Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of microglia in neurodegenerative diseases: from the perspective of ferroptosis

Abstract

Iron plays a pivotal role in numerous fundamental biological processes in the brain. Among the various cell types in the central nervous system, microglia are recognized as the most proficient cells in accumulating and storing iron. Nonetheless, iron overload can induce inflammatory phenotype of microglia, leading to the production of proinflammatory cytokines and contributing to neurodegeneration. A growing body of evidence shows that disturbances in iron homeostasis in microglia is associated with a range of neurodegenerative disorders. Recent research has revealed that microglia are highly sensitive to ferroptosis, a form of iron-dependent cell death. How iron overload influences microglial function? Whether disbiosis in iron metabolism and ferroptosis in microglia are involved in neurodegenerative disorders and the underlying mechanisms remain to be elucidated. In this review we focus on the recent advances in research on microglial iron metabolism as well as ferroptosis in microglia. Meanwhile, we provide a comprehensive overview of the involvement of microglial ferroptosis in neurodegenerative disorders from the perspective of crosstalk between microglia and neuron, with a focus on Alzheimer’s disease and Parkinson’s disease.

Highlights

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Reported factors affecting microglial ferroptosis.
Fig. 3: The crosstalk between microglia and neuron.
Fig. 4: The crosstalk between microglia and neuron.
Fig. 5: Microglial ferroptosis in PD.
Fig. 6: Microglial ferroptosis in AD.

Similar content being viewed by others

References

  1. Nnah I, Wessling-Resnick M. Brain iron homeostasis: a focus on microglial iron. Pharmaceuticals. 2018;11:129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roemhild K, von Maltzahn F, Weiskirchen R, Knüchel R, von Stillfried S, Lammers T. Iron metabolism: pathophysiology and pharmacology. Trends Pharmacol Sci. 2021;42:640–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crielaard BJ, Lammers T, Rivella S. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov 2017;16:400–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zeidan RS, Han SM, Leeuwenburgh C, Xiao R. Iron homeostasis and organismal aging. Ageing Res Rev. 2021;72:101510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. 2019;133:221–33.

    Article  CAS  PubMed  Google Scholar 

  6. Angelova DM, Brown DR. Microglia and the aging brain: are senescent microglia the key to neurodegeneration? J Neurochem. 2019;151:676–88.

    Article  CAS  PubMed  Google Scholar 

  7. Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5:863–73.

    Article  CAS  PubMed  Google Scholar 

  8. Rouault TA. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci. 2013;14:551–64.

    Article  CAS  PubMed  Google Scholar 

  9. Yan H, Zou T, Tuo Q, Xu S, Li H, Belaidi AA, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther. 2021;6:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dixon Scott J, Lemberg Kathryn M, Lamprecht Michael R, Skouta R, Zaitsev Eleina M, Gleason Caroline E, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang JB, Jia X, Cao Q, Chen YT, Tong J, Lu GD, et al. Ferroptosis-regulated cell death as a therapeutic strategy for neurodegenerative diseases: current status and future prospects. ACS Chem Neurosci. 2023;14:2995–3012.

    Article  CAS  PubMed  Google Scholar 

  12. Lin KJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, et al. Iron brain menace: the involvement of ferroptosis in Parkinson disease. Cells. 2022;11:3829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang M, Tang G, Zhou C, Guo H, Hu Z, Hu Q, et al. Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer’s disease from the perspective of ferroptosis. Chem Biol Interact. 2023;375:110387.

    Article  CAS  PubMed  Google Scholar 

  14. Ryan SK, Zelic M, Han Y, Teeple E, Chen L, Sadeghi M, et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat Neurosci. 2022;26:12–26.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Keles E, Kazan HH, Aral LA, Belen HB. Microglial iron trafficking: new player in brain injury. Turk J Med Sci. 2022;52:1415–24.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Long HZ, Zhou ZW, Cheng Y, Luo HY, Li FJ, Xu SG, et al. The role of microglia in Alzheimer’s Disease from the perspective of immune inflammation and iron metabolism. Front Aging Neurosci. 2022;14:888989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bartels T, De Schepper S, Hong S. Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science. 2020;370:66–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hemonnot AL, Hua J, Ulmann L, Hirbec H. Microglia in Alzheimer Disease: well-known targets and new opportunities. Front Aging Neurosci. 2019;11:233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fernández-Mendívil C, Luengo E, Trigo-Alonso P, García-Magro N, Negredo P, López MG. Protective role of microglial HO-1 blockade in aging: implication of iron metabolism. Redox Biol. 2021;38:101789.

    Article  PubMed  Google Scholar 

  20. Zhang W, Yan ZF, Gao JH, Sun L, Huang XY, Liu Z, et al. Role and mechanism of microglial activation in iron-induced selective and progressive dopaminergic neurodegeneration. Mol Neurobiol. 2013;49:1153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lopes KO, Sparks DL, Streit WJ. Microglial dystrophy in the aged and Alzheimer’s disease brain is associated with ferritin immunoreactivity. Glia. 2008;56:1048–60.

    Article  PubMed  Google Scholar 

  22. Kenkhuis B, Somarakis A, de Haan L, Dzyubachyk O, Ijsselsteijn ME, de Miranda NFCC, et al. Iron loading is a prominent feature of activated microglia in Alzheimer’s disease patients. Acta Neuropathol Commun. 2021;9:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Urrutia PJ, Bórquez DA, Núñez MT. Inflaming the brain with iron. Antioxidants. 2021;10:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ward RJ, Dexter DT, Martin-Bastida A, Crichton RR. Is chelation therapy a potential treatment for Parkinson’s Disease? Int J Mol Sci. 2021;22:3338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Adeniyi PA, Gong X, MacGregor E, Degener‐O’Brien K, McClendon E, Garcia M, et al. Ferroptosis of microglia in aging human white matter injury. Ann Neurol. 2023;94:1048–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun J, Wang Y, Du Y, Zhang W, Liu Z, Bai J, et al. Involvement of the JNK/HO‑1/FTH1 signaling pathway in nanoplastic‑induced inflammation and ferroptosis of BV2 microglia cells. Int J Mol Med. 2023;52:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiao L, Li X, Luo Y, Wei J, Ding X, Xiong H, et al. Iron metabolism mediates microglia susceptibility in ferroptosis. Front Cell Neurosci. 2022;16:995084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McCarthy RC, Sosa JC, Gardeck AM, Baez AS, Lee C-H, Wessling-Resnick M. Inflammation-induced iron transport and metabolism by brain microglia. J Biol Chem. 2018;293:7853–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Y, Lu Y, Jin L. Iron metabolism and ferroptosis in physiological and pathological pregnancy. Int J Mol Sci. 2022;23:9395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Song N, Wang J, Jiang H, Xie J. Astroglial and microglial contributions to iron metabolism disturbance in Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis. 2018;1864:967–73.

