Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GPR40 activation alleviates pulmonary fibrosis by repressing M2 macrophage polarization through the PKD1/CD36/TGF-β1 pathway

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by complex aetiologies involving the accumulation of inflammatory cells, such as macrophages, in the alveoli. This process is driven by uncontrolled extracellular matrix (ECM) deposition and the development of fibrous connective tissues. Here, we observed that the mRNA expression of Ffar1, the gene encoding G protein-coupled receptor 40 (GPR40), is repressed, while Cd36 is increased in the bronchoalveolar lavage fluid (BALF), which is predominantly composed of alveolar macrophages, of IPF patients. Furthermore, the GPR40 protein was found to be largely adhered to macrophages and was pathologically downregulated in the lungs of bleomycin (BLM)-induced PF model mice (PF mice) compared with those of control mice. Specific knockdown of GPR40 in pulmonary macrophages by adeno-associated virus 9-F4/80-shGPR40 (AAV9-shGPR40) exacerbated the fibrotic phenotype in the PF mice, and activation of GPR40 by its determined agonist compound SC (1,3-dihydroxy-8-methoxy-9H-xanthen-9-one) effectively protected the PF mice from pathological exacerbation. Moreover, Ffar1 or Cd36 gene knockout mouse-based assays were performed to explore the mechanism underlying the regulation of GPR40 activation in pulmonary macrophages with compound SC as a probe. We found that compound SC mitigated pulmonary fibrosis progression by preventing M2 macrophage polarization from exerting profibrotic effects through the GPR40/PKD1/CD36 axis. Our results strongly support the therapeutic potential of targeting intrinsic GPR40 activation in pulmonary macrophages for IPF and highlight the potential of compound SC in treating this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GPR40 is selectively enriched in pulmonary macrophages and downregulated in PF model mice and IPF patients.
Fig. 2: Macrophage-specific GPR40 deficiency exacerbates pulmonary fibrosis in mice.
Fig. 3: Compound SC alleviates PF-like pathology in mice.
Fig. 4: GPR40 activation by compound SC suppresses M2 macrophage polarization and TGF-β1 secretion in PF model mice.
Fig. 5: Activation of GPR40 decreases M2 macrophage polarization by inhibiting TGF-β1 secretion.
Fig. 6: Activation of GPR40 represses TGF-β1 secretion and M2 macrophage polarization via CD36.
Fig. 7: Activation of GPR40 reduces CD36 expression through PKD1.

Similar content being viewed by others

References

  1. Gao S, Li X, Jiang Q, Liang Q, Zhang F, Li S, et al. PKM2 promotes pulmonary fibrosis by stabilizing TGF-β1 receptor I and enhancing TGF-β1 signaling. Sci Adv. 2022;8:eabo0987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kao JH, Huang HT, Li KJ. Nintedanib in progressive fibrosing interstitial lung diseases. N Engl J Med. 2020;382:780–1.

    PubMed  Google Scholar 

  3. Nasser M, Larrieu S, Si-Mohamed S, Ahmad K, Boussel L, Brevet M, et al. Progressive fibrosing interstitial lung disease: a clinical cohort (the PROGRESS study). Eur Respir J. 2021;57:2002718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Green ID, Pinello N, Song R, Lee Q, Halstead James M, Kwok CT, et al. Macrophage development and activation involve coordinated intron retention in key inflammatory regulators. Nucleic Acids Res. 2020;48:6513–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yue P, Zhou W, Huang G, Lei F, Chen Y, Ma Z, et al. Nanocrystals based pulmonary inhalation delivery system: advance and challenge. Drug Deliv. 2022;29:637–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44:450–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kishore A, Petrek M. Roles of macrophage polarization and macrophage-derived miRNAs in pulmonary fibrosis. Front Immunol. 2021;12:678457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Buechler MB, Fu W, Turley SJ. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity. 2021;54:903–15.

    Article  PubMed  CAS  Google Scholar 

  9. Tu B, Li J, Sun Z, Zhang T, Liu H, Yuan F, et al. Macrophage-derived TGF-β and VEGF promote the progression of trauma-induced heterotopic ossification. Inflammation. 2023;46:202–16.

