Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PRL-3: unveiling a new horizon in cancer therapy

Abstract

PRL-3, a protein tyrosine phosphatase (PTP), has a significant influence on the pathogenesis of various cancers with its overexpression significantly correlating with tumor invasion, metastasis and poor prognosis. It significantly affects tumor cell behavior through its involvement in cell proliferation, migration and metabolic processes. Furthermore, the interaction between PRL-3 and the tumor microenvironment characterized by its adaptability to stress and its role in metabolic reprogramming enhances tumor cell survival and dissemination. Targeted therapies against PRL-3, encompassing small molecule inhibitors and the monoclonal antibody PRL-3-zumab, have shown promise in clinical and preclinical studies, presenting new avenues for cancer treatment. In addition, innovative approaches such as CAAX motif-targeting agents and PRL-3 degradation strategies hold promise for developing more precise and effective interventions. This review explores PRL-3’s multifaceted roles across different tumor types and microenvironments, while discussing current and emerging therapeutic strategies aimed at exploiting its oncogenic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4: The structure of PRL-3 and the predicted binding pockets of PRL-3 inhibitors by AlphaFold 3.
Fig. 5

Similar content being viewed by others

References

  1. Burnett G, Kennedy EP. The enzymatic phosphorylation of proteins. J Biol Chem. 1954;211:969–80.

    Article  PubMed  CAS  Google Scholar 

  2. Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: A chemical biology toolbox. Chem Soc Rev. 2022;51:5691–730.

    Article  PubMed  CAS  Google Scholar 

  3. Stanford SM, Bottini N. Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov. 2023;22:273–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117:699–711.

    Article  PubMed  CAS  Google Scholar 

  5. Östman A, Hellberg C, Böhmer FD. Protein-tyrosine phosphatases and cancer. Nat Rev Cancer. 2006;6:307–20.

    Article  PubMed  Google Scholar 

  6. Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B, et al. A phosphatase associated with metastasis of colorectal cancer. Science. 2001;294:1343–6.

    Article  PubMed  CAS  Google Scholar 

  7. Zeng Q, Hong W, Tan YH. Mouse PRL-2 and PRL-3, Two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Biochem Biophys Res Commun. 1998;244:421–7.

    Article  PubMed  CAS  Google Scholar 

  8. Zeng Q, Si X, Horstmann H, Xu Y, Hong W, Pallen CJ. Prenylation-dependent association of protein-tyrosine phosphatases PRL-1, -2, and -3 with the plasma membrane and the early endosome. J Biol Chem. 2000;275:21444–52.

    Article  PubMed  CAS  Google Scholar 

  9. Chia PL, Ang KH, Thura M, Zeng Q. PRL3 as a therapeutic target for novel cancer immunotherapy in multiple cancer types. Theranostics. 2023;13:1876–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hardy S, Kostantin E, Hatzihristidis T, Zolotarov Y, Uetani N, Tremblay ML. Physiological and oncogenic roles of the PRL phosphatases. FEBS J. 2018;285:3886–908.

    Article  PubMed  CAS  Google Scholar 

  11. Matter WF, Estridge T, Zhang C, Belagaje R, Stancato L, Dixon J, et al. Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochem Biophys Res Commun. 2001;283:1061–8.

    Article  PubMed  CAS  Google Scholar 

  12. Tonks NK. PTP1B: From the sidelines to the front lines! FEBS Lett. 2003;546:140–8.

    Article  PubMed  CAS  Google Scholar 

  13. Song Y, Zhao M, Zhang H, Yu B. Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther. 2022;230:107966.

    Article  PubMed  CAS  Google Scholar 

  14. Zinovjev K, Guénon P, Ramos-Guzmán CA, Ruiz-Pernía JJ, Laage D, Tuñón I. Activation and friction in enzymatic loop opening and closing dynamics. Nat Commun. 2024;15:2490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006;7:833–46.

