Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dehydrotrametenolic acid methyl ester, a triterpenoid of Poria cocos, alleviates non-alcoholic steatohepatitis by suppressing NLRP3 inflammasome activation via targeting Caspase-1 in mice

Abstract

Non-alcoholic steatohepatitis (NASH) has emerged as a prevalent chronic liver disease with a huge unmet clinical need. A few studies have reported the beneficial effects of Poria cocos Wolf (P. cocos) extract on NASH mice, but the active components were still unknown. In this study we investigated the therapeutic effects of dehydrotrametenolic acid methyl ester (ZQS5029-1), a lanosterol-7,9(11)-diene triterpenes in P. cocos, in a high-fat diet plus CCl4 induced murine NASH model and a GAN diet induced ob/ob murine NASH model. The NASH mice were treated with ZQS5029-1 (75 mg·kg–1·d–1, i.g.) for 6 and 8 weeks, respectively. We showed that ZQS5029-1 treatment markedly relieved liver injury, inflammation and fibrosis in both the murine NASH models. We found that ZQS5029-1 treatment significantly suppressed hepatic NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in both the NASH murine models, and blocked lipopolysaccharides (LPS)+adenosine 5’-triphosphate (ATP)/Nigericin-induced NLRP3 inflammasome activation in bone marrow-derived macrophages (BMDMs) and Kupffer cells in vitro. We demonstrated that ZQS5029-1 directly bound to the H236 residue of mouse Caspase-1, thereby inhibiting NLRP3 inflammasome activation. The effects of ZQS5029-1 on macrophage-hepatocyte/HSC crosstalk were analyzed using the supernatants from macrophages preconditioned with LPS + ATP introduced into hepatocytes and hepatic stellate cells (HSCs). We found that the conditioned medium from the BMDMs induced injury and death, as well as lipid accumulation in hepatocytes, and activation of HSCs; these effects were blocked by conditioned medium from BMDMs treated with ZQS5029-1. Moreover, the protective effects of ZQS5029-1 on hepatocytes and HSCs were eliminated by H236A-mutation of Caspase-1. We conclude that ZQS5029-1 is a promising lead compound for the treatment of NASH by inhibiting NLRP3 inflammasome activation through targeting Caspase-1 and regulating the macrophage-hepatocyte/HSC crosstalk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ZQS5029-1 ameliorated NASH in an HFD + CCl4 induced murine model.
Fig. 2: ZQS5029-1 exhibited therapeutic effect in ob/ob-GAN induced NASH mice.
Fig. 3: ZQS5029-1 inhibited hepatic NLRP3 inflammasome activation in murine NASH models.
Fig. 4: ZQS5029-1 inhibited the activation and assembly of NLRP3 inflammasome in macrophages.
Fig. 5: ZQS5029-1 blocked NLRP3 inflammasome activation in HSCs and downregulated the expression of fibrotic markers.
Fig. 6: ZQS5029-1 protected against the macrophage NLRP3 inflammasome activation-elicited cell injury, death, and lipid accumulation in primary hepatocytes and HSC activation.
Fig. 7: ZQS5029-1 directly bound to caspase-1.
Fig. 8: H236 mutation of Caspase-1 eliminated the protective effects of ZQS5029-1 on NLRP3 inflammasome activation-elicited injury, death, and lipid accumulation in hepatocytes and HSC activation.
Fig. 9: ZQS5029-1 suppresses NLRP3 inflammasome activation by targeting Caspase-1 and alleviates non-alcoholic steatohepatitis in mice.

Similar content being viewed by others

References

  1. Le MH, Yeo YH, Li X, Li J, Zou B, Wu Y, et al. 2019 global NAFLD prevalence: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2022;20:2809–17.e28.

    Article  PubMed  Google Scholar 

  2. Harrison SA, Allen AM, Dubourg J, Noureddin M, Alkhouri N. Challenges and opportunities in NASH drug development. Nat Med. 2023;29:562–73.

    Article  PubMed  CAS  Google Scholar 

  3. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S. Nonalcoholic steatohepatitis: a review. JAMA. 2020;323:1175–83.

    Article  PubMed  CAS  Google Scholar 

  5. Bedossa P. Pathology of non-alcoholic fatty liver disease. Liver Int. 2017;37:85–9.

    Article  PubMed  Google Scholar 

  6. Huby T, Gautier EL. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat Rev Immunol. 2022;22:429–43.

    Article  PubMed  CAS  Google Scholar 

  7. Vande Walle L, Lamkanfi M. Drugging the NLRP3 inflammasome: from signalling mechanisms to therapeutic targets. Nat Rev Drug Discov. 2024;23:43–66.

    Article  PubMed  CAS  Google Scholar 

  8. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16:407–20.

