Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ursolic acid derivative UA312 ameliorates ionizing radiation-induced cardiotoxicity and neurodevelopmental toxicity in zebrafish via targeting chrna3 and grik5

Abstract

The biological damage caused by ionizing radiation (IR) depends not only on the time and doses of exposure to tissue components but also on the developmental state of the cells. Currently, amifostine is the only radiation-protective agent used for clinical indications related to radiation therapy, but this compound has multiple drawbacks including high toxicity, short half-life and no protective effect on the nervous system. Ursolic acid (UA), a natural pentacyclic triterpenoid that exhibits multiple protective effects including anti-inflammatory, anticarcinogenic, and antioxidant effects. Due to its poor solubility and bioavailability, UA is mostly administered with liposomes. In this study we investigated the impact of UA312, an optimized derivative of UA, on radiation-induced developmental toxicity in zebrafish embryos and larvae. Embryo and larvae survival were observed at 4, 24, 48, and 72 hpf. UA312 was administered at 3 hpf, while embryos were irradiated with 6 Gy of γ-irradiation (dose rate: 0.88 Gy/min) at 4 hpf, then the embryos were moved to a fresh buffer. We determined that 40 µM of UA312 was a safe concentration for zebrafish embryos and larvae. We found that treatment with UA312 (40 µM) restored IR-induced early developmental dysplasia of the zebrafish embryos and larvae. Transcriptomic analysis revealed that exposure to IR inhibited multiple pathways related to neurodevelopment and cardiomyocyte function in zebrafish, which were validated by assessing abnormal cardiac morphology, variations in neurotransmitter levels and alterations in locomotor behavior; and that UA312 treatment ameliorated these alterations. We demonstrated that UA312 treatment significantly reversed the related signaling pathways by targeting chrna3 and grik5. In conclusion, this study identified a promising radioprotective drug, UA312, which alleviates IR-induced cardiotoxicity and neurodevelopmental toxicity in zebrafish by targeting chrna3 and grik5. UA312 may be developed as a novel radioprotective agent against acute IR damage in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: UA312 is safe and less toxic for zebrafish embryos and larvae.
Fig. 2: UA312 significantly improved IR-induced developmental toxicity in zebrafish embryos and larvae.
Fig. 3: Transcriptome analysis predicted that UA312 mediates cardiac protection and neuroprotection after IR damage.
Fig. 4: UA312 alleviated IR-induced cardiac damage in zebrafish.
Fig. 5: UA312 altered IR-reduced motor behavior in zebrafish larvae.
Fig. 6: UA312 improved the cardiac protection and neuroprotection function of IR damage by targeting chrna3 and grik5.
Fig. 7: UA312 improved the cardiac protection and neuroprotection function of IR damage in mice.
Fig. 8: UA312 protects zebrafish from IR by targeting chran3 and grik5 to improve cardiac toxicity and neurological damage.

Similar content being viewed by others

References

  1. Painuli S, Kumar N. Prospects in the development of natural radioprotective therapeutics with anti-cancer properties from the plants of Uttarakhand region of India. J Ayurveda Integr Med. 2016;7:62–68.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jit BP, Pattnaik S, Arya R, Dash R, Sahoo SS, Pradhan B, et al. Phytochemicals: a potential next generation agent for radioprotection. Phytomedicine. 2022;106:154188.

    Article  PubMed  CAS  Google Scholar 

  3. Hosseinimehr SJ. Trends in the development of radioprotective agents. Drug Discov Today. 2007;12:794–805.

    Article  PubMed  CAS  Google Scholar 

  4. Kouvaris JR, Kouloulias VE, Vlahos LJ. Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist. 2007;12:738–47.

    Article  PubMed  CAS  Google Scholar 

  5. Liu G, Zeng Y, Lv T, Mao T, Wei Y, Jia S, et al. High-throughput preparation of radioprotective polymers via Hantzsch’s reaction for in vivo X-ray damage determination. Nat Commun. 2020;11:6214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sakuma K, Yamaguchi A. Novel intriguing strategies attenuating to sarcopenia. J Aging Res. 2012;2012:251217.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bakhtiari N, Hosseinkhani S, Soleimani M, Hemmati R, Noori-Zadeh A, Javan M, et al. Short-term ursolic acid promotes skeletal muscle rejuvenation through enhancing of SIRT1 expression and satellite cells proliferation. Biomed Pharmacother. 2016;78:185–96.