    Article  CAS  PubMed  Google Scholar 

  31. Bishop GM, Dang TN, Dringen R, Robinson SR. Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia. Neurotox Res. 2010;19:443–51.

    Article  PubMed  Google Scholar 

  32. Rathnasamy G, Ling EA, Kaur C. Iron and iron regulatory proteins in amoeboid microglial cells are linked to oligodendrocyte death in hypoxic neonatal rat periventricular white matter through production of proinflammatory cytokines and reactive oxygen/nitrogen species. J Neurosci. 2011;31:17982–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rathnasamy G, Ling EA, Kaur C. Hypoxia inducible factor-1α mediates iron uptake which induces inflammatory response in amoeboid microglial cells in developing periventricular white matter through MAP kinase pathway. Neuropharmacology. 2014;77:428–40.

    Article  CAS  PubMed  Google Scholar 

  34. Xu YX, Du F, Jiang LR, Gong J, Zhou YF, Luo QQ, et al. Effects of aspirin on expression of iron transport and storage proteins in BV-2 microglial cells. Neurochem Int. 2015;91:72–7.

    Article  CAS  PubMed  Google Scholar 

  35. Zarruk JG, Berard JL, Passos dos Santos R, Kroner A, Lee J, Arosio P, et al. Expression of iron homeostasis proteins in the spinal cord in experimental autoimmune encephalomyelitis and their implications for iron accumulation. Neurobiol Dis. 2015;81:93–107.

    Article  CAS  PubMed  Google Scholar 

  36. Rathore KI, Redensek A, David S. Iron homeostasis in astrocytes and microglia is differentially regulated by TNF-α and TGF-β1. Glia. 2012;60:738–50.

    Article  PubMed  Google Scholar 

  37. Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, et al. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem. 2013;126:541–9.

    Article  CAS  PubMed  Google Scholar 

  38. Cozzi A, Santambrogio P, Ripamonti M, Rovida E, Levi S. Pathogenic mechanism and modeling of neuroferritinopathy. Cell Mol Life Sci. 2021;78:3355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shahidehpour RK, Higdon RE, Crawford NG, Neltner JH, Ighodaro ET, Patel E, et al. Dystrophic microglia are associated with neurodegenerative disease and not healthy aging in the human brain. Neurobiol Aging. 2021;99:19–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yanatori I, Richardson DR, Imada K, Kishi F. Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2. J Biol Chem. 2016;291:17303–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen S, Feng T, Vujić Spasić M, Altamura S, Breitkopf-Heinlein K, Altenöder J, et al. Transforming growth factor β1 (TGF-β1) activates hepcidin mRNA expression in hepatocytes. J Biol Chem. 2016;291:13160–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Silvestri L, Pettinato M, Furiosi V, Bavuso Volpe L, Nai A, Pagani A. Managing the dual nature of iron to preserve health. Int J Mol Sci. 2023;24:3995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nemeth E, Ganz T. Hepcidin-ferroportin interaction controls systemic iron homeostasis. Int J Mol Sci. 2021;22:6493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Billesbølle CB, Azumaya CM, Kretsch RC, Powers AS, Gonen S, Schneider S, et al. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature. 2020;586:807–11.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Qian ZM, He X, Liang T, Wu KC, Yan YC, Lu LN, et al. Lipopolysaccharides upregulate hepcidin in neuron via microglia and the IL-6/STAT3 signaling pathway. Mol Neurobiol. 2014;50:811–20.

    Article  CAS  PubMed  Google Scholar 

  46. Varga E, Pap R, Jánosa G, Sipos K, Pandur E. IL-6 regulates hepcidin expression via the BMP/SMAD pathway by altering BMP6, TMPRSS6 and TfR2 expressions at normal and inflammatory conditions in BV2 microglia. Neurochem Res. 2021;46:1224–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Healy S, McMahon JM, FitzGerald U. Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations. Prog Neurobiol. 2017;158:1–14.

    Article  CAS  PubMed  Google Scholar 

  48. Ward RJ, Dexter DT, Crichton RR. Iron, neuroinflammation and neurodegeneration. Int J Mol Sci. 2022;23:7267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Connor JR, Benkovic SA. Iron regulation in the brain: histochemical, biochemical, and molecular considerations. Ann Neurol. 1992;32:S51–61.

    Article  CAS  PubMed  Google Scholar 

  50. Xu M, Li Y, Meng D, Zhang D, Wang B, Xie J, et al. 6-hydroxydopamine induces abnormal iron sequestration in BV2 microglia by activating iron regulatory protein 1 and inhibiting hepcidin release. Biomolecules. 2022;12:266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gao S, Zhou L, Lu J, Fang Y, Wu H, Xu W, et al. Cepharanthine attenuates early brain injury after subarachnoid hemorrhage in mice via inhibiting 15-lipoxygenase-1-mediated microglia and endothelial cell ferroptosis. Oxid Med Cell Longev. 2022;2022:4295208.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang J, Zhu Q, Wang Y, Peng J, Shao L, Li X. Irisin protects against sepsis-associated encephalopathy by suppressing ferroptosis via activation of the Nrf2/GPX4 signal axis. Free Radic Biol Med. 2022;187:171–84.

    Article  CAS  PubMed  Google Scholar 

  53. Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, et al. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447:865–9.

    Article  CAS  Google Scholar 

  54. Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22:381–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu K, Huang L, Qi S, Liu S, Xie W, Du L, et al. Ferroptosis: the entanglement between traditional drugs and nanodrugs in tumor therapy. Adv Healthc Mater. 2023;12:e2203085.

    Article  PubMed  Google Scholar 

  56. Luo J, Song G, Chen N, Xie M, Niu X, Zhou S, et al. Ferroptosis contributes to ethanol-induced hepatic cell death via labile iron accumulation and GPx4 inactivation. Cell Death Discov. 2023;9:311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11:88.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Reichert CO, de Freitas FA, Sampaio-Silva J, Rokita-Rosa L, Barros PDL, Levy D, et al. Ferroptosis mechanisms involved in neurodegenerative diseases. Int J Mol Sci. 2020;21:8765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Costa I, Barbosa DJ, Benfeito S, Silva V, Chavarria D, Borges F, et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther. 2023;244:108373.

