Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune cells in systemic lupus erythematosus: biology and traditional Chinese medicine therapy

Abstract

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by a progressive breakdown of immune tolerance to self-antigens, resulting in multiple tissue damage and clinical symptoms. Innate and adaptive immune cells including dendritic cells, macrophages, myeloid-derived suppressor cells (MDSCs), T cells and B cells are the key drivers in perpetuating and amplifying of this systemic disease. In this review we offer a comprehensive overview of recent advances in understanding the immune-pathogenesis of SLE with particular emphasis on regulatory immune cells exhibiting immunosuppressive properties, as well as newly identified factors influencing immune cell function and lineage differentiation. Furthermore, we discuss traditional Chinese medicine and natural extracts that have shown therapeutic effects on SLE by modulating immune cell differentiation and function, which may provide insights into their clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A comprehensive overview of the principal immune cells implicated in the pathogenesis of SLE.
Fig. 2: Traditional Chinese medicine (TCM) and its extracts target immune cells for the treatment of SLE.

Similar content being viewed by others

References

  1. Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2019;78:1151–9.

    Article  PubMed  Google Scholar 

  2. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365:2110–21.

    Article  PubMed  CAS  Google Scholar 

  3. Barber MRW, Drenkard C, Falasinnu T, Hoi A, Mak A, Kow NY, et al. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17:515–32.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mohan C, Putterman C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat Rev Nephrol. 2015;11:329–41.

    Article  PubMed  CAS  Google Scholar 

  5. Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol. 2020;21:605–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Fava A, Petri M. Systemic lupus erythematosus: diagnosis and clinical management. J Autoimmun. 2019;96:1–13.

    Article  PubMed  Google Scholar 

  7. Fanouriakis A, Kostopoulou M, Andersen J, Aringer M, Arnaud L, Bae SC, et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann Rheum Dis. 2024;83:15–29.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang L, Wei W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol Ther. 2020;207:107452.

    Article  PubMed  CAS  Google Scholar 

  9. Buessow SC, Paul RD, Lopez DM. Influence of mammary tumor progression on phenotype and function of spleen and in situ lymphocytes in mice. J Natl Cancer Inst. 1984;73:249–55.

    PubMed  CAS  Google Scholar 

  10. Young MR, Newby M, Wepsic HT. Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res. 1987;47:100–5.

    PubMed  CAS  Google Scholar 

  11. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70:68–77.

    Article  PubMed  CAS  Google Scholar 

  13. Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 2003;24:302–6.

    Article  PubMed  CAS  Google Scholar 

  14. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182:4499–506.

    Article  PubMed  CAS  Google Scholar 

  15. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Boros P, Ochando J, Zeher M. Myeloid derived suppressor cells and autoimmunity. Hum Immunol. 2016;77:631–6.

    Article  PubMed  CAS  Google Scholar 

  17. Mohammadpour H, MacDonald CR, Qiao G, Chen M, Dong B, Hylander BL, et al. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J Clin Invest. 2019;129:5537–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21:485–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Park MJ, Lee SH, Kim EK, Lee EJ, Park SH, Kwok SK, et al. Myeloid-derived suppressor cells induce the expansion of regulatory B cells and ameliorate autoimmunity in the Sanroque mouse model of systemic lupus erythematosus. Arthritis Rheumatol. 2016;68:2717–27.

    Article  PubMed  CAS  Google Scholar 

  20. Lourenço EV, Wong M, Hahn BH, Palma-Diaz MF, Skaggs BJ. Laquinimod delays and suppresses nephritis in lupus-prone mice and affects both myeloid and lymphoid immune cells. Arthritis Rheumatol. 2014;66:674–85.

    Article  PubMed  Google Scholar 

  21. Ji J, Li P, Shen C, Dou H, Wang T, Shi L, et al. MDSCs: friend or foe in systemic lupus erythematosus. Cell Mol Immunol. 2019;16:937–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wu H, Zhen Y, Ma Z, Li H, Yu J, Xu ZG, et al. Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci Transl Med. 2016;8:331ra40.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pang B, Zhen Y, Hu C, Ma Z, Lin S, Yi H. Myeloid-derived suppressor cells shift Th17/Treg ratio and promote systemic lupus erythematosus progression through arginase-1/miR-322-5p/TGF-β pathway. Clin Sci. 2020;134:2209–22.