    Article  PubMed  CAS  Google Scholar 

  16. Rios P, Li X, Köhn M. Molecular mechanisms of the PRL phosphatases. FEBS J. 2013;280:505–24.

    Article  PubMed  CAS  Google Scholar 

  17. Tao Y, You W. The deubiquitinating enzyme USP4 functions as an oncoprotein in gastric cancer and mediates NF-κB signaling by regulating PRL-3 expression. Front Biosci Landmark Ed. 2022;27:286.

    Article  PubMed  CAS  Google Scholar 

  18. Miskad UA, Semba S, Kato H, Matsukawa Y, Kodama Y, Mizuuchi E, et al. High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: an in situ hybridization study. Virchows Arch. 2007;450:303–10.

    Article  PubMed  CAS  Google Scholar 

  19. Polato F, Codegoni A, Fruscio R, Perego P, Mangioni C, Saha S, et al. PRL-3 phosphatase is implicated in ovarian cancer growth. Clin Cancer Res. 2005;11:6835–9.

    Article  PubMed  CAS  Google Scholar 

  20. Ren T, Jiang B, Xing X, Dong B, Peng L, Meng L, et al. Prognostic significance of phosphatase of regenerating liver-3 expression in ovarian cancer. Pathol Oncol Res. 2009;15:555–60.

    Article  PubMed  CAS  Google Scholar 

  21. Ma Y, Li B. Expression of phosphatase of regenerating liver-3 in squamous cell carcinoma of the cervix. Med Oncol. 2011;28:775–80.

    Article  PubMed  CAS  Google Scholar 

  22. Ming J, Liu N, Gu Y, Qiu X, Wang EH. PRL-3 facilitates angiogenesis and metastasis by increasing ERK phosphorylation and up-regulating the levels and activities of Rho-A/C in lung cancer. Pathology. 2009;41:118–26.

    Article  PubMed  CAS  Google Scholar 

  23. Chen G, Zhang Z, Li J, Hu C, Gao D, Chen J, et al. Phosphatase regenerating liver 3 participates in integrinβ1/FAK-Src/MAPK signaling pathway and contributes to the regulation of malignant behaviors in hepatocellular carcinoma cells. J Gastrointest Oncol. 2023;14:863–73.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xu Y, Zhu M, Zhang S, Liu H, Li T, Qin C. Expression and prognostic value of PRL-3 in human intrahepatic cholangiocarcinoma. Pathol Oncol Res. 2010;16:169–75.

    Article  PubMed  CAS  Google Scholar 

  25. Zhao W-B, Li Y, Liu X, Zhang L-Y, Wang X. Evaluation of PRL-3 expression, and its correlation with angiogenesis and invasion in hepatocellular carcinoma. Int J Mol Med. 2008;22:187–92.

    PubMed  CAS  Google Scholar 

  26. Kong L, Li Q, Wang L, Liu Z, Sun T. The value and correlation between PRL‐3 expression and matrix metalloproteinase activity and expression in human gliomas. Neuropathology. 2007;27:516–21.

    Article  PubMed  Google Scholar 

  27. Zhou J, Wang S, Lu J, Li J, Ding Y. Over‐expression of phosphatase of regenerating liver‐3 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma. Int J Cancer. 2009;124:1879–86.

    Article  PubMed  CAS  Google Scholar 

  28. Liu YQ, Li HX, Lou X, Lei JY. Expression of phosphatase of regenerating liver 1 and 3 mRNA in esophageal squamous cell carcinoma. Arch Pathol Lab Med. 2008;132:1307–12.

    Article  PubMed  CAS  Google Scholar 

  29. Bardelli A, Saha S, Sager JA, Romans KE, Xin B, Markowitz SD, et al. PRL-3 expression in metastatic cancers. Clin Cancer Res. 2003;9:5607–15.

    PubMed  CAS  Google Scholar 

  30. Radke I, Götte M, Kersting C, Mattsson B, Kiesel L, Wülfing P. Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer. Br J Cancer. 2006;95:347–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Laurent C, Valet F, Planque N, Silveri L, Maacha S, Anezo O, et al. High PTP4A3 phosphatase expression correlates with metastatic risk in uveal melanoma patients. Cancer Res. 2011;71:666–74.