    Article  CAS  PubMed  Google Scholar 

  60. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen X, Yu C, Kang R, Tang D. Iron metabolism in ferroptosis. Front Cell Dev Biol. 2020;8:590226.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang X, Kong X, Feng X, Jiang DS. Effects of DNA, RNA, and protein methylation on the regulation of ferroptosis. Int J Biol Sci. 2023;19:3558–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu Z, Kang R, Yang N, Pan X, Yang J, Yu H, et al. Tetrahydrobiopterin inhibitor-based antioxidant metabolic strategy for enhanced cancer ferroptosis-immunotherapy. J Colloid Interface Sci. 2024;658:100–13.

    Article  CAS  PubMed  Google Scholar 

  64. Wang Y, Wu S, Li Q, Sun H, Wang H. Pharmacological inhibition of ferroptosis as a therapeutic target for neurodegenerative diseases and strokes. Adv Sci (Weinh). 2023;10:e2300325.

    Article  PubMed  Google Scholar 

  65. Sayre LM, Lin D, Yuan Q, Zhu X, Tang X. Protein adducts generated from products of lipid oxidation: focus on HNE and ONE. Drug Metab Rev. 2008;38:651–75.

    Article  Google Scholar 

  66. David S, Jhelum P, Ryan F, Jeong SY, Kroner A. Dysregulation of iron homeostasis in the central nervous system and the role of ferroptosis in neurodegenerative disorders. Antioxid Redox Signal. 2022;37:150–70.

    Article  CAS  PubMed  Google Scholar 

  67. Bozzatello P, Blua C, Rocca P, Bellino S. Mental health in childhood and adolescence: the role of polyunsaturated fatty acids. Biomedicines. 2021;9:850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leyrolle Q, Decoeur F, Dejean C, Brière G, Leon S, Bakoyiannis I, et al. N‐3 PUFA deficiency disrupts oligodendrocyte maturation and myelin integrity during brain development. Glia. 2021;70:50–70.

    Article  PubMed  Google Scholar 

  69. Mezzaroba L, Alfieri DF, Colado Simão AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. NeuroToxicology 2019;74:230–41.

    Article  CAS  PubMed  Google Scholar 

  70. Sharma SK, Bansal MP, Sandhir R. Altered dietary selenium influences brain iron content and behavioural outcomes. Behav Brain Res. 2019;372:112011.

    Article  CAS  PubMed  Google Scholar 

  71. Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, et al. Microglia states and nomenclature: a field at its crossroads. Neuron. 2022;110:3458–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paolicelli RC, Ferretti MT. Function and dysfunction of microglia during brain development: consequences for synapses and neural circuits. Front Synaptic Neuro. 2017;9:9.

    Article  Google Scholar 

  73. Sala Frigerio C, Wolfs L, Fattorelli N, Thrupp N, Voytyuk I, Schmidt I, et al. The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep. 2019;27:1293–306.e6.

    Article  CAS  PubMed  Google Scholar 

  74. Yvanka de Soysa T, Therrien M, Walker AC, Stevens B. Redefining microglia states: lessons and limits of human and mouse models to study microglia states in neurodegenerative diseases. Semin Immunol. 2022;60:101651.

    Article  CAS  PubMed  Google Scholar 

  75. Wang Y, Liu Z, Li L, Zhang Z, Zhang K, Chu M, et al. Anti-ferroptosis exosomes engineered for targeting M2 microglia to improve neurological function in ischemic stroke. J Nanobiotechnol. 2024;22:291.

    Article  CAS  Google Scholar 

  76. Xuan Y, Peng K, Zhu R, Kang Y, Yin Z. Hmox1 is identified as a ferroptosis hub gene and associated with the M1 type microglia/macrophage polarization inspinal cord injury: Bioinformatics and experimental validation. Mol Neurobiol. 2023;60:7151–65.

    Article  CAS  PubMed  Google Scholar 

  77. Cheng H, Wang N, Ma X, Wang P, Dong W, Chen Z, et al. Spatial-temporal changes of iron deposition and iron metabolism after traumatic brain injury in mice. Front Mol Neurosci. 2022;15:949573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Feng Z, Min L, Chen H, Deng W, Tan M, Liu H, et al. Iron overload in the motor cortex induces neuronal ferroptosis following spinal cord injury. Redox Biol. 2021;43:101984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang R, Liang Z, Xue X, Mei H, Ji L, Wang B, et al. Microglial FoxO3a deficiency ameliorates ferroptosis-induced brain injury of intracerebral haemorrhage via regulating autophagy and heme oxygenase-1. J Cell Mol Med. 2024;28:e18007.

    Article  CAS  PubMed  Google Scholar 

  80. Tse JKY. Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders. ACS Chem Neurosci. 2017;8:1438–47.

    Article  CAS  PubMed  Google Scholar 

  81. Ghasemi M, Fatemi A. Pathologic role of glial nitric oxide in adult and pediatric neuroinflammatory diseases. Neurosci Biobehav Rev. 2014;45:168–82.

    Article  CAS  PubMed  Google Scholar 

  82. Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, Kim R, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16:278–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li Y, Xiao D, Wang X. The emerging roles of ferroptosis in cells of the central nervous system. Front Neurosci. 2022;16:1032140.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Qu W, Cheng Y, Peng W, Wu Y, Rui T, Luo C, et al. Targeting iNOS alleviates early brain injury after experimental subarachnoid hemorrhage via promoting ferroptosis of M1 microglia and reducing neuroinflammation. Mol Neurobiol. 2022;59:3124–39.

    Article  CAS  PubMed  Google Scholar 

  85. Liu X, Jin X, Wang X, Yan X, Wang C, Wang K, et al. Knockdown of A20 attenuates microglial susceptibility to OGD/R-induced ferroptosis and upregulates inflammatory responses. Immunopharmacol Immunotoxicol. 2023;45:539–48.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Y, Li Y, Liu F. AEBP1 silencing protects against cerebral ischemia/reperfusion injury by regulating neuron ferroptosis and microglia M2 polarization through PRKCA-PI3K-Akt axis. Drug Dev Res. 2024;85:e70032.