    Article  PubMed  CAS  Google Scholar 

  9. Boucher D, Monteleone M, Coll RC, Chen KW, Ross CM, Teo JL, et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J Exp Med. 2018;215:827–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17:588–606.

    Article  PubMed  CAS  Google Scholar 

  12. Yu L, Hong W, Lu S, Li Y, Guan Y, Weng X, et al. The NLRP3 Inflammasome in non-alcoholic fatty liver disease and steatohepatitis: therapeutic targets and treatment. Front Pharmacol. 2022;13:780496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Calcagno DM, Chu A, Gaul S, Taghdiri N, Toomu A, Leszczynska A, et al. NOD-like receptor protein 3 activation causes spontaneous inflammation and fibrosis that mimics human NASH. Hepatology. 2022;76:727–41.

    Article  PubMed  CAS  Google Scholar 

  14. Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology. 2011;54:133–44.

    Article  PubMed  CAS  Google Scholar 

  15. Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology. 2013;57:577–89.

    Article  PubMed  CAS  Google Scholar 

  16. Csak T, Pillai A, Ganz M, Lippai D, Petrasek J, Park JK, et al. Both bone marrow-derived and non-bone marrow-derived cells contribute to AIM2 and NLRP3 inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis. Liver Int. 2014;34:1402–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wree A, McGeough MD, Pena CA, Schlattjan M, Li H, Inzaugarat ME, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med (Berl). 2014;92:1069–82.

    Article  PubMed  CAS  Google Scholar 

  18. Li Z, Chen Y, Jiang X, Lu P, Wang C, Li Z, et al. Novel sulfonylurea-based NLRP3 inflammasome inhibitor for efficient treatment of nonalcoholic steatohepatitis, endotoxic shock, and colitis. J Med Chem. 2023;66:12966–89.

    Article  PubMed  CAS  Google Scholar 

  19. Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol. 2017;66:1037–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Deng YF, Xu QQ, Chen TQ, Ming JX, Wang YF, Mao LN, et al. Kinsenoside alleviates inflammation and fibrosis in experimental NASH mice by suppressing the NF-kappaB/NLRP3 signaling pathway. Phytomedicine. 2022;104:154241.

    Article  PubMed  CAS  Google Scholar 

  21. Barreby E, Chen P, Aouadi M. Macrophage functional diversity in NAFLD - more than inflammation. Nat Rev Endocrinol. 2022;18:461–72.

    Article  PubMed  CAS  Google Scholar 

  22. Cha JY, Kim DH, Chun KH. The role of hepatic macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Lab Anim Res. 2018;34:133–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66:1300–12.

    Article  PubMed  CAS  Google Scholar 

  24. Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 2014;60:1090–6.

    Article  PubMed  CAS  Google Scholar 

  25. Zigmond E, Samia-Grinberg S, Pasmanik-Chor M, Brazowski E, Shibolet O, Halpern Z, et al. Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury. J Immunol. 2014;193:344–53.

    Article  PubMed  CAS  Google Scholar 

  26. Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol. 2021;18:45–56.

    Article  PubMed  CAS  Google Scholar 

  27. Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139:323–34 e7.

    Article  PubMed  CAS  Google Scholar 

  28. Huang S, Wu Y, Zhao Z, Wu B, Sun K, Wang H, et al. A new mechanism of obeticholic acid on NASH treatment by inhibiting NLRP3 inflammasome activation in macrophage. Metabolism. 2021;120:154797.

    Article  PubMed  CAS  Google Scholar 

  29. Carter-Kent C, Zein NN, Feldstein AE. Cytokines in the pathogenesis of fatty liver and disease progression to steatohepatitis: implications for treatment. Am J Gastroenterol. 2008;103:1036–42.

    Article  PubMed  CAS  Google Scholar 

  30. Alegre F, Pelegrin P, Feldstein AE. Inflammasomes in liver fibrosis. Semin Liver Dis. 2017;37:119–27.

    Article  PubMed  CAS  Google Scholar 

  31. Kaufmann B, Kui L, Reca A, Leszczynska A, Kim AD, Booshehri LM, et al. Cell-specific deletion of NLRP3 inflammasome identifies myeloid cells as key drivers of liver inflammation and fibrosis in murine steatohepatitis. Cell Mol Gastroenterol Hepatol. 2022;14:751–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Barbier L, Ferhat M, Salame E, Robin A, Herbelin A, Gombert JM, et al. Interleukin-1 family cytokines: keystones in liver inflammatory diseases. Front Immunol. 2019;10:2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Atanasov AG, Zotchev SB, Dirsch VM. International natural product sciences T, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. He J, Yang Y, Zhang F, Li Y, Li X, Pu X, et al. Effects of Poria cocos extract on metabolic dysfunction-associated fatty liver disease via the FXR/PPARalpha-SREBPs pathway. Front Pharmacol. 2022;13:1007274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kim JH, Sim HA, Jung DY, Lim EY, Kim YT, Kim BJ, et al. Poria cocus Wolf extract ameliorates hepatic steatosis through regulation of lipid metabolism, inhibition of ER stress, and activation of autophagy via AMPK activation. Int J Mol Sci. 2019;20:4801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Li Y, Wang P, Yang H, He J, Yang Y, Tao Y, et al. In vivo identification of bioactive components of Poria cocos for adjusting mitochondria against metabolic dysfunction-associated fatty liver disease. Heliyon. 2024;10:e35645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Rios JL. Chemical constituents and pharmacological properties of Poria cocos. Planta Med. 2011;77:681–91.