    Article  CAS  Google Scholar 

  24. Hu C, Zhen Y, Ma Z, Zhao L, Wu H, Shu C, et al. Polyamines from myeloid-derived suppressor cells promote Th17 polarization and disease progression. Mol Ther. 2023;31:569–84.

    Article  PubMed  CAS  Google Scholar 

  25. Li D, Lu L, Kong W, Xia X, Pan Y, Li J, et al. C-type lectin receptor Dectin3 deficiency balances the accumulation and function of FoxO1-mediated LOX-1+ M-MDSCs in relieving lupus-like symptoms. Cell Death Dis. 2021;12:829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Li X, Fei F, Yao G, Yang X, Geng L, Wang D, et al. Notch1 signalling controls the differentiation and function of myeloid-derived suppressor cells in systemic lupus erythematosus. Immunology. 2023;168:170–83.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang X, Chen Y, Sun G, Fei Y, Zhu H, Liu Y, et al. Farnesyl pyrophosphate potentiates dendritic cell migration in autoimmunity through mitochondrial remodelling. Nat Metab. 2024;6:2118–37.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Y, Liu S, Yu Y, Zhang T, Liu J, Shen Q, et al. Immune complex enhances tolerogenecity of immature dendritic cells via FcγRIIb and promotes FcγRIIb-overexpressing dendritic cells to attenuate lupus. Eur J Immunol. 2011;41:1154–64.

    Article  PubMed  Google Scholar 

  29. Zhang H, You QD, Xu XL. Targeting stimulator of interferon genes (STING): a medicinal chemistry perspective. J Med Chem. 2020;63:3785–816.

    Article  PubMed  CAS  Google Scholar 

  30. Dutertre CA, Becht E, Irac SE, Khalilnezhad A, Narang V, Khalilnezhad S, et al. Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. Immunity. 2019;51:573–89.e8.

    Article  PubMed  CAS  Google Scholar 

  31. Song X, Zhang H, Zhao Y, Lin Y, Tang Q, Zhou X, et al. HMGB1 activates myeloid dendritic cells by up-regulating mTOR pathway in systemic lupus erythematosus. Front Med. 2021;8:636188.

    Article  Google Scholar 

  32. Furie R, Werth VP, Merola JF, Stevenson L, Reynolds TL, Naik H, et al. Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus. J Clin Invest. 2019;129:1359–71.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li J, Ding H, Meng Y, Li G, Fu Q, Guo Q, et al. Taurine metabolism aggravates the progression of lupus by promoting the function of plasmacytoid dendritic cells. Arthritis Rheumatol. 2020;72:2106–17.

    Article  PubMed  CAS  Google Scholar 

  34. Grzes KM, Sanin DE, Kabat AM, Stanczak MA, Edwards-Hicks J, Matsushita M, et al. Plasmacytoid dendritic cell activation is dependent on coordinated expression of distinct amino acid transporters. Immunity. 2021;54:2514–30.e7.

    Article  PubMed  CAS  Google Scholar 

  35. Abbas A, Vu Manh TP, Valente M, Collinet N, Attaf N, Dong C, et al. The activation trajectory of plasmacytoid dendritic cells in vivo during a viral infection. Nat Immunol. 2020;21:983–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Abdolahi M, Yavari P, Honarvar NM, Bitarafan S, Mahmoudi M, Saboor-Yaraghi AA. Molecular mechanisms of the action of vitamin A in Th17/Treg axis in multiple sclerosis. J Mol Neurosci. 2015;57:605–13.

    Article  PubMed  CAS  Google Scholar 

  37. Funes SC, Manrique de Lara A, Altamirano-Lagos MJ, Mackern-Oberti JP, Escobar-Vera J, Kalergis AM. Immune checkpoints and the regulation of tolerogenicity in dendritic cells: Implications for autoimmunity and immunotherapy. Autoimmun Rev. 2019;18:359–68.

