Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

OTUD1 positively regulates microglia neuroinflammation and promotes the pathogenesis of Alzheimer’s disease by deubiquitinating C/EBPβ

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Microglia-mediated neuroinflammation is closely associated with AD pathogenesis. Abnormal deubiquitinating enzyme (DUB) expression is associated with neuroinflammation. Identification of functional DUBs in microglia may provide novel targets for AD treatment. Here, we found that the levels of DUB, ovarian tumor deubiquitinase 1 (OTUD1), were upregulated in AD model mice and amyloid-beta-induced microglia. OTUD1 knockdown in microglia significantly inhibited neuroinflammation, thereby improving cognitive impairment in AD model mice. Liquid chromatography-tandem mass spectrometry analysis coupled with co-immunoprecipitation revealed the CCAAT/enhancer-binding protein β (C/EBPβ), a key transcription factor regulating microglial inflammation, as an OTUD1-interacting protein. Mechanistically, OTUD1 bound to C/EBPβ and maintained its stability by removing the K48 ubiquitin chain at K253 of C/EBPβ, thereby activating the C/EBPβ–nuclear factor-κB-mediated inflammatory responses in microglia. Overall, our results revealed the roles of the OTUD1–C/EBPβ axis in mediating the microglial inflammatory responses and AD pathology, facilitating the development of new strategies targeting microglial neuroinflammation for AD treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OTUD1 is upregulated in different AD model mice and Aβ-induced BV2 cells.
Fig. 2: OTUD1 knockout improves cognitive disfunction and synaptic impairment in Aβ model mice.
Fig. 3: OTUD1 knockdown improves neuroinflammation in Aβ infused mice.
Fig. 4: Microglia OTUD1 knockdown improves cognitive impairment and synaptic function in 3×Tg model mice.
Fig. 5: Microglia OTUD1 inhibition reduces Aβ-induced inflammation and neuronal cell damage.
Fig. 6: OTUD1 directly interacts with C/EBPβ.
Fig. 7: OTUD1 regulates the stability of C/EBPβ.
Fig. 8: OTUD1 regulates the expression of C/EBPβ through deubiquitination.

Similar content being viewed by others

References

  1. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023;19:1598–695.

  2. Sharma H, Chang K-A, Hulme J, An SSA. Mammalian models in Alzheimer’s research: an update. Cells. 2023;12:2459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Srivastava S, Ahmad R, Khare SK. Alzheimer’s disease and its treatment by different approaches: A review. Eur J Med Chem. 2021;216:113320.

    Article  PubMed  CAS  Google Scholar 

  4. Ocañas SR, Pham KD, Cox JEJ, Keck AW, Ko S, Ampadu FA, et al. Microglial senescence contributes to female-biased neuroinflammation in the aging mouse hippocampus: implications for Alzheimer’s disease. J Neuroinflammation. 2023;20:188.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yang Y, García-Cruzado M, Zeng H, Camprubí-Ferrer L, Bahatyrevich-Kharitonik B, Bachiller S, et al. LPS priming before plaque deposition impedes microglial activation and restrains Aβ pathology in the 5xFAD mouse model of Alzheimer’s disease. Brain Behav Immun. 2023;113:228–47.

    Article  PubMed  CAS  Google Scholar 

  6. Schaffer Aguzzoli C, Ferreira PCL, Povala G, Ferrari-Souza JP, Bellaver B, Soares Katz C, et al. Neuropsychiatric symptoms and microglial activation in patients with Alzheimer disease. JAMA Netw Open. 2023;6:e2345175.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lin J, Zheng Y, Zhao N, Cui F, Wu S. Herpesvirus latent infection promotes stroke via activating the OTUD1/NF-κB signaling pathway. Aging (Albany NY). 2023;15:8976–92.

    Article  PubMed  CAS  Google Scholar 

  8. Oikawa D, Gi M, Kosako H, Shimizu K, Takahashi H, Shiota M, et al. OTUD1 deubiquitinase regulates NF-κB- and KEAP1-mediated inflammatory responses and reactive oxygen species-associated cell death pathways. Cell Death Dis. 2022;13:694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zhang Z, Wang D, Wang P, Zhao Y, You F. OTUD1 negatively regulates type I IFN induction by disrupting noncanonical ubiquitination of IRF3. J Immunol. 2020;204:1904–18.

    Article  PubMed  CAS  Google Scholar 

  10. Lu D, Song J, Sun Y, Qi F, Liu L, Jin Y, et al. Mutations of deubiquitinase OTUD1 are associated with autoimmune disorders. J Autoimmun. 2018;94:156–65.

