24785–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang D, Duque-Jimenez J, Facchinetti F, Brixi G, Rhee K, Feng WW, et al. Transferrin receptor targeting chimeras for membrane protein degradation. Nature. 2025;638:787–95.

    Article  CAS  PubMed  Google Scholar 

  67. Huang B, Abedi M, Ahn G, Coventry B, Sappington I, Tang C, et al. Designed endocytosis-inducing proteins degrade targets and amplify signals. Nature. 2025;638:796–804.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang S, Zhu R, Pan B, Xu H, Olufemi MF, Gathagan RJ, et al. Post-translational modifications of soluble α-synuclein regulate the amplification of pathological α-synuclein. Nat Neurosci. 2023;26:213–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wesseling H, Mair W, Kumar M, Schlaffner CN, Tang S, Beerepoot P, et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell. 2020;183:1699–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zheng J, Tian N, Liu F, Zhang Y, Su J, Gao Y, et al. A novel dephosphorylation targeting chimera selectively promoting tau removal in tauopathies. Signal Transduct Target Ther. 2021;6:269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu Z, Chen PH, Li W, Douglas T, Hines J, Liu Y, et al. Targeted Dephosphorylation of Tau by Phosphorylation Targeting Chimeras (PhosTACs) as a therapeutic modality. J Am Chem Soc. 2023;145:4045–55.

  72. Su J, Xiao Y, Wei L, Lei H, Sun F, Wang W, et al. Generation of tau dephosphorylation-targeting chimeras for the treatment of Alzheimer’s disease and related tauopathies. Sci Bull. 2024;69:1137–52.

    Article  CAS  Google Scholar 

  73. Tong Y, Zhang P, Yang X, Liu X, Zhang J, Grudniewska M, et al. Decreasing the intrinsically disordered protein α-synuclein levels by targeting its structured mRNA with a ribonuclease-targeting chimera. Proc Natl Acad Sci USA. 2024;121:e2306682120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bush JA, Aikawa H, Fuerst R, Li Y, Ursu A, Meyer SM, et al. Ribonuclease recruitment using a small molecule reduced c9ALS/FTD r(G(4)C(2)) repeat expansion in vitro and in vivo ALS models. Sci Transl Med. 2021;13:eabd5991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li Y, Song J, Zhou P, Zhou J, Xie S. Targeting undruggable transcription factors with PROTACs: advances and perspectives. J Med Chem. 2022;65:10183–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (32270892 and 32200613) and the Shandong Provincial Natural Science Foundation (ZR2021MC157).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhou or Song-bo Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Rx., Chen, M., Li, Qc. et al. Targeting neurodegenerative disease-associated protein aggregation with proximity-inducing modalities. Acta Pharmacol Sin 46, 2337–2346 (2025). https://doi.org/10.1038/s41401-025-01538-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01538-2

Keywords

This article is cited by

Search

Quick links