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Zhang L, Wu GR, Zhou Q, Yue HH, Rao LZ, et al. MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program. Sci Adv. 2021;7:eabb6075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free fatty acid receptors in health and disease. Physiol Rev. 2020;100:171–210.

    Article  PubMed  CAS  Google Scholar 

  12. Burant CF. Activation of GPR40 as a therapeutic target for the tr eatment of type 2 diabetes. Diab Care. 2013;36 Suppl 2:S175–9.

  13. Xu JW, Xu X, Ling Y, Wang YC, Huang YJ, Yang JZ, et al. Vincamine as an agonist of G-protein-coupled receptor 40 effectively ameliorates diabetic peripheral neuropathy in mice. Acta Pharmacol Sin. 2023;44:2388–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Liu C, Cheng ZY, Xia QP, Hu YH, Wang C, He L. GPR40 receptor agonist TAK-875 improves cognitive deficits and reduces β-amyloid production in APPswe/PS1dE9 mice. Psychopharmacology (Berl). 2021;238:2133–46.

    Article  PubMed  CAS  Google Scholar 

  15. Gagnon L, Leduc M, Thibodeau JF, Zhang MZ, Grouix B, Sarra-Bournet F, et al. A newly discovered antifibrotic pathway regulated by two fatty acid receptors: GPR40 and GPR84. Am J Pathol. 2018;188:1132–48.

    Article  PubMed  CAS  Google Scholar 

  16. Li MH, Chen W, Wang LL, Sun JL, Zhou L, Shi YC, et al. RLA8-A new and highly effective quadruple PPAR-α/γ/δ and GPR40 agonist to reverse nonalcoholic steatohepatitis and fibrosis. J Pharmacol Exp Ther. 2019;369:67–77.

    Article  PubMed  CAS  Google Scholar 

  17. Grouix B, Sarra-Bournet F, Leduc M, Simard JC, Hince K, Geerts L, et al. PBI-4050 reduces stellate cell activation and liver fibrosis through modulation of intracellular ATP levels and the liver kinase B1/AMP-activated protein kinase/mammalian target of rapamycin pathway. J Pharmacol Exp Ther. 2018;367:71–81.

    Article  PubMed  CAS  Google Scholar 

  18. Khalil N, Manganas H, Ryerson CJ, Shapera S, Cantin AM, Hernandez P, et al. Phase 2 clinical trial of PBI-4050 in patients with idiopathic pulmonary fibrosis. Eur Respir J. 2019;53:1800663.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhao T, Zhou Z, Zhao S, Wan H, Li H, Hou J, et al. Vincamine as an agonist of G protein-coupled receptor 40 effectively ameliorates pulmonary fibrosis in mice. Phytomedicine. 2023;118:154919.

    Article  PubMed  CAS  Google Scholar 

  20. Chang J-K, Ni Y, Han L, Sinnett-Smith J, Jacamo R, Rey O, et al. Protein kinase D1 (PKD1) phosphorylation on Ser203 by type I p21-activated kinase (PAK) regulates PKD1 localization. J Biol Chem. 2017;292:9523–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Asaithambi A, Ay M, Jin H, Gosh A, Anantharam V, Kanthasamy A, et al. Protein kinase D1 (PKD1) phosphorylation promotes dopaminergic neuronal survival during 6-OHDA-induced oxidative stress. PLoS One. 2014;9:e96947.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ferdaoussi M, Bergeron V, Zarrouki B, Kolic J, Cantley J, Fielitz J, et al. G protein-coupled receptor (GPR) 40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia. 2012;55:2682–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tan M, Xu X, Ohba M, Ogawa W, Cui MZ. Thrombin rapidly induces protein kinase D phosphorylation, and protein kinase C delta mediates the activation. J Biol Chem. 2003;278:2824–8.

    Article  PubMed  CAS  Google Scholar 

  24. Ren B, Hale J, Srikanthan S, Silverstein RL. Lysophosphatidic acid suppresses endothelial cell CD36 expression and promotes angiogenesis via a PKD-1-dependent signaling pathway. Blood. 2011;117:6036–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yang X, Okamura DM, Lu X, Chen Y, Moorhead J, Varghese Z, et al. CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat Rev Nephrol. 2017;13:769–81.