    Article  PubMed  CAS  Google Scholar 

  38. Ding X, Li S, Huang H, Shen J, Ding Y, Chen T, et al. Bioactive triterpenoid compounds of Poria cocos (Schw.) Wolf in the treatment of diabetic ulcers via regulating the PI3K-AKT signaling pathway. J Ethnopharmacol. 2024;325:117812.

    Article  PubMed  CAS  Google Scholar 

  39. Gu J-B, Wang J, Yang Y, Ye X-R, Zhang C-X, Zhang X-Y, et al. p-Cymene and pachymic acid alleviate adalimumab-resistance cell line inflammatory response via inhibiting PI3K/AKT/mTOR signaling pathway. Eur J Inflamm. 2024;22:1–10.

  40. Guo ZY, Wu X, Zhang SJ, Yang JH, Miao H, Zhao YY. Poria cocos: traditional uses, triterpenoid components and their renoprotective pharmacology. Acta Pharmacol Sin. 2025;46:836–51.

    Article  PubMed  CAS  Google Scholar 

  41. Hu S, Yang B, Li B, Fan Q, Wu T, Li S, et al. RNA-Seq analysis reveals potential neuroprotective mechanisms of Pachymic Acid toward iron-induced oxidative stress and cell death. Cell Transpl. 2024;33:9636897231218382.

    Article  Google Scholar 

  42. Qin C, Chen X, Hu T, Sun W, Liu Z, Li M, et al. Pachymic Acid alleviates oxidative damage of retinal cells induced by sodium iodate or hydrogen peroxide by activating the Nrf2/HO-1 signaling pathway. Natl Prod Commun. 2024;19:1–10.

  43. Kanematsu A, Natori S. [Triterpenoids of Hoelen (fuling), sclerotia of Poria cocos (Schw.) Wolf. I]. Yakugaku Zasshi. 1970;90:475–9.

    Article  PubMed  CAS  Google Scholar 

  44. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.

    Article  PubMed  Google Scholar 

  45. Wang HY, Lin X, Huang GG, Zhou R, Lei SY, Ren J, et al. Atranorin inhibits NLRP3 inflammasome activation by targeting ASC and protects NLRP3 inflammasome-driven diseases. Acta Pharmacol Sin. 2023;44:1687–700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zhao Z, Deng ZT, Huang S, Ning M, Feng Y, Shen Y, et al. Alisol B alleviates hepatocyte lipid accumulation and lipotoxicity via regulating RARalpha-PPARgamma-CD36 cascade and attenuates non-alcoholic steatohepatitis in mice. Nutrients. 2022;14:2411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kubota N, Kado S, Kano M, Masuoka N, Nagata Y, Kobayashi T, et al. A high-fat diet and multiple administration of carbon tetrachloride induces liver injury and pathological features associated with non-alcoholic steatohepatitis in mice. Clin Exp Pharmacol Physiol. 2013;40:422–30.

    Article  PubMed  CAS  Google Scholar 

  48. Hansen HH, Egidius HM, Oro D, Evers SS, Heeboll S, Eriksen PL, et al. Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol. 2020;20:210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Boland ML, Oro D, Tolbol KS, Thrane ST, Nielsen JC, Cohen TS, et al. Towards a standard diet-induced and biopsy-confirmed mouse model of non-alcoholic steatohepatitis: Impact of dietary fat source. World J Gastroenterol. 2019;25:4904–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Dixon LJ, Berk M, Thapaliya S, Papouchado BG, Feldstein AE. Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Lab Invest. 2012;92:713–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Baeza-Raja B, Goodyear A, Liu X, Lam K, Yamamoto L, Li Y, et al. Pharmacological inhibition of P2RX7 ameliorates liver injury by reducing inflammation and fibrosis. PLoS One. 2020;15:e0234038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479:117–21.