    Article  PubMed  CAS  Google Scholar 

  32. Dong Q, Ding X, Chang B, Wang H, Wang A. PRL‐3 promotes migration and invasion and is associated with poor prognosis in salivary adenoid cystic carcinoma. J Oral Pathol Med. 2016;45:111–8.

    Article  PubMed  CAS  Google Scholar 

  33. Qu S, Liu B, Guo X, Shi H, Zhou M, Li L, et al. Independent oncogenic and therapeutic significance of phosphatase PRL‐3 in FLT3‐ITD–negative acute myeloid leukemia. Cancer. 2014;120:2130–41.

    Article  PubMed  CAS  Google Scholar 

  34. Xu J, Wu W, Tang Y, Lin Y, Xue Y, Hu J, et al. PRL-3 exerts oncogenic functions in myeloid leukemia cells via aberrant dephosphorylation of stathmin and activation of STAT3 signaling. Aging. 2019;11:7817–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhou L, Pei X, Zhang Y, Ning Y, Li L, Hu X, et al. Chk1 inhibition potently blocks STAT3 tyrosine705 phosphorylation, DNA-binding activity, and activation of downstream targets in human multiple myeloma cells. Mol Cancer Res MCR. 2022;20:456–67.

    Article  PubMed  CAS  Google Scholar 

  36. Chong PSY, Zhou J, Lim JSL, Hee YT, Chooi JY, Chung TH, et al. IL6 promotes a STAT3-PRL3 feedforward loop via SHP2 repression in multiple myeloma. Cancer Res. 2019;79:4679–88.

    Article  PubMed  CAS  Google Scholar 

  37. Broyl A, Hose D, Lokhorst H, De Knegt Y, Peeters J, Jauch A, et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood. 2010;116:2543–53.

    Article  PubMed  CAS  Google Scholar 

  38. Molleví DG, Aytes A, Berdiel M, Padullés L, Martínez-Iniesta M, Sanjuan X, et al. PRL-3 overexpression in epithelial cells is induced by surrounding stromal fibroblasts. Mol Cancer. 2009;8:46.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lan Q, Lai W, Zeng Y, Liu L, Li S, Jin S, et al. CCL26 participates in the PRL-3-induced promotion of colorectal cancer invasion by stimulating tumor-associated macrophage infiltration. Mol Cancer Ther. 2018;17:276–89.

    Article  PubMed  CAS  Google Scholar 

  40. Xu H, Zeng Y, Liu L, Gao Q, Jin S, Lan Q, et al. PRL-3 improves colorectal cancer cell proliferation and invasion through IL-8 mediated glycolysis metabolism. Int J Oncol. 2017;51:1271–9.

    Article  PubMed  CAS  Google Scholar 

  41. Xing C, Lu XX, Guo PD, Shen T, Zhang S, He XS, et al. Ubiquitin-specific protease 4-mediated deubiquitination and stabilization of PRL-3 is required for potentiating colorectal oncogenesis. Cancer Res. 2016;76:83–95.

    Article  PubMed  CAS  Google Scholar 

  42. Funato Y, Yoshida A, Hirata Y, Hashizume O, Yamazaki D, Miki H. The oncogenic PRL protein causes acid addiction of cells by stimulating lysosomal exocytosis. Dev Cell. 2020;55:387–397.e8.

    Article  PubMed  CAS  Google Scholar 

  43. Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013;31:413–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Leung WH, Vong QP, Lin W, Bouck D, Wendt S, Sullivan E, et al. PRL-3 mediates the protein maturation of ULBP2 by regulating the tyrosine phosphorylation of HSP60. J Immunol Baltim Md. 2015;194:2930–41.

