Acta Pharmacologica Sinica

www.nature.com/aps

q

Check f
updates

ARTICLE
Integration of machine learning and experimental validation

reveals new lipid-lowering drug candidates

Jing-hong Chen'?, Ke-xin Li', Chao-fan Fan3, Hong Yang1, Zhi-rou Zhang1, Yi-han Chen', Chang Qi*4, Ang-hua Li', An-qi Lin'2%,
Xin Chen®*™ and Peng Luo'?™

Hyperlipidemia, a major risk factor for cardiovascular diseases, is associated with limitations in clinical lipid-lowering medications.
Drug repurposing strategies expedite the research process and mitigate development costs, offering an innovative approach to
drug discovery. This study employed systematic literature and guidelines review to compile a training set comprising 176 lipid-
lowering drugs and 3254 non-lipid-lowering drugs. Multiple machine learning models were developed to predict the lipid-lowering
potential of drugs. A multi-tiered validation strategy was implemented, encompassing large-scale retrospective clinical data
analysis, standardized animal studies, molecular docking simulations and dynamics analyses. Through a comprehensive screening
analysis utilizing machine learning, 29 FDA-approved drugs with lipid-lowering potential were identified. Clinical data analysis

confirmed that four candidate drugs, with Argatroban as the representative, demonstrated lipid-lowering effects. In animal
experiments, the candidate drugs significantly improved multiple blood lipid parameters. Molecular docking and dynamics
simulations elucidated the binding patterns and stability of candidate drugs in interaction with related targets. We successfully
identified multiple non-lipid-lowering drugs with lipid-lowering potential by integrating state-of-the-art machine learning
techniques with multi-level validation methods, thereby providing new insights into lipid-lowering drugs, establishing a paradigm
for Al-based drug repositioning research, and expanding the repertoire of lipid-lowering medications available to clinicians.
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INTRODUCTION

Hyperlipidemia is a metabolic disorder characterized by abnor-
mally elevated levels of plasma lipids and lipoproteins in the
bloodstream. Based on the specific types of abnormal lipids and
lipoproteins, hyperlipidemia can be further classified into four
distinct subtypes: hypercholesterolemia, hypertriglyceridemia,
mixed hyperlipidemia, and low high-density lipoprotein cholester-
olemia [1, 2]. The diagnosis of hyperlipidemia is typically based on
the assessment of several key indicators in blood tests, primarily
comprising total cholesterol (TC), low-density lipoprotein choles-
terol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and
triglycerides (TG) [3]. According to the American Heart Associa-
tion’s 2023 Heart Disease and Stroke Statistics Update [4], the
prevalence of hypercholesterolemia (defined as TC =200 mg/dL)
among US adults was 34.70%, while the prevalence of elevated
LDL-C levels (2130 mg/dL) was 25.50% during the period from
2017 to 2020. Furthermore, it is noteworthy that the prevalence of
hyperlipidemia among younger demographic groups has demon-
strated a statistically significant upward trend in recent years [5]. In
addition to the increasing prevalence trends elucidated by the

aforementioned statistics, the clinical importance of hyperlipide-
mia as a principal risk factor for cardiovascular diseases warrants
significant attention. A study emphasizes that the proportional
relationship between cholesterol and IHD mortality decreases with
age [6]. With respect to pathogenesis, hyperlipidemia predomi-
nantly elevates the risk of cardiovascular events through
mechanisms including the acceleration of atherosclerosis and
the promotion of plaque formation and rupture [7]. In conclusion,
the dual impact of hyperlipidemia on epidemiology and
cardiovascular health emphasizes the critical necessity for
sustained vigilance and efficacious management of this condition.

Pharmacotherapy represents a crucial approach in treating
hyperlipidemia, wherein lipid-lowering medications reduce blood
lipid levels through various mechanisms, thus preventing and
treating cardiovascular diseases. At present, commonly used lipid-
lowering medications in clinical practice predominantly include
statins, cholesterol absorption inhibitors, PCSK9 inhibitors, and so
on [3]. Statins significantly reduce LDL-C levels by inhibiting HMG-
CoA reductase, a key enzyme in cholesterol synthesis [8].
Cholesterol absorption inhibitors, exemplified by ezetimibe,
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further lower LDL-C levels when used in combination with statins
by inhibiting intestinal cholesterol absorption [9]. PCSK9 inhibitors
significantly reduce LDL-C levels by blocking the binding of PCSK9
to LDL receptors, consequently increasing LDL receptor recycling
[10]. Despite the significant success of lipid-lowering medications
in reducing blood lipids and preventing cardiovascular diseases,
their application continues to face several challenges. Specifically,
some patients demonstrate poor tolerance to existing lipid-
lowering medications, potentially manifesting adverse reactions
such as muscle symptoms and liver function abnormalities [11].
Moreover, some patients exhibit reduced sensitivity to certain
lipid-lowering medications: even after receiving maximum-dose
statin therapy, they continue to show inadequate therapeutic
effects and fail to attain lipid control targets [12]. To address these
challenges, the development of new lipid-lowering therapeutic
strategies remains imperative, with the aim of providing patients
with more effective treatment options.

In the pursuit of novel lipid-lowering therapeutic strategies,
exploring new applications for existing non-lipid-lowering drugs
presents a promising direction, potentially offering alternative
treatment options for patients who are intolerant to or have
developed resistance to traditional lipid-lowering medications. In
recent years, several non-lipid-lowering drugs have demonstrated
potential in reducing blood lipid levels. For instance, metformin, a
commonly prescribed antidiabetic medication, not only improves
insulin sensitivity but also potentially lowers blood lipid levels
through the activation of the AMPK signaling pathway and
inhibition of hepatic fatty acid synthesis [13]. Traditional
approaches to developing new drug therapies, such as high-
throughput screening [14] and structure-based drug design [15],
are often associated with high costs, lengthy development times,
and substantial risks of failure. The rapid advancement of modern
bioinformatics and artificial intelligence (Al) technologies has led
to the widespread application of Al methods, particularly machine
learning and deep learning, in the medical field [16, 17]. These
technologies are bringing transformative impacts to disease
diagnosis, drug development, and precision medicine.

Machine learning, as a computational approach that employs
data mining and algorithmic analysis for prediction, demonstrates
exceptional potential for application in drug development,
particularly in identifying novel indications for existing drugs. In
comparison with conventional methods, machine learning algo-
rithms can autonomously extract features, discern patterns from
extensive biomedical datasets, and elucidate potential drug-
disease associations, thereby facilitating the prediction of novel
drug indications [18]. This approach offers a robust complement to
conventional drug development processes, potentially expediting
development timelines, mitigating costs, and enhancing success
rates [19]. For example, Li et al. employed MAI-TargetFisher
demonstrates how machine learning enhances drug development
by combining Al-based and biophysical modeling methods to
predict drug-protein interactions across the human proteome,
achieving higher accuracy and coverage than traditional
approaches in identifying potential drug targets [20]. Zeng et al.
developed deepDR, a network-based deep learning framework for
drug repositioning by integrating analyses of 10 heterogeneous
networks (including drug-disease, drug-side-effect, drug-target and
drug-drug networks), revealing that several FDA-approved drugs
like risperidone and aripiprazole may exhibit therapeutic efficacy
against Alzheimer’s disease, and methylphenidate and pergolide
against Parkinson’s disease [21]. These studies collectively demon-
strate the potential of machine learning to accelerate the
development of drug, thereby providing crucial leads for devel-
oping novel therapeutic strategies. However, the application of
machine learning in identifying potential new lipid-lowering
indications from non-lipid-lowering drugs remains limited. Existing
research predominantly focuses on exploring the mechanisms of
action and predicting the efficacy of established lipid-lowering
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drugs. This phenomenon may arise from the challenges in
obtaining lipid-related molecular and phenotypic data, as well as
the current limited understanding of the lipid-lowering potential of
non-lipid-lowering drugs. Therefore, there is a pressing need for
targeted research to systematically explore new lipid-lowering
indications of non-lipid-lowering drugs, with the objective of
developing novel approaches for the prevention and treatment of
hyperlipidemia. This study seeks to address this critical issue,
aiming to bridge the research gap in this field.

