Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Revisiting the role of GDF15 in atherosclerosis in mouse and human

Abstract

Growth differentiation factor 15 (GDF15) is a key regulator of food intake and energy metabolism. GDF15 mimetic drugs for the treatment of metabolic syndrome and obesity are under clinical development. While GDF15 presents a promising target for weight management, its potential cardiovascular actions remain elusive. In this study we investigated the role of GDF15 in macrophage function and atherosclerosis pathogenesis and whether GDF15 acts both as a biomarker and mediator of atherosclerosis severity. ApoE−/− mice were fed a high-cholesterol diet (HCD, 1.25% cholesterol) for 6, 12 or 18 weeks to establish atherosclerotic models. We showed that serum levels of GDF15 were elevated in ApoE−/− mice with atheroprogression; increased serum levels of GDF15 were also observed in patients with coronary artery disease. Enlightened by this finding, we established atherosclerotic model in Gdf15−/− mice by injecting with AAV8-PCSK9D377Y virus and feeding HCD for 12 or 16 weeks. We showed that global Gdf15 knockout, whether in male or female mice, did not alter plaque size in en face aorta, lesion in aortic sinus, size of necrotic core or plaque composition. In macrophage-derived foam cells isolated from atherosclerotic mice, neither Gdf15 deletion nor the treatment with recombinant GDF15 protein (1, 10, 100 ng/mL) affected lipid deposition or macrophage polarization. To translate this finding into a clinically relevant scenario, we performed Mendelian randomization (MR) analysis, and found no significant causal association between circulating GDF15 levels and the incidence of cardiovascular diseases. Furthermore, MR studies suggest that genetic associations between GDF15 and factors such as BMI, ApoB, LDL and HDL were not significant in plasma data from the UK Biobank and the deCODE cohort. In summary, this study demonstrates that global Gdf15 deficiency does not affect the development of atherosclerosis in male or female mice despite the positive association between circulating GDF15 levels and disease progression in mice and human. Thus, GDF15 in circulation is a potential biomarker, but not a causal mediator, of atherosclerosis. Long-term cardiovascular safety of GDF15-targeted therapies warrants further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GDF15 levels are elevated in mouse and human atherosclerosis.
Fig. 2: Global knockout of Gdf15 does not alter the size of atherosclerotic lesion nor plaque composition in male mice.
Fig. 3: Global knockout of Gdf15 does not alter the size of atherosclerotic lesion nor plaque composition in female mice.
Fig. 4: Deficiency of Gdf15 does not alter lipid accumulation or polarization in macrophages isolated from male atherosclerotic mice.
Fig. 5: Deficiency of Gdf15 does not alter lipid accumulation or polarization in macrophages isolated from female atherosclerotic mice.
Fig. 6: GDF15 levels and cardiovascular diseases in human.

Similar content being viewed by others

References

  1. Mensah GA, Fuster V, Murray CJL, Roth GA. Global burden of cardiovascular diseases and risks collaborators. Global burden of cardiovascular diseases and risks, 1990-2022. J Am Coll Cardiol. 2023;82:2350–473.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Björkegren JLM, Lusis AJ. Atherosclerosis: recent developments. Cell. 2022;185:1630–45.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang Z, Chen S, Zhang F, Akhmedov S, Weng J, Xu S. Prioritization of lipid metabolism targets for the diagnosis and treatment of cardiovascular diseases. Research. 2025;8:0618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jiang H, Zhou Y, Nabavi SM, Sahebkar A, Little PJ, Xu S, et al. Mechanisms of oxidized LDL-mediated endothelial dysfunction and its consequences for the development of atherosclerosis. Front Cardiovasc Med. 2022;9:925923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, et al. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 2023;14:691.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res. 2015;107:321–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Williams JW, Zaitsev K, Kim KW, Ivanov S, Saunders BT, Schrank PR, et al. Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nat Immunol. 2020;21:1194–204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, et al. Targeting foam cell formation in atherosclerosis: therapeutic potential of natural products. Pharm Rev. 2019;71:596–670.

    Article  PubMed  CAS  Google Scholar 

  9. Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15:104–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Xu H, Jiang J, Chen W, Li W, Chen Z. Vascular macrophages in atherosclerosis. J Immunol Res. 2019;2019:4354786.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ajoolabady A, Pratico D, Lin L, Mantzoros CS, Bahijri S, Tuomilehto J, et al. Inflammation in atherosclerosis: pathophysiology and mechanisms. Cell Death Dis. 2024;15:817.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fairlie WD, Moore AG, Bauskin AR, Russell PK, Zhang HP, Breit SN. MIC-1 is a novel TGF-beta superfamily cytokine associated with macrophage activation. J Leukoc Biol. 1999;65:2–5.