    Article  PubMed  CAS  Google Scholar 

  8. Seo DY, Lee SR, Heo JW, No MH, Rhee BD, Ko KS, et al. Ursolic acid in health and disease. Korean J Physiol Pharmacol. 2018;22:235–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Senthil S, Chandramohan G, Pugalendi KV. Isomers (oleanolic and ursolic acids) differ in their protective effect against isoproterenol-induced myocardial ischemia in rats. Int J Cardiol. 2007;119:131–3.

    Article  PubMed  CAS  Google Scholar 

  10. Pucci G, Forte GI, Cavalieri V. Evaluation of epigenetic and radiomodifying effects during radiotherapy treatments in zebrafish. Int J Mol Sci. 2021;22:9053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Oprisoreanu AM, Ryan F, Richmond C, Dzekhtsiarova Y, Carragher NO, Becker T, et al. Drug screening in zebrafish larvae reveals inflammation-related modulators of secondary damage after spinal cord injury in mice. Theranostics. 2023;13:2531–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Suppermpool A, Lyons DG, Broom E, Rihel J. Sleep pressure modulates single-neuron synapse number in zebrafish. Nature. 2024;629:639–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang L, Li X, Yuan Q, Sun S, Liu F, Liao X, et al. Isavuconazole induces neurodevelopment defects and motor behaviour impairment in zebrafish larvae. Mol Neurobiol. 2024;61:10072–82.

    Article  PubMed  CAS  Google Scholar 

  15. Gaballah S, Swank A, Sobus JR, Howey XM, Schmid J, Catron T, et al. Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to genx and other PFAS. Environ Health Perspect. 2020;128:47005.

    Article  PubMed  CAS  Google Scholar 

  16. Barrett C, Hellickson I, Ben-Avi L, Lamb D, Krahenbuhl M, Cerveny KL. Impact of low-level ionizing radiation on cell death during zebrafish embryonic development. Health Phys. 2018;114:421–8.

    Article  PubMed  CAS  Google Scholar 

  17. Zhao W, Hu N, Ding D, Long D, Li S, Li G, et al. Developmental toxicity and apoptosis in zebrafish embryos induced by low-dose gamma-ray irradiation. Environ Sci Pollut Res Int. 2019;26:3869–81.

    Article  PubMed  CAS  Google Scholar 

  18. Geiger GA, Parker SE, Beothy AP, Tucker JA, Mullins MC, Kao GD. Zebrafish as a “biosensor”? Effects of ionizing radiation and amifostine on embryonic viability and development. Cancer Res. 2006;66:8172–81.

    Article  PubMed  CAS  Google Scholar 

  19. Cousin MA, Ebbert JO, Wiinamaki AR, Urban MD, Argue DP, Ekker SC, et al. Larval zebrafish model for FDA-approved drug repositioning for tobacco dependence treatment. PLoS One. 2014;9:e90467.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rovira M, Huang W, Yusuff S, Shim JS, Ferrante AA, Liu JO, et al. Chemical screen identifies FDA-approved drugs and target pathways that induce precocious pancreatic endocrine differentiation. Proc Natl Acad Sci USA. 2011;108:19264–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shang Y, Zhang S, Cheng Y, Feng G, Dong Y, Li H, et al. Tetrabromobisphenol a exacerbates the overall radioactive hazard to zebrafish (Danio rerio). Environ Pollut. 2023;316:120424.

    Article  PubMed  CAS  Google Scholar 

  22. Muir WW, Hamlin RL. Myocardial contractility: historical and contemporary considerations. Front Physiol. 2020;31:222. 11

    Article  Google Scholar 

  23. Zhu X, Wang C, Duan X, Liang B, Genbo Xu E, Huang Z. Micro- and nanoplastics: A new cardiovascular risk factor? Environ Int. 2023;171:107662.

    Article  PubMed  CAS  Google Scholar 

  24. Kim Y, Jeon HJ, Kim K, Kim C, Moon JK, Hwang KW, et al. Enantioselective effect of trifloxystrobin in early-stage zebrafish (Danio rerio) embryos: Cardiac abnormalities impacted by E,E-trifloxystrobin enantiomer. Environ Pollut (Barking, Essex : 1987). 2023;327:121537.

    Article  CAS  Google Scholar 

  25. Wang J, Li H, Liu Y, Andrzejczyk NE, Qiao K, Ma Y, et al. Contribution of immune responses to the cardiotoxicity and hepatotoxicity of deltamethrin in early life stage zebrafish (Danio rerio). Environ Sci Technol. 2024;58:9515–24.

    Article  PubMed  CAS  Google Scholar 

  26. Gentry CL, Lukas RJ. Local anesthetics noncompetitively inhibit function of four distinct nicotinic acetylcholine receptor subtypes. J Pharmacol Exp Ther. 2001;299:1038–48.