    Article  PubMed  CAS  Google Scholar 

  11. Wang M, Han X, Yu T, Wang M, Luo W, Zou C, et al. OTUD1 promotes pathological cardiac remodeling and heart failure by targeting STAT3 in cardiomyocytes. Theranostics. 2023;13:2263–80.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang M, Yu T, Wang Q, Han X, Hu X, Ye S, et al. OTUD1 promotes hypertensive kidney fibrosis and injury by deubiquitinating CDK9 in renal epithelial cells. Acta Pharmacol Sin. 2023;45:765–76.

  13. Sun J, Li L, Xiong L, Chen F, She L, Tang H, et al. Parthenolide alleviates cognitive dysfunction and neurotoxicity via regulation of AMPK/GSK3β(Ser9)/Nrf2 signaling pathway. Biomed Pharmacother. 2023;169:115909.

    Article  PubMed  CAS  Google Scholar 

  14. She L, She L, Sun J, Xiong L, Li A, Li L, et al. Ginsenoside RK1 improves cognitive impairments and pathological changes in Alzheimer’s disease via stimulation of the AMPK/Nrf2 signaling pathway. Phytomedicine. 2024;122:155168.

    Article  PubMed  CAS  Google Scholar 

  15. Li Y, Zhang ZH, Huang SL, Yue ZB, Yin XS, Feng ZQ, et al. Whey protein powder with milk fat globule membrane attenuates Alzheimer’s disease pathology in 3×Tg-AD mice by modulating neuroinflammation through the peroxisome proliferator-activated receptor γ signaling pathway. J Dairy Sci. 2023;106:5253–65.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao X, Sun J, Xiong L, She L, Li L, Tang H, et al. β-amyloid binds to microglia Dectin-1 to induce inflammatory response in the pathogenesis of Alzheimer’s disease. Int J Biol Sci. 2023;19:3249–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Huang Z, Shen S, Wang M, Li W, Wu G, Huang W, et al. Mouse endothelial OTUD1 promotes angiotensin II‐induced vascular remodeling by deubiquitinating SMAD3. EMBO Rep. 2023;24:e56135.

    Article  PubMed  CAS  Google Scholar 

  18. Ali M, Garcia P, Lunkes LP, Sciortino A, Thomas M, Heurtaux T, et al. Single cell transcriptome analysis of the THY-Tau22 mouse model of Alzheimer’s disease reveals sex-dependent dysregulations. Cell Death Discov. 2024;10:119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yan Y, Wang X, Chaput D, Shin MK, Koh Y, Gan L, et al. X-linked ubiquitin-specific peptidase 11 increases tauopathy vulnerability in women. Cell. 2022;185:3913–30.e19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ndoja A, Reja R, Lee SH, Webster JD, Ngu H, Rose CM, et al. Ubiquitin ligase COP1 suppresses neuroinflammation by degrading c/EBPβ in microglia. Cell. 2020;182:1156–69.e12.

    Article  PubMed  CAS  Google Scholar 

  21. Tsukada J, Yoshida Y, Kominato Y, Auron PE. The CCAAT/enhancer (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. Cytokine. 2011;54:6–19.

    Article  PubMed  CAS  Google Scholar 

  22. Leutz A, Pless O, Lappe M, Dittmar G, Kowenz-Leutz E. Crosstalk between phosphorylation and multi-site arginine/lysine methylation in C/EBPs. Transcription. 2011;2:3–8.

    Article  PubMed  Google Scholar 

  23. Yi-Bin W, Xiang L, Bing Y, Qi Z, Fei-Tong J, Minghong W, et al. Inhibition of the CEBPβ-NFκB interaction by nanocarrier-packaged carnosic acid ameliorates glia-mediated neuroinflammation and improves cognitive function in an Alzheimer’s disease model. Cell Death Dis. 2022;13:318.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mikami T, Majima S, Song H, Bode JW. Biocompatible lysine protecting groups for the chemoenzymatic synthesis of K48/K63 heterotypic and branched ubiquitin chains. ACS Cent Sci. 2023;9:1633–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hu H, Sun S-C. Ubiquitin signaling in immune responses. Cell Res. 2016;26:457–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tanji K, Mori F, Miki Y, Utsumi J, Sasaki H, Kakita A, et al. YOD1 attenuates neurogenic proteotoxicity through its deubiquitinating activity. Neurobiol Dis. 2018;112:14–23.

    Article  PubMed  CAS  Google Scholar 

  27. Zheng Q, Li G, Wang S, Zhou Y, Liu K, Gao Y, et al. Trisomy 21–induced dysregulation of microglial homeostasis in Alzheimer’s brains is mediated by USP25. Sci Adv. 2021;7:eabe1340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhang XW, Feng N, Liu YC, Guo Q, Wang JK, Bai YZ, et al. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy. Sci Adv. 2022;8:eabo0789.