Given the aforementioned research gaps, this study aims to
systematically explore the lipid-lowering potential of non-lipid-
lowering drugs through the application of machine learning
approaches. Specifically, we will compile a series of lipid-lowering
drugs in conjunction with non-lipid-lowering drugs approved by
the FDA from public databases and literature, elucidate the
physicochemical properties of these drugs, and incorporate
multiple machine learning algorithms to develop a model capable
of accurately predicting the lipid-lowering efficacy of non-lipid-
lowering drugs. To comprehensively evaluate the performance
and generalizability of the model, we will conduct retrospective
clinical data validation and animal experiments. Through com-
prehensive analysis of the model’s predictions and actual
observations, we aim to identify non-lipid-lowering drugs with
lipid-lowering potential and preliminarily elucidate their lipid-
lowering mechanisms via molecular docking and molecular
dynamics simulations. Based on these anticipated research
findings, we expect to promote the application of machine
learning in drug repurposing, facilitating the efficient and
economical discovery of potential lipid-lowering drugs, thereby
providing more diverse treatment options for hyperlipidemia
patients and potentially improving their prognosis.

MATERIALS AND METHODS

Drug data download and preprocessing

We systematically compiled a comprehensive list of clinically
effective lipid-lowering drugs from seven authoritative guidelines,
including the guideline of Lipid Management in Patients with
Endocrine Disorders [22], Chinese Guidelines for Lipid Management
(2023) [23], Chinese guidelines for the management of dyslipidemia
in adults (2016) [24], ESC/EAS Guidelines for the Management of
Dyslipidemias (2019) [25], NICE Guidelines on Lipid Modification
[26], AHA/ACC Multisociety Guideline on the Management of Blood
Cholesterol (2018) [3], and the Cholesterol Treatment Trialists’
Collaboration [27]. These clinically effective lipid-lowering drugs are
defined as medications demonstrating the capacity to reduce blood
lipid levels (TC, LDL, VLDL, TG) and/or increase HDL levels.
Subsequently, we conducted a systematic PubMed search for
relevant literature published between January 1, 2014, and January
31, 2024, utilizing the following search strategy: ((((hyperlipoprotei-
nemia[MeSH Terms] OR hypercholesterolemia[MeSH Terms] OR
hypercholesterolemic xanthomatotic OR hyper low-density lipopro-
teinemia) AND “drug”[tiab]) AND (“therapeutics"[MeSH Terms] OR
“therapeutics”[All Fields] OR “therapies”[All Fields] OR “therapy”[-
MeSH Subheading] OR “therapy”[All Fields] OR “therapy s”[All Fields]
OR “therapys”[All Fields])) AND ((“Clinical Trial’[Publication Type] OR
“Randomized Controlled Trial"[Publication Type]) OR (“Animal
Experimentation”[MeSH Terms] OR “Mice”[MeSH Terms]) OR (“Cell
Line"[MeSH Terms] OR “Cell Line, Tumor’[MeSH Terms]) OR
(“Review”[Publication Type] OR “Meta-Analysis”[Publication Type]
OR “Systematic Review”[Publication Type]))). We extracted and
analyzed information on drugs with lipid-lowering effects from the
identified literature. Notably, drugs reported in clinical settings
solely for alleviating complications of hyperlipidemia, without direct
lipid-lowering effects, were excluded from our analysis. Ultimately,
we compiled a comprehensive list of 176 drugs with demonstrated
lipid-lowering effects from both the guidelines and literature
reviews (Table S1).
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To construct a comprehensive drug list for subsequent analysis,
we categorized the FDA-approved drugs as follows: FDA-approved
drugs with clinically proven lipid-lowering effects and/or the 176
drugs identified through our literature search were classified as
positive drugs (Table S1), i.e., drugs known to have lipid-lowering
effects (n=176). The remaining drugs were categorized as
negative drugs (n=3254). Furthermore, we manually assessed
and recorded the strength and reliability of evidence for the lipid-
lowering effects of each drug, adhering to the principles of
evidence-based medicine. Specifically, we implemented a hier-
archical scoring system: positive drugs derived from systematic
reviews, meta-analyses, or randomized controlled trials were
assigned a score of 5 (highest reliability and evidence strength);
those from cohort studies were assigned 4; those from case-
control studies or case reports were assigned 3; those from clinical
experience were assigned 2; those from animal, in vitro, or cellular
studies were assigned 1; and negative drugs were uniformly
assigned 0 (lowest reliability and evidence strength).

To acquire comprehensive structural information of drug
molecules, we systematically extracted the Simplified Molecular
Input Line Entry System (SMILES) representations, molecular
formulas, and PubChem Compound Identification for both positive
and negative drugs from three authoritative chemical and drug
databases: PubChem (https://pubmed.ncbi.nlm.nih.gov/), ChemSpi-
der [28], and DrugBank [29]. SMILES is a linear representation
method for molecular structures based on graph theory and
topological principles, which facilitates feature extraction and
similarity calculations in subsequent machine learning algorithms.
Drugs with identical SMILES codes were considered to be the same
compound to avoid redundancy in our analysis.

Physicochemical characterization and molecular fingerprint
conversion of drugs

We employed the RDKit (https://www.rdkit.org/) in Python to
extract molecular descriptor information for each drug from
SMILES codes, thus quantifying molecular structural features. We
integrated 23 molecular descriptors as input features for our
machine learning models. These descriptors can be primarily
classified into two main categories: physicochemical properties of
molecules and molecular fingerprints. With respect to the
physicochemical properties of molecules, we included 16 critical
parameters, including molecular weight, heavy atom count, and
number of hydrogen bond acceptors (Table S2). These parameters
reflect various aspects of drug molecules, encompassing size,
polarity, hydrophobicity, and conformational flexibility, which are
crucial for characterizing key features of drug-target interactions.
Furthermore, we incorporated 7 types of molecular fingerprints to
delineate the structural features of drug molecules. Molecular
fingerprints are techniques for digitally encoding molecular
structures and can be utilized to quantify structural similarities
between different molecules. We implemented the following
molecular fingerprints: Molecular ACCess System (MACCS), Avalon,
topological fingerprint, Extended-Connectivity Fingerprints (ECFP),
Functional-Class Fingerprints (FCFP), Layered ECFP (LECFP), and
Layered FCFP (LFCFP) (Table S3). Through the comprehensive
application of these diverse molecular fingerprints, we can
characterize the structural features of drug molecules from
multiple perspectives, thus elucidating key structural elements
responsible for the lipid-lowering effects of drugs.