    Article  PubMed  CAS  Google Scholar 

  13. Yokoyama-Kobayashi M, Saeki M, Sekine S, Kato S. Human cDNA encoding a novel TGF-beta superfamily protein highly expressed in placenta. J Biochem. 1997;122:622–6.

    Article  PubMed  CAS  Google Scholar 

  14. Bauskin AR, Brown DA, Junankar S, Rasiah KK, Eggleton S, Hunter M, et al. The propeptide mediates formation of stromal stores of PROMIC-1: role in determining prostate cancer outcome. Cancer Res. 2005;65:2330.

    Article  PubMed  CAS  Google Scholar 

  15. Bermúdez B, López S, Pacheco YM, Villar J, Muriana FJG, Hoheisel JD, et al. Influence of postprandial triglyceride-rich lipoproteins on lipid-mediated gene expression in smooth muscle cells of the human coronary artery. Cardiovasc Res. 2008;79:294–303.

    Article  PubMed  Google Scholar 

  16. Schlittenhardt D, Schober A, Strelau J, Bonaterra GA, Schmiedt W, Unsicker K, et al. Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res. 2004;318:325–33.

    Article  PubMed  CAS  Google Scholar 

  17. Ding Q, Mracek T, Gonzalez-Muniesa P, Kos K, Wilding J, Trayhurn P, et al. Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes. Endocrinology. 2009;150:1688–96.

    Article  PubMed  CAS  Google Scholar 

  18. Silva-Bermudez LS, Klüter H, Kzhyshkowska JG. Macrophages as a source and target of GDF-15. Int J Mol Sci. 2024;25:7313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD, et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med. 2017;23:1215–19.

    Article  PubMed  CAS  Google Scholar 

  20. Sjøberg KA, Sigvardsen CM, Alvarado-Diaz A, Andersen NR, Larance M, Seeley RJ, et al. GDF15 increases insulin action in the liver and adipose tissue via a β-adrenergic receptor-mediated mechanism. Cell Metab. 2023;35:1327–40.e5.

    Article  PubMed  Google Scholar 

  21. Wang D, Townsend LK, DesOrmeaux GJ, Frangos SM, Batchuluun B, Dumont L, et al. GDF15 promotes weight loss by enhancing energy expenditure in muscle. Nature. 2023;619:143–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross JA, et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature. 2020;578:444–8.

    Article  PubMed  CAS  Google Scholar 

  23. Guo X, Asthana P, Zhai L, Cheng KW, Gurung S, Huang J, et al. Artesunate treats obesity in male mice and non-human primates through GDF15/GFRAL signalling axis. Nat Commun. 2024;15:1034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Katsumura S, Siddiqui N, Goldsmith MR, Cheah JH, Fujikawa T, Minegishi G, et al. Deadenylase-dependent mrna decay of GDF15 and FGF21 orchestrates food intake and energy expenditure. Cell Metab. 2022;34:564–80.e8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lu JF, Zhu MQ, Xia B, Zhang NN, Liu XP, Liu H, et al. GDF15 is a major determinant of ketogenic diet-induced weight loss. Cell Metab. 2023;35:2165–82.e7.

    Article  PubMed  CAS  Google Scholar 

  26. Hagström E, Held C, Stewart RAH, Aylward PE, Budaj A, Cannon CP, et al. Growth differentiation factor 15 predicts all-cause morbidity and mortality in stable coronary heart disease. Clin Chem. 2017;63:325–33.

    Article  PubMed  Google Scholar 

  27. Kato ET, Morrow DA, Guo J, Berg DD, Blazing MA, Bohula EA, et al. Growth differentiation factor 15 and cardiovascular risk: individual patient meta-analysis. Eur Heart J. 2023;44:293–300.

    Article  PubMed  CAS  Google Scholar 

  28. Ho FK, Mark PB, Lees JS, Pell JP, Strawbridge RJ, Kimenai DM, et al. A proteomics-based approach for prediction of different cardiovascular diseases and dementia. Circulation. 2025;151:277–87.

    Article  PubMed  CAS  Google Scholar 

  29. De Ávila DX, di Candia AM, Moreira GR, Scaramussa VD, Lopes RD, Villacorta H. Growth differentiation factor-15 and clinical outcomes in patients with chronic heart failure. J Card Fail. 2024;30:734–6.