    Article  PubMed  CAS  Google Scholar 

  38. Suwandi JS, Nikolic T, Roep BO. Translating mechanism of regulatory action of tolerogenic dendritic cells to monitoring endpoints in clinical trials. Front Immunol. 2017;8:1598.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yuan X, Qin X, Wang D, Zhang Z, Tang X, Gao X, et al. Mesenchymal stem cell therapy induces FLT3L and CD1c+ dendritic cells in systemic lupus erythematosus patients. Nat Commun. 2019;10:2498.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Funes SC, Ríos M, Gómez-Santander F, Fernández-Fierro A, Altamirano-Lagos MJ, Rivera-Perez D, et al. Tolerogenic dendritic cell transfer ameliorates systemic lupus erythematosus in mice. Immunology. 2019;158:322–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. De la Cruz-Mosso U, García-Iglesias T, Bucala R, Estrada-García I, González-López L, Cerpa-Cruz S, et al. MIF promotes a differential Th1/Th2/Th17 inflammatory response in human primary cell cultures: Predominance of Th17 cytokine profile in PBMC from healthy subjects and increase of IL-6 and TNF-α in PBMC from active SLE patients. Cell Immunol. 2018;324:42–9.

    Article  PubMed  Google Scholar 

  42. Tsanaktsi A, Solomou EE, Liossis SC. Th1/17 cells, a subset of Th17 cells, are expanded in patients with active systemic lupus erythematosus. Clin Immunol. 2018;195:101–6.

    Article  PubMed  CAS  Google Scholar 

  43. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039.

  44. Ohl K, Tenbrock K. Regulatory T cells in systemic lupus erythematosus. Eur J Immunol. 2015;45:344–55.

    Article  PubMed  CAS  Google Scholar 

  45. Li M, Yu D, Wang Y, Luo N, Han G, Yang B. Interferon-α activates interleukin-1 receptor-associated kinase 1 to induce regulatory T-cell apoptosis in patients with systemic lupus erythematosus. J Dermatol. 2021;48:1172–85.

    Article  PubMed  CAS  Google Scholar 

  46. Scherlinger M, Guillotin V, Douchet I, Vacher P, Boizard-Moracchini A, Guegan JP, et al. Selectins impair regulatory T cell function and contribute to systemic lupus erythematosus pathogenesis. Sci Transl Med. 2021;13:eabi4994.

  47. Du B, Fan X, Lei F, Zhang S, Li G, Xi X. Comparative transcriptome analysis reveals a potential role for CaMK4 in γδT17 cells from systemic lupus erythematosus patients with lupus nephritis. Int Immunopharmacol. 2020;80:106139.

    Article  PubMed  CAS  Google Scholar 

  48. Scherlinger M, Pan W, Hisada R, Boulougoura A, Yoshida N, Vukelic M, et al. Phosphofructokinase P fine-tunes T regulatory cell metabolism, function, and stability in systemic autoimmunity. Sci Adv. 2022;8:eadc9657.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Koga T, Sato T, Furukawa K, Morimoto S, Endo Y, Umeda M, et al. Promotion of calcium/calmodulin-dependent protein kinase 4 by GLUT1-dependent glycolysis in systemic lupus erythematosus. Arthritis Rheumatol. 2019;71:766–72.

    Article  PubMed  CAS  Google Scholar 

  50. Pan W, Tsokos MG, Scherlinger M, Li W, Tsokos GC. The PP2A regulatory subunit PPP2R2A controls NAD+ biosynthesis to regulate T cell subset differentiation in systemic autoimmunity. Cell Rep. 2024;43:114379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gensous N, Schmitt N, Richez C, Ueno H, Blanco P. T follicular helper cells, interleukin-21 and systemic lupus erythematosus. Rheumatology. 2017;56:516–23.