Machine learning model construction and evaluation

To optimize the machine learning model and mitigate potential
confounding effects from irrelevant variables, we implemented a
two-step feature selection process combining correlation analysis
and LASSO regression. In the first step, we employed Spearman
correlation analysis to compute the correlation coefficient
between each feature and the lipid-lowering effect. Features with
correlation coefficients exceeding 0.03 were selected as
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preliminary candidates, ensuring a manageable feature set of
300-500 for each drug. Subsequently, we applied LASSO
regression to the training set for further feature refinement.
The optimal regularization parameter A was determined through
10-fold cross-validation to balance model complexity and
performance. This cross-validation approach involved randomly
partitioning the training data into 10 equal-sized subsets,
with each subset serving as a validation set while the remaining
data were used for training. The A value that minimized the
mean cross-validated error was selected, yielding the final feature
set for subsequent machine learning analysis. This rigorous
validation strategy helped ensure model robustness and mitigate
potential overfitting issues. The choice of LASSO regression was
motivated by its ability to perform both feature selection and
regularization simultaneously, making it particularly suitable for
high-dimensional data with potential multicollinearity.

We developed machine learning models based on the contin-
uous variables. The continuous model quantified the likelihood of
such effects using an evidence-based medicine grading scale
(ranging from 0 to 5, with 5 indicating the highest level of
reliability). Drugs with predicted scores of 1 or higher were classified
as having potential lipid-lowering effects, while those with scores
below 1 were deemed to lack such effects. Higher scores correlated
with increased confidence in the drug’s lipid-lowering efficacy. We
also implemented a data partitioning strategy where the entire
dataset was randomly split into training (70%) and testing (30%)
sets, maintaining balanced proportions of both positive and
negative samples in each set. This stratified splitting ensures that
both sets contain representative distributions of the data, thereby
reducing potential bias and improving the model’s generalizability.

We implemented a total of 68 machine learning models,
including Random Forest (RF) [30], Support Vector Machine (SVM)
[31], Gradient Boosting Machine (GBM) [32], Elastic Net (Enet) [33],
Generalized Linear Model Boost (glmBoost) [34], Stepwise Gen-
eralized Linear [35], Ridge Regression (RR) [36], Lasso Regression
[37], Stepwise Regression (SR) [38], and various combinations
thereof. The specific parameters for each model and various
model combinations, are detailed in Supplementary Table S4. To
mitigate model complexity and prevent overfitting, we applied
variable selection and model combination techniques to specific
models, including RF [30], GBM [32], and Lasso Regression [37]. We
evaluated model performance using five metrics: Area under the
curve (AUC), F1-score, recall, accuracy, and specificity. For
subsequent analysis, we selected the top ten models based on
their AUC performance.

Screening of potential lipid-lowering drugs

Candidate potential lipid-lowering drugs were defined as those
identified as having lipid-lowering effects in at least 8 out of the
top 10 continuous variable models with the highest AUC values.
The number of positive identifications for each drug across these
models was tallied. All drugs identified as positive in at least one
model underwent a secondary manual review to exclude those
with previously reported lipid-lowering effects in the existing
literature. It should be emphasized that not all potential lipid-
lowering drugs predicted by machine learning models underwent
clinical data validation or animal experimental verification. During
the screening process for potential lipid-lowering drugs intended
for subsequent clinical data validation, certain candidates were
excluded due to the absence of usage records in the clinical
information database. Non-lipid-lowering drugs predicted to have
lipid-lowering potential by a minimum of 8 continuous machine
learning models were ultimately selected as candidates for
retrospective clinical data studies. For animal experimental
validation, the selection was limited to non-lipid-lowering drugs
predicted to have lipid-lowering potential by all 10 continuous
variable machine learning models, as well as those that
demonstrated lipid-lowering potential in local validation.
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Clinical data validation

We conducted a retrospective analysis of blood lipid profiles for
patients who received the previously described model-predicted
drug treatments at Zhujiang Hospital from June 19, 1998, to May 26,
2024. The analyzed parameters included TC, LDL-C, HDL-C, TG, and
lipoprotein(a). For each patient, only their earliest drug administra-
tion record was included in the analysis. Patients were included only
if they had documented medication records and underwent at least
two blood lipid profile measurements - one before and one after
drug administration. Only patients with complete lipid profile data
both before and after drug administration were included in the final
statistical analysis. In our analysis, we included both the mean
values of patients’ lipid parameters before and after medication.
Patients were excluded if they met any of the following criteria:
concurrent use of any known lipid-lowering medications during the
study period, missing or incomplete lipid profile data, major
changes in other medications known to affect lipid metabolism
during the study period, or participation in other clinical trials
during the study period. This study was approved by the Ethics
Committee of Zhujiang Hospital, Southern Medical University, and
written informed consent was obtained from all participants.

In vivo experimental validation

Due to limitations in drug availability, we conducted animal
experiments on 16 drugs that were either computationally predicted
to have lipid-lowering potential or demonstrated lipid-lowering
efficacy in preliminary clinical data analyses. The selected drugs
included Levoxyl, Argatroban, Sorafenib, Prasterone, Atazanavir
Sulfate, Ketoconazole, Fenoprofen Calcium, Alpha-Tocopherol
Acetate, Sulfaphenazole, Cedazuridine, Dicurin Procaine, Dimenhy-
drinate, Procarbazine Hydrochloride, Cupric Chloride, Regorafenib,
and Promega. Detailed information on specific drug brands is
provided in Supplementary Table S5.

All animal experimental procedures were reviewed and approved
by the Institutional Animal Care and Use Committee of Zhujiang
Hospital, Southern Medical University. Experiments were conducted
in strict compliance with established animal welfare and ethical
guidelines. Four-week-old male C57BL/6 mice of specific-pathogen-
free grade were obtained from Guangzhou Yongnuo Biotechnology
Co., Ltd. Prior to experimentation, mice underwent a one-week
acclimation period in the animal facility of Yongnuo Biotechnology.
The animal housing facility maintained a 12-h light/dark cycle, with
ambient temperature ranging from 18 to 23°C and relative
humidity levels of 40%-60%. Mice were randomly assigned to
experimental drug groups or control groups prior to drug
administration. Control groups received intraperitoneal injections
of phosphate-buffered saline as a vehicle control. Experimental
groups received intraperitoneal injections of the respective drugs
every 48 h, for a total of five doses. Drug dosages are detailed in
Supplementary Table S5. Blood collection and subsequent serum
separation were performed 24 h following the final drug adminis-
tration. The blood collection procedure was as follows: under full
anesthesia, blood was drawn via cardiac puncture. Collected blood
samples were transferred to centrifuge tubes and allowed to clot for
60 min at room temperature (23 + 2 °C). Samples were centrifuged
at 3,000rpm for 15min at 4°C. The supernatant (serum) was
carefully aspirated and stored at —80 °C pending further analysis.
Quantification of blood lipid levels was performed by Savior
Biotechnology Co., Ltd. The following lipid profile parameters were
analyzed: TC, TG, HDL-C, and LDL-C.