    Article  PubMed  CAS  Google Scholar 

  27. More JC, Nistico R, Dolman NP, Clarke VR, Alt AJ, Ogden AM, et al. Characterisation of UBP296: a novel, potent and selective kainate receptor antagonist. Neuropharmacology. 2004;47:46–64.

    Article  PubMed  CAS  Google Scholar 

  28. Diaz Ruiz A, Mendez Armenta M, Galván Arzate S, Manjarrez J, Nava Ruiz C, Santander I, et al. Antioxidant, anticonvulsive and neuroprotective effects of dapsone and phenobarbital against kainic acid-induced damage in rats. Neurochem Res. 2013;38:1819–27.

    Article  PubMed  CAS  Google Scholar 

  29. Rigotti NA, Benowitz NL, Prochaska J, Leischow S, Nides M, Blumenstein B, et al. Cytisinicline for smoking cessation: a randomized clinical trial. JAMA. 2023;330:152–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Rigotti NA, Benowitz NL, Prochaska JJ, Cain DF, Ball J, Clarke A, et al. Cytisinicline for vaping cessation in adults using nicotine e-cigarettes: the orca-v1 randomized clinical trial. JAMA Intern Med. 2024;184:922–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Webb AJ, Harper E, Rattay T, Aguado Barrera ME, Azria D, Bourgier C, et al. Treatment time and circadian genotype interact to influence radiotherapy side-effects. A prospective European validation study using the REQUITE cohort. EBioMedicine. 2022;84:104269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Karaca Y, Beauvois S, Paesmans M, Mokhtari Z, Dequanter D, Wardi CA, et al. Retrospective study evaluating dental side effects of radiotherapy in patients treated for head and neck cancer. J Stomatol Oral Maxillofac Surg. 2024;125:101858.

    Article  PubMed  CAS  Google Scholar 

  33. Cihan YB. Use of botulinum toxin in the management of radiotherapy side effects. Klin Onkol. 2023;36:348–52.

    PubMed  CAS  Google Scholar 

  34. King M, Joseph S, Albert A, Thomas TV, Nittala MR, Woods WC, et al. Use of amifostine for cytoprotection during radiation therapy: a review. oncology. 2020;98:61–80.

    Article  PubMed  CAS  Google Scholar 

  35. Ji L, Cui P, Zhou S, Qiu L, Huang H, Wang C, et al. Advances of amifostine in radiation protection: administration and delivery. Mol Pharmacol. 2023;20:5383–95.

    Article  CAS  Google Scholar 

  36. Nisar S, Masoodi T, Prabhu KS, Kuttikrishnan S, Zarif L, Khatoon S, et al. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed Pharmacother. 2022;154:113610.

    Article  PubMed  CAS  Google Scholar 

  37. Fischer N, Seo EJ, Efferth T. Prevention from radiation damage by natural products. Phytomedicine. 2018;47:192–200.

    Article  PubMed  CAS  Google Scholar 

  38. Pitaloka DAE, Syaputri Y, Nurlilasari P, Khairunnisa SF, Saallah S. Promising ursolic acid as a novel antituberculosis agent: current progress and challenges. Drug Des Devel Ther. 2024;18:1969–79.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen L, Li F, Ni JH, Hao YX, Feng G, Shen XY, et al. Ursolic acid alleviates lupus nephritis by suppressing SUMO1-mediated stabilization of NLRP3. Phytomedicine. 2024;130:155556.

    Article  PubMed  CAS  Google Scholar 

  40. Besasie BD, Saha A, DiGiovanni J, Liss MA. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia. 2024;91:90–106.

    Article  PubMed  Google Scholar 

  41. Hurem S, Martin LM, Lindeman L, Brede DA, Salbu B, Lyche JL, et al. Parental exposure to gamma radiation causes progressively altered transcriptomes linked to adverse effects in zebrafish offspring. Environ Pollut. 2018;234:855–63.

    Article  PubMed  CAS  Google Scholar 

  42. Noemie G, Beatrice G, Virginie C, Isabelle C, Fabien P, Patrice G, et al. Multigenerational exposure to gamma radiation affects offspring differently over generations in zebrafish. Aquat Toxicol. 2022;244:106101.

    Article  PubMed  CAS  Google Scholar 

  43. Zhao W, Mao L, He C, Ding D, Hu N, Song X, et al. Effects of low dose radiation on behavior rhythm of zebrafish (Danio rerio). Ecotoxicol Environ Saf. 2023;255:114779.