    Article  CAS  PubMed  Google Scholar 

  87. Gao C, Xiao F, Zhang L, Sun Y, Wang L, Liu X, et al. SENP1 inhibition suppresses the growth of lung cancer cells through activation of A20-mediated ferroptosis. Ann Transl Med. 2022;10:224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li Q, Wen S, Ye W, Zhao S, Liu X. The potential roles of m6A modification in regulating the inflammatory response in microglia. J Neuroinflamm. 2021;18:149.

    Article  CAS  Google Scholar 

  89. Chen T, Zhu W, Wang C, Dong X, Yu F, Su Y, et al. ALKBH5-mediated m(6)A modification of A20 regulates microglia polarization in diabetic retinopathy. Front Immunol. 2022;13:813979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang J, Guo S, Piao HY, Wang Y, Wu Y, Meng XY, et al. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. J Physiol Biochem. 2019;75:379–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mao L, You J, Xie M, Hu Y, Zhou Q. Arginine methylation of β-catenin induced by PRMT2 aggravates LPS-induced cognitive dysfunction and depression-like behaviors by promoting ferroptosis. Mol Neurobiol. 2024;61:7796–813.

    Article  CAS  PubMed  Google Scholar 

  92. Wang Y, Xi W, Zhang X, Bi X, Liu B, Zheng X, et al. CTSB promotes sepsis-induced acute kidney injury through activating mitochondrial apoptosis pathway. Front Immunol. 2022;13:1053754.

    Article  CAS  PubMed  Google Scholar 

  93. Armenta DA, Laqtom NN, Alchemy G, Dong W, Morrow D, Poltorack CD, et al. Ferroptosis inhibition by lysosome-dependent catabolism of extracellular protein. Cell Chem Biol. 2022;29:1588–600.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lu J, Li H, Yu Z, Cao C, Xu Z, Peng L, et al. Cathepsin B as a key regulator of ferroptosis in microglia following intracerebral hemorrhage. Neurobiol Dis. 2024;194:106468.

    Article  CAS  PubMed  Google Scholar 

  95. Wang XW, Yang SG, Hu MW, Wang RY, Zhang C, Kosanam AR, et al. Histone methyltransferase Ezh2 coordinates mammalian axon regeneration via regulation of key regenerative pathways. J Clin Invest. 2024;134:e163145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li J, Hart RP, Mallimo EM, Swerdel MR, Kusnecov AW, Herrup K. EZH2-mediated H3K27 trimethylation mediates neurodegeneration in ataxia-telangiectasia. Nat Neurosci. 2013;16:1745–53.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yu YL, Chou RH, Shyu WC, Hsieh SC, Wu CS, Chiang SY, et al. Smurf2-mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke. EMBO Mol Med. 2013;5:531–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu GZ, Xu XW, Tao SH, Gao MJ, Hou ZH. HBx facilitates ferroptosis in acute liver failure via EZH2 mediated SLC7A11 suppression. J Biomed Sci. 2021;28:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sun D, Yu Z, Fang X, Liu M, Pu Y, Shao Q, et al. LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep. 2017;18:1801–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fan J, Han Y, Sun H, Sun S, Wang Y, Guo R, et al. Mesenchymal stem cell-derived exosomal microRNA-367–3p alleviates experimental autoimmune encephalomyelitis via inhibition of microglial ferroptosis by targeting EZH2. Biomed Pharmacother. 2023;162:114593.

    Article  CAS  PubMed  Google Scholar 

  101. Minagawa S, Yoshida M, Araya J, Hara H, Imai H, Kuwano K. Regulated necrosis in pulmonary disease. A focus on necroptosis and ferroptosis. Am J Respir Cell Mol Biol. 2020;62:554–62.

    Article  CAS  PubMed  Google Scholar 

  102. Kim EH, Wong SW, Martinez J. Programmed necrosis and disease: we interrupt your regular programming to bring you necroinflammation. Cell Death Differ. 2019;26:25–40.

    Article  PubMed  Google Scholar 

  103. Tang D, Kroemer G, Kang R. Ferroptosis in immunostimulation and immunosuppression. Immunol Rev. 2024;321:199–210.

    Article  CAS  PubMed  Google Scholar 

  104. Li J, Li L, Zhang Z, Chen P, Shu H, Yang C, et al. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy. Front Immunol. 2023;14:1294317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ebrahimi N, Adelian S, Shakerian S, Afshinpour M, Chaleshtori SR, Rostami N, et al. Crosstalk between ferroptosis and the epithelial-mesenchymal transition: implications for inflammation and cancer therapy. Cytokine Growth Factor Rev. 2022;64:33–45.

    Article  CAS  PubMed  Google Scholar 

  106. Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020;127:110108.

    Article  CAS  PubMed  Google Scholar 

  107. Liu S, Gao X, Zhou S. New target for prevention and treatment of neuroinflammation: microglia iron accumulation and ferroptosis. ASN Neuro. 2022;14:17590914221133236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shi CL, Han XL, Chen JC, Pan QF, Gao YC, Guo PY, et al. Single-nucleus transcriptome unveils the role of ferroptosis in ischemic stroke. Heliyon. 2024;10:e32727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhou S, Du X, Xie J, Wang J. Interleukin-6 regulates iron-related proteins through c-Jun N-terminal kinase activation in BV2 microglial cell lines. PLoS One. 2017;12:e0180464.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Xie G, Liang Y, Gao W, Wu L, Zhang Y, Ye Z, et al. Artesunate alleviates intracerebral haemorrhage secondary injury by inducing ferroptosis in M1‐polarized microglia and suppressing inflammation through AMPK/mTORC1/GPX4 pathway. Basic Clin Pharmacol Toxicol. 2023;132:369–83.

    Article  CAS  PubMed  Google Scholar 

  111. Lin S, Cheng H, Yang G, Wang C, Leung C-K, Zhang S, et al. NRF2 antagonizes HIV-1 tat and methamphetamine-induced BV2 cell ferroptosis by regulating SLC7A11. Neurotox Res. 2023;41:398–407.

    Article  CAS  PubMed  Google Scholar 

  112. Wei H, Chen C, Di F, Sun C, Wang X, Sun M, et al. PM2.5-induced ferroptosis by Nrf2/Hmox1 signaling pathway led to inflammation in microglia. Environ Pollut. 2024;352:124130.

    Article  CAS  PubMed  Google Scholar 

  113. Hou S, Li C, Wang Y, Sun J, Guo Y, Ning X, et al. Silica nanoparticles cause activation of NLRP3 inflammasome in-vitro model-using microglia. Int J Nanomed. 2022;17:5247–64.