Molecular docking and prediction of drug-ligand-receptor
interactions

Molecular docking is a sophisticated computer-aided drug design
method that simulates the binding mode of small drug molecules
to large biomolecular targets, accurately predicting the binding
affinity and conformation of small drug molecules, thus guiding
the optimization and screening of lead compounds [39]. We
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systematically collected 12 protein targets that are known to be
closely related to lipid metabolism and are targeted by common lipid-
lowering drugs from Drugbank [29], encompassing various receptors,
enzymes, and coagulation factors. The selected targets include
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) [40],
5-hydroxytryptamine receptor 4 (5-HT4R) [41], 5-hydroxytryptamine
receptor 2 C (HTR2C) [42], 5-hydroxytryptamine receptor 2 A (HTR2A)
[43], 5-hydroxytryptamine receptor 2B (HTR2B) [44], Coagulation factor
X (FX) [45], Liver carboxylesterase 1 (CES1) [46], Microsomal triglyceride
transfer protein large subunit (MTP) [47], Prostaglandin G/H synthase 2
(COX-2) [48], Retinoic acid receptor alpha (RXRA) [49], Thyroid hormone
receptor alpha (TRa) [50], and Thyroid hormone receptor beta (TR{)
[50]. The three-dimensional structures of the aforementioned target
proteins were retrieved from the PDB database (Table S6). To ensure
the selection of the most suitable protein structure for each target with
multiple PDB IDs, we applied the following rigorous criteria: (1)
Organism specificity: We prioritized protein structures from Homo
sapiens to ensure maximal relevance to human physiological
environments; (2) Resolution quality: We prioritized structures with
lower A values, indicative of higher resolution, to obtain more detailed
and accurate protein structure information. To avoid potential
structural deficiencies associated with excessively low A values, we
established a lower limit of 1A for the resolution; (3) Determination
method: We favored structures determined by X-RAY DIFFRACTION to
acquire higher quality and resolution protein structure data; (4) Ligand
presence: Recognizing that crystallized ligands offer crucial information
about protein active sites and functions, which facilitates subsequent
drug design and optimization, we gave preference to protein
structures containing original crystallized ligands.

The three-dimensional structural files of the drugs were obtained
from the PubChem database. Seven candidate potential lipid-
lowering drugs (Argatroban, Promega, Sulfaphenazole, Sorafenib,
Prasterone, Levoxyl, and Alpha-Tocopherol Acetate) were selected,
while seven known lipid-lowering drugs with high affinity for target
proteins (Apixaban, Implitapide, Tegaserod, Cerivastatin, Etodolac,
D-thyroxine, and CES1) were utilized as the positive control group.
OpenBabel software (http://openbabel.sf.net) was employed to
convert the drug small molecule files from Structure Data File to
Protein Data Bank (PDB) format. Subsequently, both the drug
ligands and target proteins were preprocessed. For ligands,
AutoDockFR processing was performed to obtain PDB, Partial
Charge (Q), & Atom Type (T) files of the small molecules. For
proteins, crystallographic ligands and water molecules were first
removed using PyMOL, followed by ADFR processing to eliminate
residual crystallographic water and bound small molecules. Based
on these preparations, AutoDock Tools [51] and AutoDock Vina
software were utilized to select appropriate docking sites and
parameters, followed by the execution of docking calculations.
The binding capacity of drug molecules that demonstrated
significant lipid-lowering effects in animal experiments was
evaluated against these target proteins using AutoDock for semi-
flexible docking. A binding energy threshold of —5 kJ/mol was
established to determine the affinity levels of positive and
candidate drugs for the same receptor protein. Lower binding
energy is indicative of stronger binding capacity between the
drug molecule and the target protein, implying that the drug
may exert its lipid-lowering effect through this receptor protein.
Multiple possible conformations for the binding of each drug
molecule to the target proteins were generated through molecular
docking. The interaction modes between drug molecules and
proteins in the conformations with the lowest binding energy were
analyzed utilizing PLIP (2021) and LigPlot (Version 2.2.8) [52].
Subsequently, key results were visualized employing PyMOL
(Version 2.6) [53].

Molecular dynamics simulation

Molecular dynamics simulation is a sophisticated computational
method widely utilized across engineering and scientific disciplines
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Fig. 1

Schematic overview of the development and validation of the machine learning model for predicting the lipid-lowering effect of

non-lipid-lowering drugs. This figure was created based on the tools provided by Biorender.com (accessed on 8/2/2024).

to calculate the motion and equilibrium states of individual
molecules, thus offering detailed insights into complex protein-
ligand interactions at atomic resolution and with high temporal
precision. In this study, we employ the molecular dynamics
simulation software GROMACS 2023 [54], which offers compatibility
with various force fields and solvation models. Given AMBER14SB's
proven capability in optimizing protein structures and its appro-
priateness for simulating macromolecular systems, we employ the
AMBER14SB force field in conjunction with the TIP3P water model
to perform unconstrained molecular dynamics simulations on the
docked complexes of Sorafenib, Sulfaphenazole, Prasterone,
Promega, and Argatroban with HMGR, HTR2C, RXRA, MTP, and
FX, respectively. Given that the AMBER14SB force field lacks atomic
parameters and molecular topologies for the five small molecules
under investigation, we utilize the GAFF force field to generate
molecular topology files for Metolazone and the other four small
molecules that are compatible with the AMBER14SB force field. All
simulation systems utilize cubic solvation boxes with periodic
boundary conditions applied over a 1 ns timeframe. The system is
initially stabilized through 100 ps of NVT (constant Number of
particles, Volume, and Temperature) and 100 ps of NPT (constant
Number of particles, Pressure, and Temperature) equilibration.
Throughout the NVT and NPT ensemble simulations, we employ
the V-rescale thermostat coupling algorithm and Parrinello-Rahman
pressure coupling method to maintain the system temperature at
300 K and pressure at 1.0 bar, respectively. Subsequently, a 100 ns
molecular dynamics simulation of the complex is conducted. We set
the non-bonded interaction cut-off value to 1.0 nm and employ the
Particle Mesh Ewald method to calculate long-range electrostatic
interactions (EEL) at a Coulomb radius of 1.0 nm. We employ a time
step of 2fs and record system conformations every 1000 steps
(equivalent to 2 ps). We implement modified Berendsen tempera-
ture coupling, setting target temperatures of 300K for both the
complex and water, with a coupling time constant of 0.1 ps. For
pressure coupling, we utilize the Parrinello-Rahman algorithm,
setting a target pressure of 1.0 bar and a coupling time constant of
2.0 ps.
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Statistical analysis

Statistical analysis and data visualization in this study were performed
using R (Version 4.3.0) and Python (Version 3.12.0). For paired samples,
we employed the paired Wilcoxon signed-rank test to assess statistical
significance. For independent samples, we utilized the Mann-Whitney
U test to compare group differences [55]. We utilized the Complex-
Heatmap package for generating heatmaps, the circlize package for
creating bar plots, ggplot2 for producing box plots and violin plots, and
ggplot2 in conjunction with ggalt for constructing dumbbell plots.
Statistical significance was defined as a two-sided P<0.05. The
following notation was used to indicate significance levels: *P < 0.05,
**P < 0.01, ***P < 0.001, and ***P < 0.0001.

RESULTS

Machine learning-based identification of lipid-lowering drug
candidates

Figure 1 illustrates the comprehensive workflow of this study.
Utilizing a dataset comprising 3430 drugs (176 positive drugs with
established lipid-lowering effects and 3254 negative drugs), along
with their corresponding drug characteristics and lipid-lowering
evidence levels, we evaluated the predictive capabilities of various
machine learning models. These models incorporated 68 con-
tinuous variables (or combinations thereof) to assess the lipid-
lowering potential of drugs (Fig. 2a, b). Among the models
utilizing continuous variables, the Lasso + Ridge model and the
Lasso + Enet model, with various parameter configurations,
exhibited exceptional performance. When the regularization
parameter a was set to 0.7 for the Lasso + Elastic Net model, it
achieved the highest scores in AUC (0.886), accuracy (0.888),
F1 score (0.820), recall (0.820), and specificity (0.888), ranking first
among all models. Similarly, the Lasso + Partial Least Squares
Regression (plsRgim) model, SYM model, Lasso model, and
Lasso + GBM model all demonstrated consistently high perfor-
mance across these five metrics (Fig. 2a, b). Subsequently,
we selected the top 10 machine learning models based on their
AUC values, which were deemed to have the most robust
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predictive performance. These models were incorporated into
further analyses (Fig. 2c). We further analyzed the lipid-lowering
potential assessment results of candidate drugs using the top-
performing 10 machine learning models. Analysis of the machine
learning results for continuous variables revealed that 29 FDA-
approved drugs without lipid-lowering indications were identified
as having lipid-lowering potential by at least 8 models (Fig. 2d,
Table S7).