    CAS  Google Scholar 

  45. Liu C, Zhong W, Xia L, Fang C, Liu H, Liu X. A retrospective cohort study of clinical value of PRL-3 in stage III human colorectal cancer. Medicine. 2021;100:e25658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. Ca Cancer J Clin. 2022;72:7–33.

    PubMed  Google Scholar 

  47. Li Z, Cao Y, Jie Z, Liu Y, Li Y, Li J, et al. miR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3. Cancer Lett. 2012;323:41–7.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang C, Tian W, Meng L, Qu L, Shou C. PRL-3 promotes gastric cancer migration and invasion through a NF-κB-HIF-1α-miR-210 axis. J Mol Med Berl Ger. 2016;94:401–15.

    Article  Google Scholar 

  49. Turaga KK, Gamblin TC, Pappas S. Surgical treatment of peritoneal carcinomatosis from gastric cancer. Int J Surg Oncol. 2012;2012:405652.

    PubMed  PubMed Central  Google Scholar 

  50. Xiong J, Li Z, Zhang Y, Li D, Zhang G, Luo X, et al. PRL-3 promotes the peritoneal metastasis of gastric cancer through the PI3K/Akt signaling pathway by regulating PTEN. Oncol Rep. 2016;36:1819–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhang Y, Li Z, Fan X, Xiong J, Zhang G, Luo X, et al. PRL-3 promotes gastric cancer peritoneal metastasis via the PI3K/AKT signaling pathway in vitro and in vivo. Oncol Lett. 2018;15:9069–74.

    PubMed  PubMed Central  Google Scholar 

  52. Zhou Q, Zhou Q, Liu Q, He Z, Yan Y, Lin J, et al. PRL-3 facilitates hepatocellular carcinoma progression by co-amplifying with and activating FAK. Theranostics. 2020;10:10345–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet Lond Engl. 2020;395:1146–62.

    Article  CAS  Google Scholar 

  54. Hjort MA, Abdollahi P, Vandsemb EN, Fenstad MH, Lund B, Slørdahl TS, et al. Phosphatase of regenerating liver-3 is expressed in acute lymphoblastic leukemia and mediates leukemic cell adhesion, migration and drug resistance. Oncotarget. 2017;9:3549–61.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Garcia EG, Veloso A, Oliveira ML, Allen JR, Loontiens S, Brunson D, et al. PRL3 enhances T-cell acute lymphoblastic leukemia growth through suppressing T-cell signaling pathways and apoptosis. Leukemia. 2021;35:679–90.

    Article  PubMed  CAS  Google Scholar 

  56. Chong PSY, Zhou J, Chooi JY, Chan ZL, Toh SHM, Tan TZ, et al. Non-canonical activation of β-catenin by PRL-3 phosphatase in acute myeloid leukemia. Oncogene. 2019;38:1508–19.

    Article  PubMed  CAS  Google Scholar 

  57. Zhou J, Toh SHM, Chan ZL, Quah JY, Chooi JY, Tan TZ, et al. A loss-of-function genetic screening reveals synergistic targeting of AKT/mTOR and WTN/β-catenin pathways for treatment of AML with high PRL-3 phosphatase. J Hematol Oncol J Hematol Oncol. 2018;11:36.

    Article  PubMed  Google Scholar 

  58. Chen X, Rong D, Cai W, Tong X, Wang H. The combination of PRL-3 inhibitor with sorafenib synergistically promotes AML apoptosis. Neoplasma. 2021;68:832–41.

    Article  PubMed  CAS  Google Scholar 

  59. Hjort MA, Hov H, Abdollahi P, Vandsemb EN, Fagerli UM, Lund B, et al. Phosphatase of regenerating liver-3 (PRL-3) is overexpressed in classical Hodgkin lymphoma and promotes survival and migration. Exp Hematol Oncol. 2018;7:8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chong PSY, Chng WJ, de Mel S. STAT3: a promising therapeutic target in multiple myeloma. Cancers. 2019;11:731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Abdollahi, Vandsemb P, Elsaadi EN, Røst S, Yang R LM, Hjort MA, et al. Phosphatase of regenerating liver-3 regulates cancer cell metabolism in multiple myeloma. FASEB J Publ Fed Am Soc Exp Biol. 2021;35:e21344.