    PubMed  CAS  Google Scholar 

  52. Liu L, Hu L, Yang L, Jia S, Du P, Min X, et al. UHRF1 downregulation promotes T follicular helper cell differentiation by increasing BCL6 expression in SLE. Clin Epigenetics. 2021;13:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Li X, Sun W, Huang M, Gong L, Zhang X, Zhong L, et al. Deficiency of CBL and CBLB ubiquitin ligases leads to hyper T follicular helper cell responses and lupus by reducing BCL6 degradation. Immunity. 2024;57:1603–17.e7.

    Article  PubMed  CAS  Google Scholar 

  54. Wei X, Niu X. T follicular helper cells in autoimmune diseases. J Autoimmun. 2023;134:102976.

    Article  PubMed  CAS  Google Scholar 

  55. Fu G, Guy CS, Chapman NM, Palacios G, Wei J, Zhou P, et al. Metabolic control of T(FH) cells and humoral immunity by phosphatidylethanolamine. Nature. 2021;595:724–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sharabi A, Tsokos GC. T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nat Rev Rheumatol. 2020;16:100–12.

    Article  PubMed  CAS  Google Scholar 

  57. Fischer K, Voelkl S, Heymann J, Przybylski GK, Mondal K, Laumer M, et al. Isolation and characterization of human antigen-specific TCR alpha beta+ CD4-CD8- double-negative regulatory T cells. Blood. 2005;105:2828–35.

    Article  PubMed  CAS  Google Scholar 

  58. Paul S, Shilpi, Lal G. Role of gamma-delta (γδ) T cells in autoimmunity. J Leukoc Biol. 2015;97:259–71.

    Article  PubMed  Google Scholar 

  59. Lee YJ, Park JA, Kwon H, Choi YS, Jung KC, Park SH, et al. Role of stem cell-like memory T cells in systemic lupus erythematosus. Arthritis Rheumatol. 2018;70:1459–69.

    Article  PubMed  CAS  Google Scholar 

  60. Masutani K, Akahoshi M, Tsuruya K, Tokumoto M, Ninomiya T, Kohsaka T, et al. Predominance of Th1 immune response in diffuse proliferative lupus nephritis. Arthritis Rheum. 2001;44:2097–106.

    Article  PubMed  CAS  Google Scholar 

  61. Chen W, Li W, Zhang Z, Tang X, Wu S, Yao G, et al. Lipocalin-2 exacerbates lupus nephritis by promoting Th1 cell differentiation. J Am Soc Nephrol. 2020;31:2263–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhang Y, Du L, Wang C, Jiang Z, Duan Q, Li Y, et al. Neddylation is a novel therapeutic target for lupus by regulating double negative T cell homeostasis. Signal Transduct Target Ther. 2024;9:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sanz I, Lee FE. B cells as therapeutic targets in SLE. Nat Rev Rheumatol. 2010;6:326–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Bhamidipati K, Silberstein JL, Chaichian Y, Baker MC, Lanz TV, Zia A, et al. CD52 is elevated on B cells of SLE patients and regulates B cell function. Front Immunol. 2020;11:626820.

    Article  PubMed  CAS  Google Scholar 

  65. Manolakou T, Nikolopoulos D, Gkikas D, Filia A, Samiotaki M, Stamatakis G, et al. ATR-mediated DNA damage responses underlie aberrant B cell activity in systemic lupus erythematosus. Sci Adv. 2022;8:eabo5840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Álvarez Gómez JA, Salazar-Camarena DC, Román-Fernández IV, Ortiz-Lazareno PC, Cruz A, Muñoz-Valle JF, et al. BAFF system expression in double negative 2, activated naïve and activated memory B cells in systemic lupus erythematosus. Front Immunol. 2023;14:1235937.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yu B, Qi Y, Li R, Shi Q, Satpathy AT, Chang HY. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell. 2021;184:1790–803.e17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Pyfrom S, Paneru B, Knox JJ, Cancro MP, Posso S, Buckner JH, et al. The dynamic epigenetic regulation of the inactive X chromosome in healthy human B cells is dysregulated in lupus patients. Proc Natl Acad Sci USA. 2021;118:e2024624118.