    Article  PubMed  CAS  Google Scholar 

  44. Freeman JL, Weber GJ, Peterson SM, Nie LH. Embryonic ionizing radiation exposure results in expression alterations of genes associated with cardiovascular and neurological development, function, and disease and modified cardiovascular function in zebrafish. Front Genet. 2014;5:268.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhou R, Si J, Zhang H, Wang Z, Li J, Zhou X, et al. The effects of x-ray radiation on the eye development of zebrafish. Hum Exp Toxicol. 2014;33:1040–50.

    Article  PubMed  CAS  Google Scholar 

  46. Lin E, Shafaattalab S, Gill J, Al-Zeer B, Craig C, Lamothe M, et al. Physiological phenotyping of the adult zebrafish heart. Mar Genomics. 2020;49:100701.

    Article  PubMed  Google Scholar 

  47. Jiang Y, Li J, Ren F, Ji C, Aniagu S, Chen T. PM2.5-induced extensive DNA methylation changes in the heart of zebrafish embryos and the protective effect of folic acid. Environ Pollut. 2019;255:113331.

    Article  PubMed  CAS  Google Scholar 

  48. Vornanen M, Hassinen M. Zebrafish heart as a model for human cardiac electrophysiology. Channels (Austin). 2016;10:101–10.

    Article  PubMed  Google Scholar 

  49. Nemtsas P, Wettwer E, Christ T, Weidinger G, Ravens U. Adult zebrafish heart as a model for human heart? An electrophysiological study. J Mol Cell Cardiol. 2010;48:161–71.

    Article  PubMed  CAS  Google Scholar 

  50. Hou Y, Shang Y, Xu F, Li T, Li M, Wei L, et al. Ionizing radiation induces neurotoxicity in Xenopus laevis embryos through neuroactive ligand-receptor interaction pathway. Environ Res. 2024;256:119237.

    Article  PubMed  CAS  Google Scholar 

  51. Borg M. Radiation injury to the rectum and amifostine. Support Cancer Ther. 2006;3:251–3.

    Article  PubMed  CAS  Google Scholar 

  52. Singh VK, Seed TM. The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin Drug Saf. 2019;18:1077–90.

    Article  PubMed  CAS  Google Scholar 

  53. Shibao CA, Joos K, Phillips JA 3rd, Cogan J, Newman JH, Hamid R, et al. Familial autonomic ganglionopathy caused by rare chrna3 genetic variants. Neurology. 2021;97:e145–e155.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Petroff OA. GABA and glutamate in the human brain. Neuroscientist. 2002;8:562–73.

    Article  PubMed  CAS  Google Scholar 

  55. Ribeiro FM, Vieira LB, Pires RG, Olmo RP, Ferguson SS. Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res. 2017;115:179–91.

    Article  PubMed  CAS  Google Scholar 

  56. Xie Z, Ke Y, Li Z, Chen J, Lei D, Chen G, et al. GRIK5 stimulates colon cancer growth and metastasis through cAMP/PKA/CADM3 signaling. Cell Biol Int. 2023;47:1259–66.

    Article  PubMed  CAS  Google Scholar 

  57. Chew LJ, Yuan X, Scherer SE, Qie L, Huang F, Hayes WP, et al. Characterization of the rat GRIK5 kainate receptor subunit gene promoter and its intragenic regions involved in neural cell specificity. J Biol Chem. 2001;276:42162–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82202950, 82104012 and 82303681), the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2021-I2M-1-042), the Chinese Academy of Medical Sciences Innovation Fund for National Medical Health Science and Technology Platform (2022-I2M-2-003), and Natural Science Foundation of Tianjin City (24JCQNJC01100).

Author information

Authors and Affiliations

Authors

Contributions

FFX, YS, HQW, and WYZ designed, conducted, and validated the experiments. FFX and YS drafted the manuscript. HQW and WYZ collected and analyzed the data. LXW and TH performed zebrafish feeding and embryo collection. SQZ, YLL, HHS, and WBH involved in regular discussions and manuscript revisions. WFG, SJF, and YLL designed, reviewed and revised the paper. All the authors revised and approved the manuscript. FFX, HQW, WFG, SJF, and YLL provided funding support.

Corresponding authors

Correspondence to Wen-feng Gou, Sai-jun Fan or Yi-liang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Ff., Shang, Y., Wei, Hq. et al. Ursolic acid derivative UA312 ameliorates ionizing radiation-induced cardiotoxicity and neurodevelopmental toxicity in zebrafish via targeting chrna3 and grik5. Acta Pharmacol Sin 46, 2677–2692 (2025). https://doi.org/10.1038/s41401-025-01564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01564-0

Keywords

Search

Quick links