    CAS  Google Scholar 

  62. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.

    Article  PubMed  Google Scholar 

  63. Mu N, Gu J, Liu N, Xue X, Shu Z, Zhang K, et al. PRL-3 is a potential glioblastoma prognostic marker and promotes glioblastoma progression by enhancing MMP7 through the ERK and JNK pathways. Theranostics. 2018;8:1527–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Foy M, Anézo O, Saule S, Planque N. PRL-3/PTP4A3 phosphatase regulates integrin Β1 in adhesion structures during migration of human ocular melanoma cells. Exp Cell Res. 2017;353:88–99.

    Article  PubMed  CAS  Google Scholar 

  65. McQueeney KE, Salamoun JM, Burnett JC, Barabutis N, Pekic P, Lewandowski SL, et al. Targeting ovarian cancer and endothelium with an allosteric PTP4A3 phosphatase inhibitor. Oncotarget. 2018;9:8223–40.

    Article  PubMed  Google Scholar 

  66. Lazo JS, Isbell KN, Vasa SA, Llaneza DC, Rastelli EJ, Wipf P, et al. Disruption of ovarian cancer STAT3 and P38 signaling with a small-molecule inhibitor of PTP4A3 phosphatase. J Pharmacol Exp Ther. 2023;384:429–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Shi Y, Xu S, Ngoi NYL, Zeng Q, Ye Z. PRL-3 Dephosphorylates P38 MAPK to promote cell survival under stress. Free Radic Biol Med. 2021;177:72–87.

    Article  PubMed  CAS  Google Scholar 

  68. Radke I, Götte M, Smollich M, Scharle N, Kiesel L, Wülfing P. Expression of PRL-3 regulates proliferation and invasion of breast cancer cells in vitro. Arch Gynecol Obstet. 2017;296:1153–60.

    Article  PubMed  CAS  Google Scholar 

  69. Xie H, Wang H. PRL-3 promotes breast cancer progression by downregulating P14(ARF)-mediated P53 expression.PRL-3 promotes breast cancer progression by downregulating P14(ARF)-mediated P53 expression. Oncol Lett. 2018;15:2795–800.

    PubMed  Google Scholar 

  70. Gari HH, Gearheart CM, Fosmire S, DeGala GD, Fan Z, Torkko KC, et al. Genome-wide functional genetic screen with the anticancer agent AMPI-109 identifies PRL-3 as an oncogenic driver in triple-negative breast cancers. Oncotarget. 2016;7:15757–71.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gari HH, DeGala GD, Ray R, Lucia MS, Lambert JR. PRL-3 engages the focal adhesion pathway in triple-negative breast cancer cells to alter actin structure and substrate adhesion properties critical for cell migration and invasion. Cancer Lett. 2016;380:505–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Gari HH, DeGala GD, Lucia MS, Lambert JR. Loss of the oncogenic phosphatase PRL-3 promotes a TNF-R1 feedback loop that mediates triple-negative breast cancer growth. Oncogenesis. 2016;5:e255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ye Z, Ng CP, Liu H, Bao Q, Xu S, Zu D, et al. PRL1 and PRL3 promote macropinocytosis via its lipid phosphatase activity. Theranostics. 2024;14:3423–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yamashita S, Masuda Y, Matsumoto K, Okumura Y, Matsuzaki H, Kurizaki T, et al. Down-regulation of the human PRL-3 gene is associated with the metastasis of primary non-small cell lung cancer. Ann Thorac Cardiovasc Surg J Assoc Thorac Cardiovasc Surg Asia. 2007;13:236–9.

    Google Scholar 

  75. Lin SY, Lee YX, Yu SL, Chang GC, Chen JJW. Phosphatase of regenerating liver-3 inhibits invasiveness and proliferation in non-small cell lung cancer by regulating the epithelial-mesenchymal transition. Oncotarget. 2016;7:21799–811.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ahn JH, Kim SJ, Park WS, Cho SY, Ha JD, Kim SS, et al. Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorg Med Chem Lett. 2006;16:2996–9.