    Article  CAS  Google Scholar 

  114. Zhu L, Yu X, Ren Y, Jin W, Guo Y, Zong J, et al. Polysaccharide from Asparagus officinalis activated macrophages through NLRP3 inflammasome based on RNA-seq analysis. Biomed Pharmacother. 2024;181:117729.

    Article  CAS  PubMed  Google Scholar 

  115. Wu T, Wang X, Cheng J, Liang X, Li Y, Chen M, et al. Nitrogen-doped graphene quantum dots induce ferroptosis through disrupting calcium homeostasis in microglia. Part Fibre Toxicol. 2022;19:22.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517–29.

    Article  CAS  PubMed  Google Scholar 

  117. Wu T, Liang X, Liu X, Li Y, Wang Y, Kong L, et al. Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Part Fibre Toxicol. 2020;17:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Du G, Wang J, Zhang T, Ding Q, Jia X, Zhao X, et al. Targeting Src family kinase member Fyn by saracatinib attenuated liver fibrosis in vitro and in vivo. Cell Death Dis. 2020;11:118.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Cai Z, Wang S, Cao S, Chen Y, Penati S, Peng V, et al. Loss of ATG7 in microglia impairs UPR, triggers ferroptosis, and weakens amyloid pathology control. J Exp Med. 2025;222:e20230173.

    Article  CAS  PubMed  Google Scholar 

  120. Ghavami S, Eshragi M, Ande SR, Chazin WJ, Klonisch T, Halayko AJ, et al. S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res. 2009;20:314–31.

    Article  PubMed  Google Scholar 

  121. Gong H, Su WJ, Cao ZY, Lian YJ, Peng W, Liu YZ, et al. Hippocampal Mrp8/14 signaling plays a critical role in the manifestation of depressive-like behaviors in mice. J Neuroinflammation. 2018;15:252.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tao Q, Qiu X, Li C, Zhou J, Gu L, Zhang L, et al. S100A8 regulates autophagy-dependent ferroptosis in microglia after experimental subarachnoid hemorrhage. Exp Neurol. 2022;357:114171.

    Article  CAS  PubMed  Google Scholar 

  123. Wang L, Li X, Chen L, Mei S, Shen Q, Liu L, et al. Mitochondrial uncoupling protein-2 ameliorates ischemic stroke by inhibiting ferroptosis-induced brain injury and neuroinflammation. Mol Neurobiol. 2025;62:501–17.

    Article  CAS  PubMed  Google Scholar 

  124. Kong P, Yang M, Wang Y, Yu KN, Wu L, Han W. Ferroptosis triggered by STAT1- IRF1-ACSL4 pathway was involved in radiation-induced intestinal injury. Redox Biol. 2023;66:102857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sha R, Xu Y, Yuan C, Sheng X, Wu Z, Peng J, et al. Predictive and prognostic impact of ferroptosis-related genes ACSL4 and GPX4 on breast cancer treated with neoadjuvant chemotherapy. eBioMedicine. 2021;71:103560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 2021;93:312–21.

    Article  CAS  PubMed  Google Scholar 

  127. Kannan M, Sil S, Oladapo A, Thangaraj A, Periyasamy P, Buch S. HIV-1 Tat-mediated microglial ferroptosis involves the miR-204–ACSL4 signaling axis. Redox Biol. 2023;62:102689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang G, Li X, Li N, Wang X, He S, Li W, et al. Icariin alleviates uveitis by targeting peroxiredoxin 3 to modulate retinal microglia M1/M2 phenotypic polarization. Redox Biol. 2022;52:102297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kenkhuis B, Bush AI, Ayton S. How iron can drive neurodegeneration. Trends Neurosci. 2023;46:333–5.

    Article  CAS  PubMed  Google Scholar 

  130. Olah M, Patrick E, Villani AC, Xu J, White CC, Ryan KJ, et al. A transcriptomic atlas of aged human microglia. Nat Commun. 2018;9:539.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci. 2013;16:273–80.

    Article  CAS  PubMed  Google Scholar 

  132. Cserép C, Pósfai B, Dénes Á. Shaping neuronal fate: functional heterogeneity of direct microglia-neuron interactions. Neuron. 2021;109:222–40.

    Article  PubMed  Google Scholar 

  133. Jung YJ, Chung WS. Phagocytic roles of glial cells in healthy and diseased brains. Biomol Ther (Seoul). 2018;26:350–7.

    Article  CAS  PubMed  Google Scholar 

  134. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci USA. 1998;95:10896–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sakai J. How synaptic pruning shapes neural wiring during development and, possibly, in disease. Proc Natl Acad Sci USA. 2020;117:16096–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kobeissy F, Shaito A, Haidar MA, Ibeh S, Shakkour Z, Reslan MA, et al. Crosstalk between microglia and neurons in neurotrauma: an overview of the underlying mechanisms. Curr Neuropharmacol. 2022;20:2050–65.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Pandur E, Tamási K, Pap R, Varga E, Miseta A, Sipos K. Fractalkine induces hepcidin expression of BV-2 microglia and causes iron accumulation in SH-SY5Y cells. Cell Mol Neurobiol. 2019;39:985–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hernangómez M, Mestre L, Correa FG, Loría F, Mecha M, Iñigo PM, et al. CD200‐CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia. 2012;60:1437–50.

    Article  PubMed  Google Scholar 

  139. Schafer Dorothy P, Lehrman Emily K, Kautzman Amanda G, Koyama R, Mardinly Alan R, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012;74:691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131:1164–78.

    Article  CAS  PubMed  Google Scholar 

  141. Li Y, Du XF, Liu CS, Wen ZL, Du JL. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Developmental Cell. 2012;23:1189–202.

    Article  CAS  PubMed  Google Scholar 

  142. Wang Q, Liu J, Zhang Y, Li Z, Zhao Z, Jiang W, et al. Microglial CR3 promotes neuron ferroptosis via NOX2-mediated iron deposition in rotenone-induced experimental models of Parkinson’s disease. Redox Biol. 2024;77:103369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Koyama R, Kinoshita S. Pro- and anti-epileptic roles of microglia. Neural Regen Res. 2021;16:1369–71.