  29. Song J, Zhang Y, Bai Y, Sun X, Lu Y, Guo Y, et al. The deubiquitinase OTUD1 suppresses secretory neutrophil polarization and ameliorates immunopathology of periodontitis. Adv Sci (Weinh). 2023;10:2303207.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang Z, Fan Y, Xie F, Zhou H, Jin K, Shao L, et al. Breast cancer metastasis suppressor OTUD1 deubiquitinates SMAD7. Nat Commun. 2017;8:2116.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther. 2023;8:359.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cheng J, Dong Y, Ma J, Pan R, Liao Y, Kong X, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer’s disease pathology. Sci Adv. 2021;7:eabe3600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Li Z, Chu S, He W, Zhang Z, Liu J, Cui L, et al. A20 as a novel target for the anti-neuroinflammatory effect of chrysin via inhibition of NF-κB signaling pathway. Brain Behav Immun. 2019;79:228–35.

    Article  PubMed  CAS  Google Scholar 

  34. Wang Y, Yang Z, Wang Q, Ren Y, Wang Q, Li Z, et al. Bavachin exerted anti-neuroinflammatory effects by regulation of A20 ubiquitin-editing complex. Int Immunopharmacol. 2021;100:108085.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang X, Liu T, Xu S, Gao P, Dong W, Liu W, et al. A pro-inflammatory mediator USP11 enhances the stability of p53 and inhibits KLF2 in intracerebral hemorrhage. Mol Ther Methods Clin Dev. 2021;21:681–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fonseca GJ, Seidman JS, Glass CK. Genome-wide approaches to defining macrophage identity and function. Microbiol Spectr. 2016;4:10.

  37. Srinivasan K, Friedman BA, Larson JL, Lauffer BE, Goldstein LD, Appling LL, et al. Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun. 2016:7:11295.

  38. Wang Z-H, Gong K, Liu X, Zhang Z, Sun X, Wei ZZ, et al. C/EBPβ regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer’s disease. Nat Commun. 2018;9:1784.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xu QQ, Su ZR, Yang W, Zhong M, Xian YF, Lin ZX, et al. Patchouli alcohol attenuates the cognitive deficits in a transgenic mouse model of Alzheimer’s disease via modulating neuropathology and gut microbiota through suppressing C/EBPβ/AEP pathway. J Neuroinflammation. 2023;20:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF, et al. Troxerutin counteracts domoic acid–induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein β–mediated inflammatory response and oxidative stress. J Immunol. 2013;190:3466–79.

    Article  PubMed  CAS  Google Scholar 

  41. Ren Q, Liu Z, Wu L, Yin G, Xie X, Kong W, et al. C/EBPβ: The structure, regulation, and its roles in inflammation-related diseases. Biomed Pharmacother. 2023;169:115938.

    Article  PubMed  CAS  Google Scholar 

  42. Xu J, Yu T, Pietronigro EC, Yuan J, Arioli J, Pei Y, et al. Peli1 impairs microglial Aβ phagocytosis through promoting C/EBPβ degradation. PLoS Biol. 2020;18:e3000837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Fu D, Lala-Tabbert N, Lee H, Wiper-Bergeron N. Mdm2 promotes myogenesis through the ubiquitination and degradation of CCAAT/enhancer-binding protein β. J Biol Chem. 2015;290:10200–7.

  44. Kim MS, Baek JH, Lee J, Sivaraman A, Lee K, Chun KH, et al. Deubiquitinase USP1 enhances CCAAT/enhancer-binding protein beta (C/EBPβ) stability and accelerates adipogenesis and lipid accumulation. Cell Death Dis. 2023;14:776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wang L, Wang P, Xu S, Li Z, Duan DD, Ye J, et al. The cross-talk between PARylation and SUMOylation in C/EBPβ at K134 site participates in pathological cardiac hypertrophy. Int J Biol Sci. 2022;18:783–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Zhejiang Province (ZCLQN25H3101 to LYS.), National Natural Science Foundation of China (21961142009 to GL), Zhejiang Provincial Key Scientific Project (2021C03041 to GL), and Medical and Health Science and Technology Project of Zhejiang Province (2024KY055 to XZ).

Author information

Authors and Affiliations

Authors

Contributions

GL and XZ contributed to the literature search and study design. LYS participated in the drafting of the article. LYS, LYL, HT, YQZ, FYG, JFS, LWL, and LX carried out the experiments. FC, QY and LJC contributed to data collection and analysis. WHZ contributes to methodology. GL and XZ revised the manuscript.

Corresponding authors

Correspondence to Xia Zhao or Guang Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, Ly., Li, Ly., Tang, H. et al. OTUD1 positively regulates microglia neuroinflammation and promotes the pathogenesis of Alzheimer’s disease by deubiquitinating C/EBPβ. Acta Pharmacol Sin 46, 2608–2621 (2025). https://doi.org/10.1038/s41401-025-01566-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01566-y

Keywords

Search

Quick links