In summary, our comprehensive machine learning approach
effectively identified 29 FDA-approved drugs with potential lipid-
lowering effects, thereby providing a reliable foundation for drug
repurposing and subsequent experimental validation.

Validation of potential lipid-lowering drugs through retrospective
clinical data analysis

Comparative analysis of patients’ average blood lipid profiles before
and after medication revealed that four drugs (Argatroban, Levoxyl,
Oseltamivir, and Thiamine), identified through machine learning
screening, exhibited significant biological activity in modulating
patients’ blood lipid parameters (Fig. 3a-d). Among these,
Argatroban treatment demonstrated the most pronounced effects
on blood lipid-related parameters, including low-density lipoprotein
(LDL), TC, and TG (Fig. 3a). Analysis of LDL data from 63 patients
undergoing Argatroban treatment revealed a significant decrease in
LDL levels by 33.1%, from a pre-treatment average of 2.96 mmol/L
to 1.98 mmol/L post-treatment (P = 1.4 x 10~®). Analogously, blood
TC and TG levels exhibited significant reductions following
medication: TC decreased markedly by 25.1% from a pre-
treatment level of 468 mmol/L to 3.51 mmol/L post-treatment
(P=14x10"%), while TG levels declined from 1.47 mmol/L to
1.37 mmol/L (P = 0.017). Levoxyl also exhibited potent lipid-lowering
effects (Fig. 3b). Following Levoxyl treatment, 87 patients exhibited
significant reductions in both LDL and TC levels, with decreases of
162% (P=37x10"7) and 11.9% (P=84x10"7), respectively.
Oseltamivir treatment resulted in a reduction of LDL levels and,
despite the modest magnitude of change, demonstrated a
statistically significant effect on TC reduction in a larger sample
size (Fig. 3c). Lastly, Thiamine treatment demonstrated significant
lipid-lowering potential, exhibiting notable effects in reducing
patients’ LDL and TC levels (Fig. 3d).

In conclusion, the four potential lipid-lowering agents (Arga-
troban, Levoxyl, Oseltamivir, and Thiamine) identified in this study
exhibited significant lipid-modulating effects as evidenced by
preliminary clinical data validation. Of particular note, Argatroban
demonstrated remarkably pronounced effects in reducing LDL-C,
TC, and TG levels while concomitantly elevating HDL-C levels. This
observation indicates a high degree of concordance between the
predictions generated by the machine learning model and the
observed clinical data. However, it is imperative to note that these
agents exhibit variations in terms of potency and target specificity,
which provides crucial evidence for the development of
personalized therapeutic strategies.

Comprehensive mouse studies validated potential lipid-lowering
drug effects

In vivo experiments conducted in mouse models demonstrated
that multiple drugs significantly modulated four key lipid-related
blood indicators: TG, TC, high-density lipoprotein (HDL), and LDL
(Fig. 4a—e). Both Levoxyl and Sulfaphenazole exhibited significant
TG-lowering effects (P < 0.05). Compared to the control group, the
Levoxyl treatment group showed a 28.96% reduction in TG levels,
while the Sulfaphenazole treatment group demonstrated a
27.09% decrease in TG levels (Fig. 4a). With respect to blood TC
levels, we found that Argatroban and Promega significantly
reduced blood TC levels: Argatroban treatment lowered TC levels
by 10.55% (P < 0.05), while Promega treatment reduced TC levels
by 9.87% (P < 0.05), as shown in Fig. 4b. Furthermore, six drugs -
Sorafenib, Prasterone, Alpha-Tocopherol Acetate, Cedazuridine,
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Regorafenib, and Promega - all exhibited significant effects
on blood HDL levels (Fig. 4c). Among all candidate drugs,
Prasterone notably exhibited the most pronounced HDL-
elevating effect. Relative to the control group, mice in the
Prasterone treatment group showed a 24.08% increase in HDL
levels (P<0.001). Alpha-tocopherol acetate also demonstrated a
substantial increase in HDL: the experimental group showed a
significant 17.81% elevation in HDL (P = 0.02). Following closely
were Sorafenib (P=0.03) and Cedazuridine (P=0.03), both of
which significantly increased HDL, with elevations of 14.36%
and 9.33%, respectively. Mice treated with Regorafenib and
Promega exhibited HDL levels of 1.769 and 1.769 mmol/L,
respectively, which were significantly higher than the control
group’s 1.593 mmol/L (P<0.05). Contrary to expectations, we
found that mice receiving potential lipid-lowering drug treatments
had higher LDL levels compared to the control group. LDL levels in
the Procarbazine Hydrochloride and Dimenhydrinate treatment
groups were both 18.73% higher than those in the control group
(P=0.01). The Promega treatment group had an average LDL
value of 0.292 mmol/L, representing a 15.19% increase compared
to the control group (P =0.04).

In conclusion, this study identified a series of drugs with
significant regulatory effects on lipid metabolism in mice through
in vivo pharmacological evaluation, with Argatroban, Prasterone,
Promega, Sorafenib, and Sulfaphenazole demonstrating particu-
larly pronounced improvements in lipid profile indicators.

Molecular docking analysis reveals potential targets for lipid-
lowering drug action

In this study, we selected seven drugs (Argatroban, Promega,
Sulfaphenazole, Sorafenib, Prasterone, Levoxyl, and Alpha-Tocopherol
Acetate) that have previously demonstrated lipid-lowering effects in
animal experiments and clinical retrospective studies. These drugs
were subjected to molecular docking analysis with 12 key target
proteins involved in lipid metabolism. Through the evaluation of
binding affinities between drugs and target molecules, we investigated
the potential lipid-lowering mechanisms of drugs not primarily
designed for lipid reduction. The results, as illustrated in Fig. 5a,
demonstrate that Argatroban and Apixaban exhibited strong binding
affinities to FX, with binding energies of —7.60 and —9.30 kcal/mol,
respectively. Promega and Implitapide displayed comparable binding
affinities to the MTP, with binding energies of —7.10 and —6.70 kcal/
mol, respectively. Sulfaphenazole and Tegaserod exhibited potent
binding affinities to serotonin receptors HTR2A, HTR2B, HTR2C, and 5-
HT4R, with binding energies consistently below —7.00 kcal/mol.
Notably, Sulfadiazine demonstrated the highest binding affinity to
HTR2A and HTR2C receptor subtypes, with binding energies ranging
from —8.70 to —8.80 kcal/mol. Sorafenib and cerivastatin exhibited
robust binding affinities to HMGR, with binding energies of —7.50 and
—7.20 kcal/mol, respectively. Prasterone displayed a notable binding
affinity to COX-2, with a binding energy of —8.00 kcal/mol, whereas
Etodolac exhibited a binding energy of —6.80 kcal/mol to the same
target. Additionally, Prasterone and Etodolac showed strong binding
affinities to RXRA, with binding energies of —9.70 and —8.90 kcal/mol,
respectively. Levoxyl and D-Thyroxine demonstrated strong binding
affinities to TRa, with binding energies ranging from —7.90 to
—8.00 kcal/mol, while exhibiting weaker affinities to TR, as shown in
Fig. 5a. Employing molecular docking techniques, we comprehensively
evaluated the binding affinities of 12 drug molecules with potential
lipid-lowering effects on various lipid metabolism-related targets. Our
analysis revealed that multiple drug-target pairs exhibited significant
binding affinities, suggesting potential mechanisms for their lipid-
lowering actions.