    Article  PubMed  CAS  Google Scholar 

  53. Hoss F, Rodriguez-Alcazar JF, Latz E. Assembly and regulation of ASC specks. Cell Mol Life Sci. 2017;74:1211–29.

    Article  PubMed  CAS  Google Scholar 

  54. Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 2017;121:27–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Inzaugarat ME, Johnson CD, Holtmann TM, McGeough MD, Trautwein C, Papouchado BG, et al. NLR Family Pyrin Domain-Containing 3 inflammasome activation in hepatic stellate cells induces liver fbrosis in mice. Hepatology. 2019;69:845–59.

    Article  PubMed  CAS  Google Scholar 

  56. Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016;17:250–8.

    Article  PubMed  CAS  Google Scholar 

  57. Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019;69:2672–82.

    Article  PubMed  Google Scholar 

  58. Li L, Zuo ZT, Wang YZ. The Traditional usages, chemical components and pharmacological activities of Wolfiporia cocos: a review. Am J Chin Med. 2022;50:389–440.

    Article  PubMed  CAS  Google Scholar 

  59. Tan YY, Yue SR, Lu AP, Zhang L, Ji G, Liu BC, et al. The improvement of nonalcoholic steatohepatitis by Poria cocos polysaccharides associated with gut microbiota and NF-kappaB/CCL3/CCR1 axis. Phytomedicine. 2022;103:154208.

    Article  PubMed  CAS  Google Scholar 

  60. Cheng Y, Xie Y, Ge JC, Wang L, Peng DY, Yu NJ, et al. Structural characterization and hepatoprotective activity of a galactoglucan from Poria cocos. Carbohydr Polym. 2021;263:117979.

    Article  PubMed  CAS  Google Scholar 

  61. Wree A, McGeough MD, Inzaugarat ME, Eguchi A, Schuster S, Johnson CD, et al. NLRP3 inflammasome driven liver injury and fibrosis: roles of IL-17 and TNF in mice. Hepatology. 2018;67:736–49.

    Article  PubMed  CAS  Google Scholar 

  62. Brenner DA, Seki E, Taura K, Kisseleva T, Deminicis S, Iwaisako K, et al. Non-alcoholic steatohepatitis-induced fibrosis: Toll-like receptors, reactive oxygen species and Jun N-terminal kinase. Hepatol Res. 2011;41:683–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gaul S, Leszczynska A, Alegre F, Kaufmann B, Johnson CD, Adams LA, et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J Hepatol. 2021;74:156–67.

    Article  PubMed  CAS  Google Scholar 

  64. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.

    Article  PubMed  CAS  Google Scholar 

  65. Li H, Zhou Y, Wang H, Zhang M, Qiu P, Zhang M, et al. Crosstalk between liver macrophages and surrounding cells in nonalcoholic steatohepatitis. Front Immunol. 2020;11:1169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bai X, Sun SS, Zhou JY. Role of NLRP3 inflammasome in the pathogenesis of alcoholic liver disease]. Zhonghua Gan Zang Bing Za Zhi. 2019;27:567–71.

    PubMed  CAS  Google Scholar 

  67. Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147:577–94.e1.

    Article  PubMed  CAS  Google Scholar 

  68. Su T, He Y, Wang M, Zhou H, Huang Y, Ye M, et al. Macrophage-hepatocyte circuits mediated by grancalcin aggravate the progression of metabolic dysfunction associated steatohepatitis. Adv Sci (Weinh). 2024;11:e2406500.

    Article  PubMed  Google Scholar 

  69. Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol. 2018;15:349–64.

    Article  PubMed  CAS  Google Scholar 

  70. Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, et al. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci USA. 2009;106:21984–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Dixon LJ, Flask CA, Papouchado BG, Feldstein AE, Nagy LE. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One. 2013;8:e56100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Tang Y, Feng B, Wang Y, Sun H, You Y, Yu J, et al. Structure-based discovery of CZL80, a caspase-1 inhibitor with therapeutic potential for febrile seizures and later enhanced epileptogenic susceptibility. Br J Pharmacol. 2020;177:3519–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50:1352–64.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kazankov K, Jorgensen SMD, Thomsen KL, Moller HJ, Vilstrup H, George J, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019;16:145–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (Grant No. SKLDR-2022-LH-08).

Author information

Authors and Affiliations

Authors

Contributions

YL, QSZ, and LYX designed the research. LYX, NRY, SLH, HQ, and LQ performed the research. LYX and NRY analyzed and interpreted the data. YL, QSZ, LYX, and NRY wrote the paper. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Qin-shi Zhao or Ying Leng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Ly., Yu, Nr., Huang, Sl. et al. Dehydrotrametenolic acid methyl ester, a triterpenoid of Poria cocos, alleviates non-alcoholic steatohepatitis by suppressing NLRP3 inflammasome activation via targeting Caspase-1 in mice. Acta Pharmacol Sin 46, 2734–2750 (2025). https://doi.org/10.1038/s41401-025-01569-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01569-9

Keywords

Search

Quick links