    Article  PubMed  Google Scholar 

  30. Takaoka M, Tadross JA, Al-Hadithi ABAK, Zhao X, Villena-Gutiérrez R, Tromp J, et al. GDF15 antagonism limits severe heart failure and prevents cardiac cachexia. Cardiovasc Res. 2024;120:2249–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. De Jager SCA, Bermúdez B, Bot I, Koenen RR, Bot M, Kavelaars A, et al. Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis. J Exp Med. 2011;208:217–25.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liuizė Abramavičiūtė A, Mongirdienė A. TGF-β isoforms and GDF-15 in the development and progression of atherosclerosis. Int J Mol Sci. 2024;25:2104.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Preusch MR, Baeuerle M, Albrecht C, Blessing E, Bischof M, Katus HA, et al. GDF-15 protects from macrophage accumulation in a mousemodel of advanced atherosclerosis. Eur J Med Res. 2013;18:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ackermann K, Bonaterra GA, Kinscherf R, Schwarz A. Growth differentiation factor-15 regulates oxLDL-induced lipid homeostasis and autophagy in human macrophages. Atherosclerosis. 2019;281:128–36.

    Article  PubMed  CAS  Google Scholar 

  35. Heduschke A, Ackermann K, Wilhelm B, Mey L, Bonaterra GA, Kinscherf R, et al. GDF-15 deficiency reduces autophagic activity in human macrophages in vitro and decreases p62-accumulation in atherosclerotic lesions in mice. Cells. 2021;10:2346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tang Y, Yao T, Tian X, Xia X, Huang X, Qin Z, et al. Hepatic IRE1α-XBP1 signaling promotes GDF15-mediated anorexia and body weight loss in chemotherapy. J Exp Med. 2024;221:e20231395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jiang P, Liu Z, Fang T, Zhang Z, Zhang Y, Wang D, et al. Growth differentiation factor 15 is dispensable for acetaminophen-induced liver injury in mice. Basic Clin Pharmacol Toxicol. 2023;132:343–53.

    Article  PubMed  CAS  Google Scholar 

  38. Xu S, Liu Z, Tian T, Zhao W, Wang Z, Liu M, et al. The clinical antiprotozoal drug halofuginone promotes weight loss by elevating GDF15 and FGF21. Sci Adv. 2025;11:eadt3142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ilyas I, Little PJ, Liu Z, Xu Y, Kamato D, Berk BC, et al. Mouse models of atherosclerosis in translational research. Trends Pharmacol Sci. 2022;43:920–39.

    Article  PubMed  CAS  Google Scholar 

  40. Xu M, Wu X, Liu Z, Ding Y, Kong W, Little PJ, et al. A novel mouse model of diabetes, atherosclerosis and fatty liver disease using an AAV8-PCSK9-D377Y injection and dietary manipulation in db/db mice. Biochem Biophys Res Commun. 2022;622:163–9.

    Article  PubMed  CAS  Google Scholar 

  41. Bjørklund MM, Hollensen AK, Hagensen MK, Dagnaes-Hansen F, Christoffersen C, Mikkelsen JG, et al. Induction of atherosclerosis in mice and hamsters without germline genetic engineering. Circ Res. 2014;114:1684–9.

    Article  PubMed  Google Scholar 

  42. Jiang H, Liao Y, Zhu M, Jiramonai L, Wu H, Zhong Y, et al. Innovative atherosclerosis models: advancing pathophysiology and translational research. Research. 2025;8:0617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Su M, Zhao W, Jiang H, Zhao Y, Liao Z, Liu Z, et al. Endothelial IGFBP6 suppresses vascular inflammation and atherosclerosis. Nat Cardiovasc Res. 2025;4:145–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Xu S, Xu Y, Liu P, Zhang S, Liu H, Slavin S, et al. The novel coronary artery disease risk gene JCAD/KIAA1462 promotes endothelial dysfunction and atherosclerosis. Eur Heart J. 2019;40:2398–408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Xu MY, Xu JJ, Kang LJ, Liu ZH, Su MM, Zhao WQ, et al. Urolithin A promotes atherosclerotic plaque stability by limiting inflammation and hypercholesteremia in apolipoprotein E-deficient mice. Acta Pharmacol Sin. 2024;45:2277–89.