To further elucidate the molecular mechanisms, we conducted
comprehensive molecular docking analyses for multiple drugs
exhibiting high binding affinity to lipid metabolism-associated
target proteins to demonstrate the binding patterns and
interactions between drug molecules and target protein sites,
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Fig. 3 Analysis of differences in TG, TC, HDL, and LDL levels before and after treatment with candidate lipid-lowering drugs based on
retrospective clinical data. a Box plots depicting the changes in LDL, TC, and TG levels in patients before and after treatment with
Argatroban. b Box plots depicting the changes in LDL and TC levels in patients before and after treatment with Levoxyl. ¢ Box plots depicting
the changes in LDL and TC levels in patients before and after treatment with Oseltamivir. d Box plots depicting the changes in LDL and TC
levels in patients before and after treatment with Thiamine. The corresponding sample sizes are provided. Statistical significance was assessed

using the Wilcoxon test.
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Fig. 4 Differences in TG, TC, HDL, and LDL levels before and after treatment with candidate lipid-lowering drugs in an in vivo
mouse model. a Box plots illustrating TG levels in the experimental group treated with candidate lipid-lowering drugs compared to the PBS
control group. b Box plots illustrating TC levels in the experimental group versus the PBS control group. ¢ Box plots illustrating HDL levels in
the experimental group compared to the PBS control group. d Box plots illustrating LDL levels in the experimental group versus the PBS
control group. e The heatmap summarizes the effects of all candidate drugs on mouse blood levels of TG, TC, HDL, and LDL. Each group has a
sample size of at least three, with specific sample sizes indicated by points on the box plots. Bold font indicates drugs that resulted in
statistically significant changes in lipid levels. Statistical significance was assessed using the Wilcoxon test. *P < 0.05, **P < 0.01, ***P < 0.001,

***¥p < 0.0001.
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including Argatroban with FX, Prasterone with RXRA, Promega
with MTP, Sorafenib with HMGR, and Sulfaphenazole with HTR2C
(Fig. 5b—f). Molecular docking analyses revealed that Argatroban
exhibits high-affinity binding to the active site of FX, establishing
multiple crucial interactions with key amino acid residues. In
particular, Argatroban establishes hydrophobic interactions with
Tyr99A, Phe174A, and Trp215A of FX, simultaneously forming
hydrogen bonds with GIn192A and Gly219A of FX, providing
additional binding capacity, thereby tightly filling multiple sub-
pockets of the thrombin active site and firmly anchoring in the
thrombin active center (Fig. 5b). Structural analysis demonstrated
that Prasterone establishes extensive hydrophobic interactions
with RXRA’s 1le268A, Ala272A, Leu309A, lle310A, Phe313A,
Leu326A, lle345A, and Leu436A. These comprehensive interac-
tions facilitate Prasterone’s stable accommodation within the
RXRA ligand-binding domain. Promega demonstrates dual bind-
ing mechanisms, comprising hydrophobic interactions with MTP’s
lle666H, Leu671H, Ala694H, Leu696H, Phe706H, Val727H, lle761H,
Thr776H, and Val778H and hydrogen bonds with MTP’s GIn663H,
which synergistically enhance its binding affinity. The binding
mode analysis revealed that Sorafenib displays hydrophobic
interactions with HMGR's Leu853B while forming hydrogen bonds
with Cys561B, Ser565B, Arg590A, and Ser684A, resulting in tight
binding between Sorafenib and HMGR. Sulfaphenazole establishes
a network of hydrophobic interactions with HTR2C's Val135A,
Ala222A, Phe223A, Phe327A, and Phe328A, while forming
hydrogen bonds with Asp134A and Ser138A, contributing to its
strong binding affinity to HTR2C.

Enhanced exploration of drug-protein binding patterns through
molecular dynamics simulations

Based on the aforementioned research findings, Sorafenib,
Sulfaphenazole, Prasterone, Promega, and Argatroban exhibited
significant lipid-lowering effects. To elucidate their mechanisms of
action, we conducted an in-depth investigation of these five
drugs. Initially, we analyzed the root mean square deviation
(RMSD) changes of sulfaphenazole-HTR2C, Sorafenib-HMGR, Pras-
terone-RXRA, Promega-MTP, and Argatroban-FX complexes over a
100-nanosecond molecular dynamics simulation period. The
molecular dynamics simulation results revealed that the
sulfaphenazole-HTR2C complex exhibited the highest RMSD value,
escalating from 03 nm to approximately 1.0 nm, suggesting
substantial conformational changes during the ligand-receptor
binding process (Fig. 6a). In contrast, the remaining four
complexes (Sorafenib-HMGR, Prasterone-RXRA, Promega-MTP,
and Argatroban-FX) displayed lower RMSD values, predominantly
oscillating between 0.1 and 0.3 nm, indicative of high structural
stability (Fig. 6a). Collectively, with the exception of sulfaphena-
zole-HTR2C, all other complexes demonstrated remarkable
structural stability. Root mean square fluctuation (RMSF) analysis
of the five ligand-protein complexes indicated that the
sulfaphenazole-HTR2C complex displayed the most pronounced
fluctuation in the vicinity of 5000 atoms, reaching a peak value of
approximately 0.8 nm. Conversely, the RMSF values for the
remaining complexes were substantially lower, with the majority
of fluctuations not exceeding 0.2 nm. These findings suggest that
the sulfaphenazole-HTR2C complex exhibits enhanced flexibility in
specific regions, whereas the other complexes maintain relative
structural rigidity (Fig. 6b). Analysis of the radius of gyration (Rg)
changes for the five ligand-protein complexes during molecular
dynamics simulations revealed that the Promega-MTP complex
exhibited the highest Rg value of approximately 3.5 nm, followed
by Sorafenib-HMGR at 2.8nm, and sulfaphenazole-HTR2C at
2.5 nm. Prasterone-RXRA and Argatroban-FX displayed the lowest
Rg values, both ~1.7 nm (Fig. 6¢). The Rg values for all complexes
remained relatively constant throughout the simulation period,
suggesting that their global conformations did not undergo
substantial alterations (Fig. 6c).
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The solvent-accessible surface area (SASA) analysis for these five
ligand-protein complexes reveals that the Promega-MTP complex
demonstrates the largest solvent-exposed area, consistently
maintained at approximately 400 nm? (Fig. 6d). The Sorafenib-
HMGR and sulfaphenazole-HTR2C complexes exhibit the next
highest SASA values, with ~330nm? and 200 nm?, respectively
(Fig. 6d). Prasterone-RXRA and Argatroban-FX show smaller
solvent contact areas, with values ranging between 110 and
120 nm? (Fig. 6d). The SASA curves for all complexes display
relatively stable characteristics, indicating the maintenance of a
consistent solvent exposure state throughout the simulation
process (Fig. 6d). Furthermore, we performed free energy
decomposition analyses for the five protein-ligand systems:
Sorafenib-HMGR, sulfaphenazole-HTR2C, Prasterone-RXRA, Pro-
mega-MTP, and Argatroban-FX. These analyses included van der
Waals forces (VDWAALS), EEL, polar Boltzmann energy (EPB), gas-
phase free energy (GGAS), solvation-free energy (GSOLV), and
total free energy (TOTAL) (Table 1). The analysis demonstrated
that all systems displayed negative total free energies, suggesting
thermodynamically favorable interactions (Table 1). Notably, the
Promega-MTP system exhibited the lowest total free energy
(—43.61 kcal/mol), indicating the strongest binding affinity among
the complexes (Table 1). Further analysis showed that VDWAALS
significantly contributed to the binding of all systems, while the
contribution of EEL varied across systems (Table 1).