    Article  PubMed  CAS  Google Scholar 

  77. Mendgen T, Steuer C, Klein CD. Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry. J Med Chem. 2012;55:743–53.

    Article  PubMed  CAS  Google Scholar 

  78. Daouti S, Li W, Qian H, Huang KS, Holmgren J, Levin W, et al. A selective phosphatase of regenerating liver phosphatase inhibitor suppresses tumor cell anchorage-independent growth by a novel mechanism involving p130Cas cleavage. Cancer Res. 2008;68:1162–9.

    Article  PubMed  CAS  Google Scholar 

  79. Salamoun JM, McQueeney KE, Patil K, Geib SJ, Sharlow ER, Lazo JS, et al. Photooxygenation of an amino-thienopyridone yields a more potent PTP4A3 inhibitor. Org Biomol Chem. 2016;14:6398–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Rivas DR, Dela Cerna MVC, Smith CN, Sampathi S, Patty BG, Lee D, et al. A screen of FDA-approved drugs identifies inhibitors of protein tyrosine phosphatase 4A3 (PTP4A3 or PRL-3). Sci Rep. 2021;11:10302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Bennett GM, Starczewski J, dela Cerna MVC. In silico identification of putative druggable pockets in PRL3, a significant oncology target. Biochem Biophys Rep. 2024;39:101767.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Thura M, Al-Aidaroos AQO, Yong WP, Kono K, Gupta A, Lin YB, et al. PRL3-Zumab, a first-in-class humanized antibody for cancer therapy. JCI Insight. 2016;1:e87607.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Thura M, Al-Aidaroos AQ, Gupta A, Chee CE, Lee SC, Hui KM, et al. PRL3-Zumab as an immunotherapy to inhibit tumors expressing PRL3 oncoprotein. Nat Commun. 2019;10:2484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Chee CE, Ooi M, Lee SC, Sundar R, Heong V, Yong WP, et al. A phase I, first-in-human study of PRL3-Zumab in advanced, refractory solid tumors and hematological malignancies. Target Oncol. 2023;18:391–402.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Loh AHP, Thura M, Gupta A, Tan SH, Kuan KKY, Ang KH, et al. Exploiting frequent and specific expression of PRL3 in pediatric solid tumors for first-in-child use of PRL3-Zumab humanized antibody. Mol Ther Oncolytics. 2023;30:153–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Thura M, Ye Z, Al-Aidaroos AQ, Xiong Q, Ong JY, Gupta A, et al. PRL3 induces polypoid giant cancer cells eliminated by PRL3-Zumab to reduce tumor relapse. Commun Biol. 2021;4:923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sun S, Meng L, Xing X, Li N, Song Q, Qiao D, et al. Anti-PRL-3 monoclonal antibody inhibits the growth and metastasis of colorectal adenocarcinoma. J Cancer. 2023;14:2585–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wang J, Yao X, Huang J. New tricks for human farnesyltransferase inhibitor: cancer and beyond. MedChemComm. 2017;8:841–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Funato Y, Hashizume O, Miki H. Phosphatase‐independent role of phosphatase of regenerating liver in cancer progression. Cancer Sci. 2022;114:25–33.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Shanghai Science and Technology Development Funds (24YF2755300), Guangdong High-level New R&D Institute (2019B090904008), and Guangdong High-level Innovative Research Institute (2021B0909050003). Additionally, we are grateful for the insightful exchanges with our lab colleagues.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-long Wang, Yu-bo Zhou or Jia Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Zt., Mao, Jl., Huang, Cy. et al. PRL-3: unveiling a new horizon in cancer therapy. Acta Pharmacol Sin 46, 2597–2607 (2025). https://doi.org/10.1038/s41401-025-01563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01563-1

Keywords

Search

Quick links