    Article  PubMed  CAS  Google Scholar 

  46. Wang D, Xia M, Yan X, Li D, Wang L, Xu Y, et al. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res. 2012;111:967–81.

    Article  PubMed  CAS  Google Scholar 

  47. Li X, Huai Q, Zhu C, Zhang X, Xu W, Dai H, et al. GDF15 ameliorates liver fibrosis by metabolic reprogramming of macrophages to acquire anti-inflammatory properties. Cell Mol Gastroenterol Hepatol. 2023;16:711–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Toda G, Yamauchi T, Kadowaki T, Ueki K. Preparation and culture of bone marrow-derived macrophages from mice for functional analysis. STAR Protoc. 2020;2:100246.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Qu W, Zhou X, Jiang X, Xie X, Xu K, Gu X, et al. Long noncoding RNA Gpr137b-ps promotes advanced atherosclerosis via the regulation of autophagy in macrophages. Arterioscler Thromb Vasc Biol. 2023;43:e468–89.

    Article  PubMed  CAS  Google Scholar 

  50. Xu S, Wu X, Wang S, Xu M, Fang T, Ma X, et al. TRIM56 protects against nonalcoholic fatty liver disease by promoting the degradation of fatty acid synthase. J Clin Invest. 2024;134:e166149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chen MJ, Xu YT, Sun L, Wang ZH, Little PJ, Wang L, et al. A novel mouse model of familial combined hyperlipidemia and atherosclerosis. Acta Pharmacol Sin. 2024;45:1316–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sun BB, Chiou J, Traylor M, Benner C, Hsu YH, Richardson TG, et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature. 2023;622:329–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, Styrmisdottir EL, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet. 2021;53:1712–21.

    Article  PubMed  CAS  Google Scholar 

  55. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.

    Article  Google Scholar 

  56. van der Harst P, Verweij N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res. 2018;122:433–43.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53:1415–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Dönertaş HM, Fabian DK, Valenzuela MF, Partridge L, Thornton JM. Common genetic associations between age-related diseases. Nat Aging. 2021;1:400–12.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50:524–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Shah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun. 2020;11:163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Nielsen JB, Thorolfsdottir RB, Fritsche LG, Zhou W, Skov MW, Graham SE, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet. 2018;50:1234–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Loh PR, Kichaev G, Gazal S, Schoech AP, Price AL. Mixed-model association for biobank-scale datasets. Nat Genet. 2018;50:906–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Richardson TG, Sanderson E, Palmer TM, Ala-Korpela M, Ference BA, Davey Smith G, et al. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis. PLoS Med. 2020;17:e1003062.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kaiser H, Wang X, Kvist-Hansen A, Krakauer M, Gørtz PM, McCauley BD, et al. Biomarkers of subclinical atherosclerosis in patients with psoriasis. Sci Rep. 2021;11:21438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wang J, Wei L, Yang X, Zhong J. Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease. J Am Heart Assoc. 2019;8:e012826.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shimizu Y, Hayashida N, Yamanashi H, Noguchi Y, Kawashiri SY, Takada M, et al. Serum concentration of growth differentiation factor 15 and atherosclerosis among general older japanese individuals with normal weight. Biomedicines. 2023;11:1572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Patsalos A, Halasz L, Medina-Serpas MA, Berger WK, Daniel B, Tzerpos P, et al. A growth factor-expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15. J Exp Med. 2022;219:e20210420.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang SY, Bruce K, Danaei Z, Li RJW, Barros DR, Kuah R, et al. Metformin triggers a kidney GDF15-dependent area postrema axis to regulate food intake and body weight. Cell Metab. 2023;35:875–86.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Luan HH, Wang A, Hilliard BK, Carvalho F, Rosen CE, Ahasic AM, et al. GDF15 is an inflammation-induced central mediator of tissue tolerance. Cell. 2019;178:1231–44.e11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Huang H, Chen Z, Li Y, Gong K, Xiao L, Fu H, et al. GDF-15 suppresses atherosclerosis by inhibiting oxLDL-induced lipid accumulation and inflammation in macrophages. Evid Based Complement Alternat Med. 2021;2021:6497568.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Johnen H, Kuffner T, Brown DA, Wu BJ, Stocker R, Breit SN. Increased expression of the TGF-b superfamily cytokine MIC-1/GDF15 protects ApoE-/- mice from the development of atherosclerosis. Cardiovasc Pathol. 2012;21:499–505.