  69. Bradford HF, McDonnell TCR, Stewart A, Skelton A, Ng J, Baig Z, et al. Thioredoxin is a metabolic rheostat controlling regulatory B cells. Nat Immunol. 2024;25:873–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018;9:1869.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Radziszewska A, Peckham H, de Gruijter NM, Restuadi R, Wu WH, Jury EC, et al. Active juvenile systemic lupus erythematosus is associated with distinct NK cell transcriptional and phenotypic alterations. Sci Rep. 2024;14:13074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Li F, Yang Y, Zhu X, Huang L, Xu J. Macrophage polarization modulates development of systemic lupus erythematosus. Cell Physiol Biochem. 2015;37:1279–88.

    Article  PubMed  CAS  Google Scholar 

  73. Ahamada MM, Jia Y, Wu X. Macrophage polarization and plasticity in systemic lupus erythematosus. Front Immunol. 2021;12:734008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yang S, Du P, Cui H, Zheng M, He W, Gao X, et al. Regulatory factor X1 induces macrophage M1 polarization by promoting DNA demethylation in autoimmune inflammation. JCI Insight 2023;8:e165546.

  75. Chan J, Walters GD, Puri P, Jiang SH. Safety and efficacy of biological agents in the treatment of Systemic Lupus Erythematosus (SLE). BMC Rheumatol. 2023;7:37.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rosenbaum JT, Costenbader KH, Desmarais J, Ginzler EM, Fett N, Goodman SM, et al. American College of Rheumatology, American Academy of Dermatology, Rheumatologic Dermatology Society, and American Academy of Ophthalmology 2020 Joint Statement on hydroxychloroquine use with respect to retinal toxicity. Arthritis Rheumatol. 2021;73:908–11.

    Article  PubMed  Google Scholar 

  77. Ugarte-Gil MF, Mak A, Leong J, Dharmadhikari B, Kow NY, Reátegui-Sokolova C, et al. Impact of glucocorticoids on the incidence of lupus-related major organ damage: a systematic literature review and meta-regression analysis of longitudinal observational studies. Lupus Sci Med. 2021;8:e000590.

  78. Lazar S, Kahlenberg JM. Systemic lupus erythematosus: new diagnostic and therapeutic approaches. Annu Rev Med. 2023;74:339–52.

    Article  PubMed  CAS  Google Scholar 

  79. Kato H, Kahlenberg JM. Emerging biologic therapies for systemic lupus erythematosus. Curr Opin Rheumatol. 2024;36:169–75.

    Article  PubMed  CAS  Google Scholar 

  80. Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, et al. Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med. 2020;382:211–21.

    Article  PubMed  CAS  Google Scholar 

  81. Furie RA, Aroca G, Cascino MD, Garg JP, Rovin BH, Alvarez A, et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2022;81:100–7.

    Article  PubMed  CAS  Google Scholar 

  82. Matos LC, Machado JP, Monteiro FJ, Greten HJ. Understanding traditional Chinese medicine therapeutics: an overview of the basics and clinical applications. Healthcare. 2021;9:257.

  83. Zhu BY, Liu ZC, Zhao ZX, Huang HP, Zhang N, Xia J, et al. Pharmacological mechanism of Chinese medicine in systemic lupus erythematosus: a narrative review. Chin J Integr Med. 2025;31:157–69.

    Article  PubMed  Google Scholar 

  84. Li D, Qi J, Wang J, Pan Y, Li J, Xia X, et al. Protective effect of dihydroartemisinin in inhibiting senescence of myeloid-derived suppressor cells from lupus mice via Nrf2/HO-1 pathway. Free Radic Biol Med. 2019;143:260–74.

    Article  PubMed  CAS  Google Scholar 

  85. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73:3221–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Beury DW, Carter KA, Nelson C, Sinha P, Hanson E, Nyandjo M, et al. Myeloid-derived suppressor cell survival and function are regulated by the transcription factor Nrf2. J Immunol. 2016;196:3470–8.