Molecular dynamics simulations reveal that Argatroban-FX
makes substantial contributions to GGAS, GSOLV, and TOTAL.
Within the GGAS component, VDWAALS exhibits a negative value
of approximately —50 kcal/mol, while EEL demonstrates a larger
negative magnitude of around —100 kcal/mol (Fig. 6e). The GSOLV
component comprises EPB, which displays a positive value of
approximately 125 kcal/mol, and non-polar solvation-free energy
(ENPOLAR), which is marginally positive, approaching zero (Fig. 6e).
The TOTAL component analysis indicates that the sum of GGAS
exhibits a large negative value of approximately —150 kcal/mol,
while the sum of GSOLV is positive, about 120 kcal/mol.
Consequently, the final TOTAL is negative, approximately
—25 kcal/mol (Fig. 6e). These results suggest that while solvation
effects, particularly polar solvation, are detrimental to system
stability, gas-phase interactions, notably EEL, contribute more
substantially to the system’s stability. The observed negative total
energy implies that the molecular system maintains thermody-
namic stability under the simulated conditions (Fig. 6e).

We further calculated the contribution of individual amino acid
residues to the total energy in the Total Decomposition
Contribution system for the Argatroban-FX complex. The results
revealed that the energy contributions of the majority of residues
were relatively small, ranging between —1 and 2 kcal/mol (Fig. 6f).
Notably, A:GLY:219 and B:LYS:245 exhibited significant positive
energy contributions of ~2.5kcal/mol and 16 kcal/mol, respec-
tively, indicating their potential to generate unfavorable interac-
tions within the system (Fig. 6f). Conversely, A:ASP:189 displayed a
notable negative energy contribution of ~ —3 kcal/mol, suggest-
ing its potential crucial role in stabilizing the system structure or
promoting favorable interactions (Fig. 6f). In a similar vein, the
Sidechain Decomposition Contribution analysis of the Argatroban-
FX complex demonstrated that the energy contributions of most
amino acid residues to the total energy were relatively small,
ranging from —1 to 2 kcal/mol (Fig. 6g). A:ASP:189 exhibited the
most significant negative energy contribution of ~ —3 kcal/mol,
strongly suggesting its crucial role in stabilizing the system
(Fig. 69). In contrast, LYS245 presented the largest positive energy
contribution of ~16 kcal/mol, indicating its potential to generate
unfavorable interactions (Fig. 6g). The GMX-Hbonds analysis of the
Argatroban-FX complex primarily revealed hydrogen bonds
between residues 215 and 245, elucidating key hydrogen bond
interactions in the protein structure. These interactions provide
valuable insights into protein stability and function (Fig. 7a).
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Fig. 6 Molecular dynamics simulation and analysis of protein-ligand complexes. a Root Mean Square Deviation (RMSD) of the complex.
b Root Mean Square Fluctuation (RMSF) of the complex. ¢ Radius of Gyration (Rg) of the complex. d Solvent Accessible Surface Area (SASA) of
the complex. e MMPBSA analysis of the Argatroban-FX complex. f Total Decomposition Contribution (TDC) plot of the Argatroban-FX
complex. g Sidechain Decomposition Contribution (SDC) plot of the Argatroban-FX complex.

Furthermore, the GMX-HBOND time series analysis of the

LIG245 exhibited relative stability, albeit with intermittent
Argatroban-FX complex demonstrated that the hydrogen bonds

occurrences (Fig. 7b). The interaction between G216 and LIG245

formed between LIG245 and multiple residues, including G219
and A190, were highly stable, persisting for more than 50% of the
entire simulation process. The hydrogen bond between Y99 and

SPRINGER NATURE

occurred frequently but discontinuously (Fig. 7b). The interaction
between K96 and LIG245 showed lower frequency and was
predominantly observed in the latter stages of the simulation
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Table 1. Free energy (kcal/mol) decomposition of the system.

System VDWAALS EEL EPB GGAS GSOLV TOTAL
Sorafenib-HMGR —33.36 —9.08 24.18 —42.43 20.66 —21.77
Sulfaphenazole-HTR2C —40.46 —25.19 47.61 —65.65 43.85 —21.8

Prasterone-RXRA —40.58 —4.79 28.13 —45.37 24.46 —20.91
Promega-MTP —54.42 —-12.94 29.03 —67.37 23.75 —43.61
Argatroban-FX —43.33 —104.81 126.13 —148.14 121.22 —26.92

(Fig. 7b). In the Gibbs free energy landscape of the Argatroban-FX
complex, the blue regions denote low-energy states (Fig. 7c),
representing the most stable conformations of the complex.
We subsequently visualized the molecular interactions within
this stable state. The hydrophobic interactions between Argatro-
ban and FX encompassed residues GLN61, TYR99, PHE174,
and TRP215, with distances ranging from 3.49 to 3.85 A, whereas
hydrogen bonding interactions involved TYR99 and GLN192,
with distances ranging from 2.08 to 2.46A. Notably, TYR99
functioned as both a hydrogen bond donor and acceptor,
establishing bidirectional interactions with the ligand. GLN192
functioned as a hydrogen bond acceptor. These multiple
interactions between Argatroban and FX are likely to contribute
substantially to the tight binding observed between the two
molecules (Fig. 7c).

DISCUSSION
This study successfully identified a series of non-traditional drugs
with potential lipid-lowering effects by integrating multiple
machine learning algorithms. The lipid-lowering efficacy of these
drugs was subsequently validated through retrospective clinical
data analysis and in vivo experiments in mice. Furthermore, we
systematically evaluated the binding capacity and interaction
characteristics of these potential lipid-lowering drugs with lipid
metabolism-related targets utilizing molecular docking and
molecular dynamics simulation techniques. This approach pro-
vided a theoretical basis for elucidating their mechanisms of
action. The results of the clinical retrospective study validation
demonstrated that Argatroban, Levoxyl, Oseltamivir, and Thiamine
exhibited significant lipid-regulating effects, thus corroborating
the predictions of the machine learning models. In the murine
model, drugs including Argatroban, Prasterone, Promega, Sorafe-
nib, and Sulfaphenazole demonstrated notable improvement in
blood lipid indicators. From a mechanistic standpoint, Argatroban,
Promega, Sulfaphenazole, Sorafenib, Prasterone, and Levoxyl were
found to exhibit strong binding affinities to multiple lipid
metabolism-related targets, including coagulation factor X, thyroid
hormone receptor, and 5-hydroxytryptamine receptor. These
findings not only suggest that these drugs may exert lipid-
lowering effects through multiple pathways but also offer new
insights for developing multi-target lipid-lowering drugs. Mole-
cular docking and molecular dynamics simulation techniques
further elucidated the specific binding modes and key interactions
between these drugs and their targets, thereby providing
important evidence for an in-depth understanding of drug
mechanisms and structural optimization. In comparison with
existing studies, our approach not only expanded the potential
range of lipid-lowering drugs by integrating machine learning
with experimental validation but also yielded new insights into
drug mechanisms through molecular-level exploration, thus
providing a theoretical foundation for developing personalized
lipid-lowering treatment strategies.