    Article  PubMed  CAS  Google Scholar 

  73. Bonaterra GA, Struck N, Zuegel S, Schwarz A, Mey L, Schwarzbach H, et al. Characterization of atherosclerotic plaques in blood vessels with low oxygenated blood and blood pressure (pulmonary trunk): role of growth differentiation factor-15 (GDF-15). BMC Cardiovasc Disord. 2021;21:601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Jung SB, Choi MJ, Ryu D, Yi HS, Lee SE, Chang JY, et al. Reduced oxidative capacity in macrophages results in systemic insulin resistance. Nat Commun. 2018;9:1551.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Labour A, Lac M, Frassin L, Lair B, Murphy E, Maslo C, et al. GDF15 is dispensable for the insulin-sensitizing effects of chronic exercise. Cell Rep. 2024;43:114577.

    Article  PubMed  CAS  Google Scholar 

  76. Zhang X, Dong S. Protective effect of growth differentiation factor 15 in sepsis by regulating macrophage polarization and its mechanism. Bioengineered. 2022;13:9687–707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Deng YT, You J, He Y, Zhang Y, Li HY, Wu XR, et al. Atlas of the plasma proteome in health and disease in 53,026 adults. Cell. 2025;188:253–71.e7.

    Article  PubMed  CAS  Google Scholar 

  78. Chen YL, You J, Guo Y, Zhang Y, Yao BR, Wang JJ, et al. Identifying proteins and pathways associated with multimorbidity in 53,026 adults. Metabolism. 2025;164:156126.

    Article  PubMed  CAS  Google Scholar 

  79. Cheung CL, Tan KCB, Au PCM, Li GHY, Cheung BMY. Evaluation of GDF15 as a therapeutic target of cardiometabolic diseases in human: a Mendelian randomization study. EBioMedicine. 2019;41:85–90.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Au Yeung SL, Luo S, Schooling CM. The impact of GDF-15, a biomarker for metformin, on the risk of coronary artery disease, breast and colorectal cancer, and type 2 diabetes and metabolic traits: a Mendelian randomisation study. Diabetologia. 2019;62:1638–46.

    Article  PubMed  CAS  Google Scholar 

  81. Wang Z, Yang F, Ma M, Bao Q, Shen J, Ye F, et al. The impact of growth differentiation factor 15 on the risk of cardiovascular diseases: two-sample Mendelian randomization study. BMC Cardiovasc Disord. 2020;20:462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Lemmelä S, Wigmore EM, Benner C, Havulinna AS, Ong RMY, Kempf T, et al. Integrated analyses of growth differentiation factor-15 concentration and cardiometabolic diseases in humans. eLife. 2022;11:e76272.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Karhunen V, Larsson SC, Gill D. Genetically proxied growth-differentiation factor 15 levels and body mass index. Br J Clin Pharmacol. 2021;87:4036–9.

    Article  PubMed  CAS  Google Scholar 

  84. Yang L, Chang CC, Sun Z, Madsen D, Zhu H, Padkjær SB, et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017;23:1158–66.

    Article  PubMed  CAS  Google Scholar 

  85. Kanta JM, Deisen L, Johann K, Holm S, Lundsgaard A, Lund J, et al. Dietary medium-chain fatty acids reduce food intake via the GDF15-GFRAL axis in mice. Mol Metab. 2023;74:101760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Fejzo M, Rocha N, Cimino I, Lockhart SM, Petry CJ, Kay RG, et al. GDF15 linked to maternal risk of nausea and vomiting during pregnancy. Nature. 2024;625:760–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (82370444, 12411530127). This work was also supported by the Program for Innovative Research Team of  the First Affiliated Hospital of USTC (CXGG02), Anhui Provincial Natural Science Foundation (2208085J08) and USTC Research Funds of the Double First-Class Initiative (YD9110002089) and the Research Funds of Centre for Leading Medicine and Advanced Technologies of IHM.

Author information

Authors and Affiliations

Authors

Contributions

SWX conceptualized the project. MNL, ZHL and RXL performed the experiments, generated and analyzed the data. HS and JPW provided conceptual inputs and suggestions into the manuscript. All authors edited and approved the manuscript.

Corresponding author

Correspondence to Suo-wen Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Mn., Liu, Zh., Leng, Rx. et al. Revisiting the role of GDF15 in atherosclerosis in mouse and human. Acta Pharmacol Sin 46, 2663–2676 (2025). https://doi.org/10.1038/s41401-025-01561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01561-3

Keywords

Search

Quick links