    Article  PubMed  CAS  Google Scholar 

  26. Hou Y, Wu M, Wei J, Ren Y, Du C, Wu H, et al. CD36 is involved in high glucose-induced epithelial to mesenchymal transition in renal tubular epithelial cells. Biochem Biophys Res Commun. 2015;468:281–6.

    Article  PubMed  CAS  Google Scholar 

  27. Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal. 2009;2: re3.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chu LY, Ramakrishnan DP, Silverstein RL. Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells. Blood. 2013;122:1822–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chen Y, Wang X, Weng D, Tao S, Lv L, Chen J. A TSP-1 functional fragment inhibits activation of latent transforming growth factor-beta1 derived from rat alveolar macrophage after bleomycin treatment. Exp Toxicol Pathol. 2009;61:67–73.

    Article  PubMed  CAS  Google Scholar 

  30. Wang X, Chen Y, Lv L, Chen J. Silencing CD36 gene expression results in the inhibition of latent-TGF-beta1 activation and suppression of silica-induced lung fibrosis in the rat. Respir Res. 2009;10:36.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Suzuki O, Katsumata Y, Oya M, Chari VM, Vermes B, Wagner H, et al. Inhibition of type A and type B monoamine oxidases by naturally occurring xanthones. Planta Med. 1981;42:17–21.

    Article  PubMed  CAS  Google Scholar 

  32. Huang Q, Wang Y, Wu H, Yuan M, Zheng C, Xu H. Xanthone glucosides: isolation, bioactivity and synthesis. Molecules. 2021;26:5575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hogea SP, Tudorache E, Pescaru C, Marc M, Oancea C. Bronchoalveolar lavage: role in the evaluation of pulmonary interstitial disease. Expert Rev Respir Med. 2020;14:1117–30.

    Article  PubMed  CAS  Google Scholar 

  34. Van Dyken SJ, Locksley RM. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol. 2013;31:317–43.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li Q, Cheng Y, Zhang Z, Bi Z, Ma X, Wei Y, et al. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin Transl Med. 2022;12:e1036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mecozzi L, Mambrini M, Ruscitti F, Ferrini E, Ciccimarra R, Ravanetti F, et al. In-vivo lung fibrosis staging in a bleomycin-mouse model: a new micro-CT guided densitometric approach. Sci Rep. 2020;10:18735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Park J, Jung J, Yoon SH, Hong H, Kim H, Kim H, et al. CT quantification of the heterogeneity of fibrosis boundaries in idiopathic pulmonary fibrosis. Eur Radio. 2021;31:5148–59.

    Article  CAS  Google Scholar 

  38. Thiesse J, Namati E, Sieren JC, Smith AR, Reinhardt JM, Hoffman EA, et al. Lung structure phenotype variation in inbred mouse strains revealed through in vivo micro-CT imaging. J Appl Physiol (1985). 2010;109:1960–8.

    Article  PubMed  Google Scholar 

  39. Tian Y, Lv J, Su Z, Wu T, Li X, Hu X, et al. LRRK2 plays essential roles in maintaining lung homeostasis and preventing the development of pulmonary fibrosis. Proc Natl Acad Sci USA. 2021;118:e2106685118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hou T, Cao Z, Zhang J, Tang M, Tian Y, Li Y, et al. SIRT6 coordinates with CHD4 to promote chromatin relaxation and DNA repair. Nucleic Acids Res. 2020;48:2982–3000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, et al. Idiopathic pulmonary fibrosis (an Update) and progressive pulmonary fibrosis in adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2022;205:e18–e47.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Meyer KC, Raghu G, Baughman RP, Brown KK, Costabel U, du, Bois RM, et al. An official american thoracic society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med. 2012;185:1004–14.

    Article  PubMed  Google Scholar 

  43. Cecchini MJ, Hosein K, Howlett CJ, Joseph M, Mura M. Comprehensive gene expression profiling identifies distinct and overlapping transcriptional profiles in non-specific interstitial pneumonia and idiopathic pulmonary fibrosis. Respir Res. 2018;19:153.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Du T, Yang L, Xu X, Shi X, Xu X, Lu J, et al. Vincamine as a GPR40 agonist improves glucose homeostasis in type 2 diabetic mice. J Endocrinol. 2019;240:195–214.