    Article  PubMed  Google Scholar 

  144. Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41:1308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sfera A, Thomas KG, Andronescu CV, Jafri N, Sfera DO, Sasannia S, et al. Bromodomains in human-immunodeficiency virus-associated neurocognitive disorders: a model of ferroptosis-induced neurodegeneration. Front Neurosci. 2022;16:904816.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Parkhurst Christopher N, Yang G, Ninan I, Savas Jeffrey N, Yates John R, Lafaille Juan J, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Schafer DP, Jha S, Liu F, Akella T, McCullough LD, Rasband MN. Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. J Neurosci. 2009;29:13242–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol. 2011;2:94.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Vincenti JE, Murphy L, Grabert K, McColl BW, Cancellotti E, Freeman TC, et al. Defining the microglia response during the time course of chronic neurodegeneration. J Virol. 2016;90:3003–17.

    Article  CAS  PubMed Central  Google Scholar 

  150. Kumar A, Barrett JP, Alvarez-Croda DM, Stoica BA, Faden AI, Loane DJ. NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury. Brain Behav Immun. 2016;58:291–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chen T, Shi R, Suo Q, Wu S, Liu C, Huang S, et al. Progranulin released from microglial lysosomes reduces neuronal ferroptosis after cerebral ischemia in mice. J Cereb Blood Flow Metab. 2022;43:505–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mondello S, Thelin EP, Shaw G, Salzet M, Visalli C, Cizkova D, et al. Extracellular vesicles: pathogenetic, diagnostic and therapeutic value in traumatic brain injury. Expert Rev Proteomic. 2018;15:451–61.

    Article  CAS  Google Scholar 

  153. Frühbeis C, Fröhlich D, Kuo WP, Krämer-Albers E-M. Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci. 2013;7:182.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Pandur E, Varga E, Tamási K, Pap R, Nagy J, Sipos K. Effect of inflammatory mediators lipopolysaccharide and lipoteichoic acid on iron metabolism of differentiated SH-SY5Y cells alters in the presence of BV-2 microglia. Int J Mol Sci. 2018;20:17.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Gao S, Jia S, Bai L, Li D, Meng C. Transcriptome analysis unveils that exosomes derived from M1-polarized microglia induce ferroptosis of neuronal cells. Cells. 2022;11:3956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gong L, Yu Q, Wang H, Xu C, Dou Y, Mao B, et al. Neurofilament light chain (NF-L) stimulates lipid peroxidation to neuronal membrane through microglia-derived ferritin heavy chain (FTH) secretion. Oxid Med Cell Longev. 2022;2022:1–8.

    Article  Google Scholar 

  157. Matejuk A, Ransohoff RM. Crosstalk between astrocytes and microglia: an overview. Front Immunol. 2020;11:1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hu Y, Tao W. Current perspectives on microglia-neuron communication in the central nervous system: direct and indirect modes of interaction. J Adv Res. 2024;66:251–65.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun. 2019;10:5816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation. 2019;16:53.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Benakis C, Martin-Gallausiaux C, Trezzi JP, Melton P, Liesz A, Wilmes P. The microbiome-gut-brain axis in acute and chronic brain diseases. Curr Opin Neurobiol. 2020;61:1–9.

    Article  CAS  PubMed  Google Scholar 

  162. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20:145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. You L, Yu PP, Dong T, Guo W, Chang S, Zheng B, et al. Astrocyte-derived hepcidin controls iron traffic at the blood-brain-barrier via regulating ferroportin 1 of microvascular endothelial cells. Cell Death Dis. 2022;13:667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang X, Gou YJ, Zhang Y, Li J, Han K, Xu Y, et al. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice. Cell Death Discov. 2020;6:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mezzanotte M, Ammirata G, Boido M, Stanga S, Roetto A. Activation of the Hepcidin-Ferroportin1 pathway in the brain and astrocytic-neuronal crosstalk to counteract iron dyshomeostasis during aging. Sci Rep. 2022;12:11724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. You LH, Yan CZ, Zheng BJ, Ci YZ, Chang SY, Yu P, et al. Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis. Cell Death Dis. 2017;8:e2676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liddell JR, Hilton JBW, Kysenius K, Billings JL, Nikseresht S, McInnes LE, et al. Microglial ferroptotic stress causes non-cell autonomous neuronal death. Mol Neurodegener. 2024;19:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem. 2016;139:179–97.

    Article  CAS  PubMed  Google Scholar 

  170. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13:1045–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sun Y, Xia X, Basnet D, Zheng JC, Huang J, Liu J. Mechanisms of ferroptosis and emerging links to the pathology of neurodegenerative diseases. Front Aging Neurosci. 2022;14:904152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ji Y, Zheng K, Li S, Ren C, Shen Y, Tian L, et al. Insight into the potential role of ferroptosis in neurodegenerative diseases. Front Cell Neurosci. 2022;16:1005182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chen B, Wen X, Jiang H, Wang J, Song N, Xie J. Interactions between iron and alpha-synuclein pathology in Parkinson’s disease. Free Radic Biol Med. 2019;141:253–60.

    Article  CAS  PubMed  Google Scholar 

  174. Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9:a028035.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zhu L, Ren Y, Zhang S, Guo Y, Zong J, Liu Y. Marine-derived polysaccharides: the potential agents against neurodegenerative diseases. Front Pharmacol. 2024;15:1506789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yu H, Chang Q, Sun T, He X, Wen L, An J, et al. Metabolic reprogramming and polarization of microglia in Parkinson’s disease: Role of inflammasome and iron. Ageing Res Rev. 2023;90:102032.

    Article  CAS  PubMed  Google Scholar 

  177. Qiu Z, Zhang H, Xia M, Gu J, Guo K, Wang H, et al. Programmed death of microglia in Alzheimer’s disease: autophagy, ferroptosis, and pyroptosis. J Prev Alzheimers Dis. 2023;10:95–103.

    Article  CAS  PubMed  Google Scholar 

  178. Bras J, Gibbons E, Guerreiro R. Genetics of synucleins in neurodegenerative diseases. Acta Neuropathol. 2021;141:471–90.

    Article  CAS  PubMed  Google Scholar 

  179. Xu DC, Chen Y, Xu Y, ShenTu CY, Peng LH. Signaling pathways in Parkinson’s disease: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023;8:73.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Chen L, Liu Y, Xie J. The beneficial pharmacological effects of Uncaria rhynchophylla in neurodegenerative diseases: focus on alkaloids. Front Pharmacol. 2024;15:1436481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ma XZ, Jia GR, Li MY, Zhang SH, Wang ZX, Song N, et al. Elevated CXCL1 triggers dopaminergic neuronal loss in the substantia nigra of C57BL/6 J mice: Evaluation of a novel Parkinsonian mouse model. Zool Res. 2025;46:225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. An H, Zeng X, Niu T, Li G, Yang J, Zheng L, et al. Quantifying iron deposition within the substantia nigra of Parkinson’s disease by quantitative susceptibility mapping. J Neurol Sci. 2018;386:46–52.