    Article  PubMed  CAS  Google Scholar 

  87. Lin Z, Liu Y, Chen L, Cao S, Huang Y, Yang X, et al. Artemisinin analogue SM934 protects against lupus-associated antiphospholipid syndrome via activation of Nrf2 and its targets. Sci China Life Sci. 2021;64:1702–19.

    Article  PubMed  CAS  Google Scholar 

  88. Yang J, Yang X, Yang J, Li M. Baicalin ameliorates lupus autoimmunity by inhibiting differentiation of Tfh cells and inducing expansion of Tfr cells. Cell Death Dis. 2019;10:140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Li D, Shi G, Wang J, Zhang D, Pan Y, Dou H, et al. Baicalein ameliorates pristane-induced lupus nephritis via activating Nrf2/HO-1 in myeloid-derived suppressor cells. Arthritis Res Ther. 2019;21:105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Liao J, Liu Y, Wu H, Zhao M, Tan Y, Li D, et al. The role of icaritin in regulating Foxp3/IL17a balance in systemic lupus erythematosus and its effects on the treatment of MRL/lpr mice. Clin Immunol. 2016;162:74–83.

    Article  PubMed  CAS  Google Scholar 

  91. Zhou X, Chen H, Wei F, Zhao Q, Su Q, Lei Y, et al. The Inhibitory effects of pentacyclic triterpenes from Loquat leaf against Th17 differentiation. Immunol Invest. 2020;49:632–47.

    Article  PubMed  CAS  Google Scholar 

  92. Zhou X, Chen H, Wei F, Zhao Q, Su Q, Liang J, et al. 3β-Acetyloxy-oleanolic acid attenuates pristane-induced lupus nephritis by regulating Th17 differentiation. J Immunol Res. 2019;2019:2431617.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lin TJ, Wu CY, Tsai PY, Hsu WH, Hua KF, Chu CL, et al. Accelerated and severe lupus nephritis benefits from M1, an active metabolite of ginsenoside, by regulating NLRP3 inflammasome and T cell functions in mice. Front Immunol. 2019;10:1951.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Yi T, Zhang W, Hua Y, Xin X, Wu Z, Li Y, et al. Rutin alleviates lupus nephritis by inhibiting T cell oxidative stress through PPARγ. Chem Biol Interact. 2024;394:110972.

    Article  PubMed  CAS  Google Scholar 

  95. Zhang X, Zou M, Liang Y, Yang Y, Jing L, Sun M, et al. Arctigenin inhibits abnormal germinal center reactions and attenuates murine lupus by inhibiting IFN-I pathway. Eur J Pharmacol. 2022;919:174808.

    Article  PubMed  CAS  Google Scholar 

  96. Yu X, Zhang N, Lin W, Wang C, Gu W, Ling C, et al. Regulatory effects of four ginsenoside monomers in humoral immunity of systemic lupus erythematosus. Exp Ther Med. 2018;15:2097–103.

    PubMed  CAS  Google Scholar 

  97. Wu Y, He S, Bai B, Zhang L, Xue L, Lin Z, et al. Therapeutic effects of the artemisinin analog SM934 on lupus-prone MRL/lpr mice via inhibition of TLR-triggered B-cell activation and plasma cell formation. Cell Mol Immunol. 2016;13:379–90.

    Article  PubMed  CAS  Google Scholar 

  98. Li Q, Tan S, Xu K, Fu X, Yu J, Yang H, et al. Curcumin attenuates lupus nephritis in MRL/lpr mice by suppressing macrophage-secreted B cell activating factor (BAFF). Int J Clin Exp Pathol. 2019;12:2075–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Parikh SV, Almaani S, Brodsky S, Rovin BH. Update on lupus nephritis: core curriculum 2020. Am J Kidney Dis. 2020;76:265–81.

    Article  PubMed  Google Scholar 

  100. Bomback AS, Appel GB. Updates on the treatment of lupus nephritis. J Am Soc Nephrol. 2010;21:2028–35.

    Article  PubMed  CAS  Google Scholar 

  101. Anders HJ, Saxena R, Zhao MH, Parodis I, Salmon JE, Mohan C. Lupus nephritis. Nat Rev Dis Prim. 2020;6:7.

    Article  PubMed  Google Scholar 

  102. Seo Y, Mun CH, Park SH, Jeon D, Kim SJ, Yoon T, et al. Punicalagin ameliorates lupus nephritis via inhibition of PAR2. Int J Mol Sci. 2020;21:4975.