    Article  PubMed  CAS  Google Scholar 

  45. Suski M, Kiepura A, Wiśniewska A, Kuś K, Skałkowska A, Stachyra K, et al. Anti-atherosclerotic action of GW9508 - free fatty acid receptors activator - in apoE-knockout mice. Pharmacol Rep. 2019;71:551–5.

    Article  PubMed  CAS  Google Scholar 

  46. Deng MY, Ahmad KA, Han QQ, Wang ZY, Shoaib RM, Li XY, et al. Thalidomide alleviates neuropathic pain through microglial IL-10/β-endorphin signaling pathway. Biochem Pharmacol. 2021;192:114727.

    Article  PubMed  CAS  Google Scholar 

  47. Umehara T, Winstanley YE, Andreas E, Morimoto A, Williams EJ, Smith KM, et al. Female reproductive life span is extended by targeted removal of fibrotic collagen from the mouse ovary. Sci Adv. 2022;8:eabn4564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kim DW, Jo YY, Garagiola U, Choi JY, Kang YJ, Oh JH, et al. Increased level of vascular endothelial growth factors by 4-hexylresorcinol is mediated by transforming growth factor-β1 and accelerates capillary regeneration in the burns in diabetic animals. Int J Mol Sci. 2020;21:3473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Guan R, Yuan L, Li J, Wang J, Li Z, Cai Z, et al. Bone morphogenetic protein 4 inhibits pulmonary fibrosis by modulating cellular senescence and mitophagy in lung fibroblasts. Eur Respir J. 2022;60:2102307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Khalil N. Post translational activation of latent transforming growth factor beta (L-TGF-beta): clinical implications. Histol Histopathol. 2001;16:541–51.

    PubMed  CAS  Google Scholar 

  51. Ye Z, Hu Y. TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int J Mol Med. 2021;48:132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal. 2009;2:re3.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ren B, Best B, Ramakrishnan DP, Walcott BP, Storz P, Silverstein RL. LPA/PKD-1-FoxO1 signaling axis mediates endothelial cell CD36 transcriptional repression and proangiogenic and proarteriogenic reprogramming. Arterioscler Thromb Vasc Biol. 2016;36:1197–208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Cho JH, Gelinas R, Wang K, Etheridge A, Piper MG, Batte K, et al. Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes. BMC Med Genomics. 2011;4:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Prasse A, Binder H, Schupp JC, Kayser G, Bargagli E, Jaeger B, et al. BAL cell gene expression is indicative of outcome and airway basal cell involvement in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199:622–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Shi Y, Gochuico BR, Yu G, Tang X, Osorio JC, Fernandez IE, et al. Syndecan-2 exerts antifibrotic effects by promoting caveolin-1-mediated transforming growth factor-β receptor I internalization and inhibiting transforming growth factor-β1 signaling. Am J Respir Crit Care Med. 2013;188:831–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Venardos K, De Jong KA, Elkamie M, Connor T, McGee SL. The PKD inhibitor CID755673 enhances cardiac function in diabetic db/db mice. PLoS One. 2015;10:e0120934.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Thorn R, Hemmingsson O, Danielsson Borssen A, Werner M, Karling P, Wixner J. Improved survival in at-risk patients undergoing surveillance for hepatocellular carcinoma - a nationwide swedish register-based study. J Hepatocell Carcinoma. 2023;10:1573–86.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rumende CM, Susanto EC, Sitorus TP. The Management of pulmonary fibrosis in COVID-19. Acta Med Indones. 2021;53:233–41.

    PubMed  Google Scholar 

  60. Cherrez-Ojeda I, Cortes-Telles A, Gochicoa-Rangel L, Camacho-Leon G, Mautong H, Robles-Velasco K, et al. Challenges in the management of post-COVID-19 pulmonary fibrosis for the latin American population. J Pers Med. 2022;12:1393.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv. 2020;6:eaba1983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wang L, Sun L, Gu Z, Li W, Guo L, Ma S, et al. N-carboxymethyl chitosan/sodium alginate composite hydrogel loading plasmid DNA as a promising gene activated matrix for in-situ burn wound treatment. Bioact Mater. 2022;15:330–42.