    Article  CAS  PubMed  Google Scholar 

  183. Chen Q, Chen Y, Zhang Y, Wang F, Yu H, Zhang C, et al. Iron deposition in Parkinson’s disease by quantitative susceptibility mapping. BMC Neurosci. 2019;20:23.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Mirza B, Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience. 2000;95:425–32.

    Article  CAS  PubMed  Google Scholar 

  185. Hijaz BA, Volpicelli-Daley LA. Initiation and propagation of α-synuclein aggregation in the nervous system. Mol Neurodegener. 2020;15:19.

    Article  PubMed  Google Scholar 

  186. Calabresi P, Di Lazzaro G, Marino G, Campanelli F, Ghiglieri V. Advances in understanding the function of alpha-synuclein: implications for Parkinson’s disease. Brain 2023;146:3587–97.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Guo J, Yue F, Song D, Bousset L, Liang X, Tang J, et al. Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of Macaca fascicularis. Cell Death Dis. 2021;12:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Li Y, Shi C, Liu R, Yang J, Wang J. Alpha-synuclein affects certain iron transporters of BV2 microglia cell through its ferric reductase activity. J Neurophysiol. 2024;132:446–53.

    Article  CAS  PubMed  Google Scholar 

  189. Wang J, Song N, Jiang H, Wang J, Xie J. Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochim Biophys Acta Mol Basis Dis. 2013;1832:618–25.

    Article  CAS  Google Scholar 

  190. Südhof TC, Mamais A, Kluss JH, Bonet-Ponce L, Landeck N, Langston RG, et al. Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia. PLoS Biol. 2021;19:e3001480.

    Article  Google Scholar 

  191. Lu G, Zheng Z, Zhang S, Liu X, Wang X, Xue C, et al. LRRK2 regulates ferroptosis through the system Xc-GSH-GPX4 pathway in the neuroinflammatory mechanism of Parkinson’s disease. J Cell Physiol. 2024;239:e31250.

    Article  PubMed  Google Scholar 

  192. Nnah IC, Lee CH, Wessling-Resnick M. Iron potentiates microglial interleukin‐1β secretion induced by amyloid‐β. J Neurochem. 2020;154:177–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Andrews SJ, Fulton-Howard B, Goate A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. 2020;19:326–35.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Peng Y, Chang X, Lang M. Iron homeostasis disorder and Alzheimer’s Disease. Int J Mol Sci. 2021;22:12442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Hansson O, van Westen D, Strandberg OT, Lampinen B, Stomrud E, Acosta-Cabronero J, et al. Relationship between cortical iron and tau aggregation in Alzheimer’s disease. Brain. 2020;143:1341–9.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Yan N, Zhang J. Iron metabolism, ferroptosis, and the links with Alzheimer’s disease. Front Neurosci. 2020;13:1443.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Gallagher JJ, Finnegan ME, Grehan B, Dobson J, Collingwood JF, Lynch MA. Modest amyloid deposition is associated with iron dysregulation, microglial activation, and oxidative stress. J Alzheimers Dis. 2012;28:147–61.

    Article  CAS  PubMed  Google Scholar 

  198. Meadowcroft MD, Connor JR, Yang QX. Cortical iron regulation and inflammatory response in Alzheimer’s disease and APPSWE/PS1ΔE9 mice: a histological perspective. Front Neurosci. 2015;9:255.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Zeineh MM, Chen Y, Kitzler HH, Hammond R, Vogel H, Rutt BK. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease. Neurobiol Aging. 2015;36:2483–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Part K, Künnis-Beres K, Poska H, Land T, Shimmo R, Zetterström Fernaeus S. Amyloid β25–35 induced ROS-burst through NADPH oxidase is sensitive to iron chelation in microglial Bv2 cells. Brain Res. 2015;1629:282–90.

    Article  CAS  PubMed  Google Scholar 

  201. Morris G, Berk M, Carvalho AF, Maes M, Walker AJ, Puri BK. Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res. 2018;341:154–75.

    Article  CAS  PubMed  Google Scholar 

  202. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169:1276–90.e17.

    Article  CAS  PubMed  Google Scholar 

  203. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. 2019;570:332–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhou Y, Song WM, Andhey PS, Swain A, Levy T, Miller KR, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat Med. 2020;26:131–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Fernández-Mendívil C, Arreola MA, Hohsfield LA, Green KN, Lopez MG. Aging and progression of beta-amyloid pathology in Alzheimer’s disease correlates with microglial heme-oxygenase-1 overexpression. Antioxidants 2020;9:644.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Baik SH, Kang S, Lee W, Choi H, Chung S, Kim JI, et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab. 2019;30:493–507.e6.

    Article  CAS  PubMed  Google Scholar 

  207. Dhananjayan K, Gunawardena D, Hearn N, Sonntag T, Moran C, Gyengesi E, et al. Activation of macrophages and microglia by interferon–γ and lipopolysaccharide increases methylglyoxal production: A new mechanism in the development of vascular complications and cognitive decline in type 2 diabetes mellitus? J Alzheimers Dis. 2017;59:467–79.

    Article  CAS  PubMed  Google Scholar 

  208. McColgan P, Gregory S, Seunarine KK, Razi A, Papoutsi M, Johnson E, et al. Brain regions showing white matter loss in Huntington’s Disease are enriched for synaptic and metabolic genes. Biol Psychiatry. 2018;83:456–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wang Y, Lv MN, Zhao WJ. Research on ferroptosis as a therapeutic target for the treatment of neurodegenerative diseases. Ageing Res Rev. 2023;91:102035.

    Article  CAS  PubMed  Google Scholar 

  210. Foster J, Donley DW, Realing M, Gigley JP, Fox JH. Iron activates microglia and directly stimulates indoleamine-2,3-dioxygenase activity in the N171-82Q mouse model of Huntington’s disease. PLoS One. 2021;16:e0250606.

    Article  Google Scholar 

  211. Simmons DA, Casale M, Alcon B, Pham N, Narayan N, Lynch G. Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia. 2007;55:1074–84.