  103. Zhang Y, Li Z, Wu H, Wang J, Zhang S. Esculetin alleviates murine lupus nephritis by inhibiting complement activation and enhancing Nrf2 signaling pathway. J Ethnopharmacol. 2022;288:115004.

    Article  PubMed  CAS  Google Scholar 

  104. Feng X, Chen W, Xiao L, Gu F, Huang J, Tsao BP, et al. Artesunate inhibits type I interferon-induced production of macrophage migration inhibitory factor in patients with systemic lupus erythematosus. Lupus. 2017;26:62–72.

    Article  PubMed  CAS  Google Scholar 

  105. Dang WZ, Li H, Jiang B, Nandakumar KS, Liu KF, Liu LX, et al. Therapeutic effects of artesunate on lupus-prone MRL/lpr mice are dependent on T follicular helper cell differentiation and activation of JAK2-STAT3 signaling pathway. Phytomedicine. 2019;62:152965.

    Article  PubMed  CAS  Google Scholar 

  106. Su B, Ye H, You X, Ni H, Chen X, Li L. Icariin alleviates murine lupus nephritis via inhibiting NF-κB activation pathway and NLRP3 inflammasome. Life Sci. 2018;208:26–32.

    Article  PubMed  CAS  Google Scholar 

  107. Hu Q, Yang C, Wang Q, Zeng H, Qin W. Demethylzeylasteral (T-96) treatment ameliorates mice lupus nephritis accompanied by inhibiting activation of NF-κB pathway. PLoS One. 2015;10:e0133724.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wang YJ, Li YX, Li S, He W, Wang ZR, Zhan TP, et al. Progress in traditional Chinese medicine and natural extracts for the treatment of lupus nephritis. Biomed Pharmacother. 2022;149:112799.

    Article  PubMed  CAS  Google Scholar 

  109. 2020 Chinese guidelines for the diagnosis and treatment of systemic lupus erythematosus. Zhonghua Nei Ke Za Zhi 2020;59:172–85.

  110. Tang N, Zhou HX, Zhou DR. Meta-analysis of the efficacy of Tripterygium wilfordii preparations in the treatment of systemic lupus erythematosus in China. J Nanjing Xiaozhuang Univ. 2012;3:68–71.

  111. Li D, Pan B, Ma N, Wang X, Deng X, Lai H, et al. Efficacy and safety of Shenqi Dihuang decoction for lupus nephritis: A systematic review and meta-analysis. J Ethnopharmacol. 2024;323:117602.

    Article  PubMed  CAS  Google Scholar 

  112. Dai L, Chan KK, Mao JC, Tian Y, Gu JH, Zhou J, et al. Modified Zhibai Dihuang pill, a traditional Chinese medicine formula, on steroid withdrawal in systemic lupus erythematosus: A systematic review and meta-analysis. J Integr Med. 2020;18:478–91.

    Article  PubMed  Google Scholar 

  113. Hevia A, Milani C, López P, Cuervo A, Arboleya S, Duranti S, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. mBio. 2014;5:e01548–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Zhu Z, Wang M, Huang L, He Z. Jieduquyuziyin prescription attenuates the side effect of prednisone through regulating gut microbiota when in the combination with prednisone treat MRL/lpr mice. J Tradit Complementary Med. 2025;15:119–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (No. 82204487) and Natural Science Foundation of Shanghai (No. 22ZR1414700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-yan Shen, Yi-ming Wang or Yan You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Yn., Chen, L., Huang, Qy. et al. Immune cells in systemic lupus erythematosus: biology and traditional Chinese medicine therapy. Acta Pharmacol Sin 46, 2587–2596 (2025). https://doi.org/10.1038/s41401-025-01554-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01554-2

Keywords

Search

Quick links