This study has identified several non-lipid-lowering drugs with
significant lipid-lowering potential, among which Argatroban,
Levoxyl, and Sulfaphenazole emerged as particularly promising
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candidates. Although these drugs were originally developed to
treat various diseases, our computational model predictions and
molecular docking analyses have revealed their potential new
mechanisms of action in regulating blood lipids. For instance,
Argatroban is clinically employed to treat or prevent heparin-
induced thrombocytopenia [56]; however, our machine learning
algorithms, clinical data analysis, and animal experiments
collectively suggest that Argatroban possesses potential lipid-
lowering effects. Patients treated with Argatroban demonstrated
significantly reduced levels of LDL, TC, and TG; furthermore, in
animal experiments, mice injected with Argatroban also exhibited
lower TC levels. Our molecular docking results suggest that
Argatroban exhibits a high binding affinity to FX. FX not only plays
a crucial role in the coagulation cascade but also modulates
adipose tissue inflammation, insulin sensitivity, and fatty acid
oxidation through interactions with G protein-coupled receptors,
such as protease-activated receptor 2 [57]. Similarly, our study
demonstrated that Levoxyl, a standard medication for treating
hypothyroidism [58], can significantly improve blood lipid profiles,
including LDL, TC, and TG, as corroborated by both clinical
retrospective analyses and in vivo animal experimental evidence.
Molecular docking analysis revealed that Levoxyl can bind to the
TRa subtype with high affinity. These findings suggest that
Levoxyl may exert its lipid-lowering effect by modulating the
expression of genes involved in lipid metabolism. Notably, while
thyroid hormones can accelerate lipolysis and cholesterol
metabolism, their lipid-lowering effects are often counteracted
by their appetite-stimulating properties [50]. However, Levoxyl
exhibits a longer half-life and more stable pharmacokinetic profile
compared to endogenous thyroid hormones [59], indicating its
potential as a novel long-acting lipid-lowering agent. Furthermore,
our research revealed that Sulfaphenazole, an antibiotic primarily
used to treat bacterial infections [60], exhibits strong binding
affinity to 5-HT2A/2C receptors, indicating its potential to act as a
competitive antagonist at serotonin 2A and 2C receptors.
Serotonin is known to stimulate the hypothalamus, thereby
promoting appetite, while concurrently enhancing lipolysis in
adipose tissue [61]. By antagonizing these receptors, Sulfaphena-
zole may induce appetite suppression, consequently reducing
peripheral tissue fat accumulation. These findings not only
elucidate potential novel treatment strategies for hyperlipidemia
patients but also pave the way for new research directions,
facilitating a deeper understanding of the regulatory mechanisms
underlying lipid metabolism.

In the realm of lipid-lowering drug development, numerous
studies have endeavored to expedite the process of novel drug
discovery through the application of computational methods. For
example, Rai et al. utilized random forest classifiers to elucidate
previously approved drugs with potential lipid-lowering effects
[62]. In contrast, our study not only leverages literature support
and machine learning predictions but also validates the efficacy of
candidate drugs through comprehensive experimental verifica-
tion, thereby substantially enhancing the credibility and scientific
value of the research findings. Furthermore, we have implemen-
ted enhancements in data processing and model presentation,
significantly augmenting the transparency of data handling and
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methodology. We have meticulously documented the steps molecular docking simulations, offering deeper insights into the
involved in drug-target network construction and analysis, molecular mechanisms of action of candidate drugs.

thereby ensuring the reproducibility of the study and facilitating Our findings have significant implications for clinical translation.
independent verification. Additionally, we have incorporated The identified drugs show potential for use in specific patient
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populations who may not respond well to or tolerate conventional
lipid-lowering therapies. Additionally, these drugs might be used
in combination with existing lipid-lowering medications to
achieve synergistic effects. The molecular mechanisms we
uncovered suggest these drugs may regulate lipid metabolism
through novel pathways, including potential epigenetic mechan-
isms. This provides new directions for developing targeted
therapies. Furthermore, our integrated machine learning approach
combined with multi-omics analysis represents a novel and
efficient strategy for drug repositioning that could be applied to
other therapeutic areas.

Nevertheless, this study has several notable limitations that
warrant consideration. Firstly, the retrospective analysis con-
ducted using local data may not fully account for the potential
influence of unknown confounding factors. Consequently, future
research should include large-scale, multicenter randomized
controlled clinical trials to comprehensively evaluate the lipid-
lowering efficacy and long-term safety of these candidate drugs.
Secondly, for drug-target pairs exhibiting weak binding affinity,
the possibility cannot be discounted that they may exert lipid-
lowering effects through alternative mechanisms, or that factors
such as receptor structural flexibility may result in positive
calculated binding energies. These hypotheses require validation
through further biochemical and structural biology experiments.
Thus, future research necessitates more in-depth and compre-
hensive studies to elucidate the lipid-lowering efficacy and
mechanisms of non-lipid-lowering drugs, thereby expediting
the translation of research findings into clinical practice for
patient benefit. Additionally, a notable limitation of this study lies
in our unified modeling approach for all lipid-lowering drugs. The
176 positive drugs in our dataset exhibit considerable mechan-
istic diversity, targeting various molecular pathways and biologi-
cal processes. This heterogeneity might have prevented the
identification of specific feature patterns associated with distinct
lipid-lowering mechanisms. Future studies could benefit from
stratifying these drugs into mechanistic subcategories - such as
HMG-CoA reductase inhibitors, cholesterol absorption inhibitors,
and PCSK9 inhibitors - and developing independent predictive
models for each category. This stratified approach could
potentially enhance prediction accuracy and provide more
targeted insights into mechanism-specific drug repurposing
opportunities. Such refinement could also facilitate the identifica-
tion of drugs that act through specific desired mechanisms,
potentially leading to more precise therapeutic recommenda-
tions. Moreover, future studies could leverage geometric deep
learning methods to analyze molecular structures directly. While
our approach uses traditional descriptors and fingerprints,
pretrained geometric neural networks could capture nuanced
structural relationships crucial for drug-target interactions
[63, 64]. These methods, learning from 3D conformations and
chemical graphs, could complement conventional descriptors
and improve understanding of features influencing lipid-lowering
efficacy [65].

This study employs an innovative approach by integrating
machine learning techniques to systematically explore the lipid-
lowering potential of non-lipid-lowering drugs, potentially offering
novel treatment options for patients with hyperlipidemia. The
research methodology encompasses retrospective clinical data
analysis and in vivo animal experiments for validation, while also
examining the binding and interaction mechanisms between
drugs and lipid-lowering targets at the molecular level. This
approach may provide alternative options for patients exhibiting
poor tolerance or inadequate response to conventional lipid-
lowering therapies, thus offering the potential for individualized
and precise treatment of hyperlipidemia. Consequently, this
research has the potential to enhance patient outcomes, thereby
demonstrating substantial academic value and promising clinical
applicability.
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CONCLUSION

This study innovatively combines machine learning, molecular
docking, clinical data analysis, and animal experiments to
systematically evaluate the lipid-lowering potential of non-lipid-
lowering drugs (such as Argatroban, Levoxyl, and Sulfaphenazole)
from multiple dimensions, thereby providing scientific evidence
for developing novel lipid-lowering strategies. These drugs
exhibited superior lipid-lowering effects in both retrospective
clinical studies and animal experiments. We further investigated
their potential lipid-lowering mechanisms by examining their
binding affinities to certain proteins using molecular docking and
molecular dynamics simulation techniques. In conclusion, this
study demonstrated through multidimensional analysis that these
three non-lipid-lowering drugs exhibit the potential in regulating
blood lipid levels through their unique molecular mechanisms,
including decreasing TG, lowering LDL-C, and increasing HDL-C.
These findings provide innovative strategies and scientific
evidence for identifying new lipid-lowering indications in mar-
keted drugs, potentially offering more diversified treatment
options for patients with hyperlipidemia.
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