    Article  PubMed  Google Scholar 

  212. Haukedal H, Freude K. Implications of microglia in amyotrophic lateral sclerosis and frontotemporal dementia. J Mol Biol. 2019;431:1818–29.

    Article  CAS  PubMed  Google Scholar 

  213. Motataianu A, Barcutean L, Balasa R. Neuroimmunity in amyotrophic lateral sclerosis: focus on microglia. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21:159–66.

    Article  CAS  PubMed  Google Scholar 

  214. Kwan JY, Jeong SY, Van Gelderen P, Deng HX, Quezado MM, Danielian LE, et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One. 2012;7:e35241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Beal MF, Oakes D, Shoulson I, Henchcliffe C, Galpern WR, Haas R, et al. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson Disease. JAMA Neurol. 2014;71:543.

    Article  PubMed  Google Scholar 

  216. Gutierrez-Mariscal FM, Yubero-Serrano EM, Villalba JM, Lopez-Miranda J. Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Crit Rev Food Sci Nutr. 2018;59:2240–57.

    Article  PubMed  Google Scholar 

  217. Kuang F, Liu J, Tang D, Kang R. Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol. 2020;8:586578.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Xie Y, Song X, Sun X, Huang J, Zhong M, Lotze MT, et al. Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem Biophys Res Commun. 2016;473:775–80.

    Article  CAS  PubMed  Google Scholar 

  219. Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M, et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci. 2017;3:232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, et al. Ferrostatins inhibit oxidative lipid damage and cell Death in diverse disease models. J Am Chem Soc. 2014;136:4551–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–91.

    Article  CAS  PubMed  Google Scholar 

  222. Huang L, Zhang Y, Zhao L, Chen Q, Li L. Ferrostatin-1 polarizes microglial cells toward M2 phenotype to alleviate inflammation after intracerebral hemorrhage. Neurocrit Care. 2022;36:942–54.

    Article  CAS  PubMed  Google Scholar 

  223. Chai Z, Ma T, Li Y, Chen Q, Kang Y, Sun J, et al. Inhibition of inflammatory factor TNF-α by ferrostatin-1 in microglia regulates necroptosis of oligodendrocyte precursor cells. NeuroReport 2023;34:583–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Southon A, Szostak K, Acevedo KM, Dent KA, Volitakis I, Belaidi AA, et al. CuII(atsm) inhibits ferroptosis: implications for treatment of neurodegenerative disease. Br J Pharm. 2020;177:656–67.

    Article  CAS  Google Scholar 

  225. Zilka O, Poon J-F, Pratt DA. Radical-trapping antioxidant activity of copper and Nickel Bis (Thiosemicarbazone) complexes underlies their potency as inhibitors of ferroptotic cell death. J Am Chem Soc. 2021;143:19043–57.

    Article  CAS  PubMed  Google Scholar 

  226. Hung LW, Villemagne VL, Cheng L, Sherratt NA, Ayton S, White AR, et al. The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson’s disease. J Exp Med. 2012;209:837–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zhang L, Xu J, Yin S, Wang Q, Jia Z, Wen T. Albiflorin attenuates neuroinflammation and improves functional recovery after spinal cord injury through regulating LSD1-mediated microglial activation and ferroptosis. Inflammation 2024;47:1313–27.

    Article  CAS  PubMed  Google Scholar 

  228. Liao J, Wei M, Wang J, Zeng J, Liu D, Du Q, et al. Naotaifang formula attenuates OGD/R-induced inflammation and ferroptosis by regulating microglial M1/M2 polarization through BMP6/SMADs signaling pathway. Biomed Pharmacother. 2023;167:115465.

    Article  CAS  PubMed  Google Scholar 

  229. Lan B, Ge JW, Cheng SW, Zheng XL, Liao J, He C, et al. Extract of Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acute cerebral ischemia in rats. J Integr Med. 2020;18:344–50.

    Article  PubMed  Google Scholar 

  230. Song Y, Luo X, Yao L, Chen Y, Mao X. A novel mechanism linking melatonin, ferroptosis and microglia polarization via the Circodz3/HuR axis in subarachnoid hemorrhage. Neurochem Res. 2024;49:2556–72.

    Article  CAS  PubMed  Google Scholar 

  231. Liu N, Yu W, Sun M, Li X, Zhang W, Wang M. Dabrafenib mitigates the neuroinflammation caused by ferroptosis in experimental autoimmune encephalomyelitis by up regulating Axl receptor. Eur J Pharmacol. 2024;973:176600.

    Article  CAS  PubMed  Google Scholar 

  232. Duan WL, Ma YP, Wang XJ, Ma CS, Han B, Sheng ZM, et al. N6022 attenuates cerebral ischemia/reperfusion injury-induced microglia ferroptosis by promoting Nrf2 nuclear translocation and inhibiting the GSNOR/GSTP1 axis. Eur J Pharmacol. 2024;972:176553.

    Article  CAS  PubMed  Google Scholar 

  233. Seth J, Sharma S, Leong CJ, Rabkin SW. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ameliorate heart failure through reductions in oxidative stress: a systematic review and Meta-analysis. Antioxidants (Basel). 2024;13:955.

    Article  CAS  PubMed  Google Scholar 

  234. Janssen CI, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res. 2014;53:1–17.

    Article  CAS  PubMed  Google Scholar 

  235. Tian A, Zheng Y, Li H, Zhang Z, Du L, Huang X, et al. Eicosapentaenoic acid activates the P62/KEAP1/NRF2 pathway for the prevention of diabetes-associated cognitive dysfunction. Food Funct. 2024;15:5251–71.

    Article  CAS  PubMed  Google Scholar 

  236. Liu M, Zhao J, Xue C, Yang J, Ying L. Uncovering the ferroptosis related mechanism of laduviglusib in the cell-type-specific targets of the striatum in Huntington’s disease. BMC Genomics. 2024;25:633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by grants from the National Natural Science Foundation of China (32200802, 32371187, 32170984), Qingdao West Coast New District Science and Technology Project (2020-3-2), Excellent Innovative Team of Shandong Province (2020KJK007), and Taishan Scholars Construction Project, Shandong.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-zhen Ma, Hua-min Xu or Jun-xia Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yj., Jia, Gr., Zhang, Sh. et al. The role of microglia in neurodegenerative diseases: from the perspective of ferroptosis. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01560-4

Keywords

Search

Quick links