    PubMed  CAS  Google Scholar 

  63. Wang H, Yu H, Huang T, Wang B, Xiang L. Hippo-YAP/TAZ signaling in osteogenesis and macrophage polarization: Therapeutic implications in bone defect repair. Genes Dis. 2023;10:2528–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zhao Y, Yu Y, Wang S, Li J, Teng L. Small extracellular vesicles encapsulating lefty1 mRNA inhibit hepatic fibrosis. Asian J Pharm Sci. 2022;17:630–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Hinz B. Mechanical aspects of lung fibrosis: a spotlight on the myofibroblast. Proc Am Thorac Soc. 2012;9:137–47.

    Article  PubMed  CAS  Google Scholar 

  66. Krishna SM, Golledge J. The role of thrombospondin-1 in cardiovascular health and pathology. Int J Cardiol. 2013;168:692–706.

    Article  PubMed  Google Scholar 

  67. Ferdaoussi M, Bergeron V, Zarrouki B, Kolic J, Cantley J, Fielitz J, et al. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia. 2012;55:2682–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 2018;13:612–32.

    PubMed  Google Scholar 

  69. Chen HY, Plummer CW, Xiao D, Chobanian HR, DeMong D, Miller M, et al. Structure-activity relationship of novel and selective biaryl-chroman GPR40 AgoPAMs. ACS Med Chem Lett. 2018;9:685–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Nishizaki H, Matsuoka O, Kagawa T, Kobayashi A, Watanabe M, Moritoh Y. SCO-267, a GPR40 full agonist, stimulates islet and gut hormone secretion and improves glycemic control in humans. Diabetes. 2021;70:2364–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Mach M, Bazydło-Guzenda K, Buda P, Matłoka M, Dzida R, Stelmach F, et al. Discovery and development of CPL207280 as new GPR40/FFA1 agonist. Eur J Med Chem. 2021;226:113810.

    Article  PubMed  CAS  Google Scholar 

  72. Chda A, Bencheikh R. Flavonoids as G protein-coupled receptors ligands: new potential therapeutic natural drugs. Curr Drug Targets. 2023;24:1346–63.

    Article  PubMed  CAS  Google Scholar 

  73. Zhu W, Liu C, Tan C, Zhang J. Predictive biomarkers of disease progression in idiopathic pulmonary fibrosis. Heliyon. 2024;10:e23543.

    Article  PubMed  CAS  Google Scholar 

  74. Sharlow ER, Giridhar KV, LaValle CR, Chen J, Leimgruber S, Barrett R, et al. Potent and selective disruption of protein kinase D functionality by a benzoxoloazepinolone. J Biol Chem. 2008;283:33516–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82204486, 82304468), the Natural Science Foundation for Young Scientists of Nanjing University of Chinese Medicine (XPT82204486, XPT82304468), and the Major Program of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (24KJA310006).

Author information

Authors and Affiliations

Authors

Contributions

HQW: Investigation, Formal analysis, Validation, Methodology, Writing-original draft. LFX: Investigation, Methodology, Validation. HLL: Methodology, Validation. YM: Methodology, Validation. QHL: Investigation, Methodology. MQD: Investigation, Methodology. YDF: Resources, Formal analysis. WJL: Funding acquisition. JPZ: Conceptualization, Formal analysis. MYQ: Conceptualization, Data curation, Writing-review & editing, Funding acquisition. XS: Conceptualization, Writing-review & editing, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Jin-pei Zhou, Min-yi Qian or Xu Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Hq., Xie, Lf., Li, Hl. et al. GPR40 activation alleviates pulmonary fibrosis by repressing M2 macrophage polarization through the PKD1/CD36/TGF-β1 pathway. Acta Pharmacol Sin 46, 2707–2722 (2025). https://doi.org/10.1038/s41401-025-01558-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01558-y

Keywords

Search

Quick links