Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Peptide-MHC I regulatory mechanisms and intervention strategies in anti-tumor T cell immunity

Abstract

T cell immune responses are triggered by antigenic peptides presented through major histocompatibility complex class Is (pMHC-Is), which play an important role in the genesis, development, and therapy of tumors. The capacity of a specific pMHC-I to elicit T cell responses is deeply influenced by its expression level (quantity) and its immunogenicity (quality). Tumor cells can evade T cell immunity by down-regulating the quantity of pMHC-Is or selectively eliminating highly immunogenic antigenic peptides. Augmenting the quantity or quality of pMHC-Is is essential for tumor immunotherapy. However, the complexity of pMHC-I regulation and tumor heterogeneity pose challenges to clinical strategies. Consequently, developing approaches grounded in comprehensive analyses of pMHC-I regulatory mechanisms remains a focal point in the research of T cell immunity. In this review, we discuss how tumors modulate their surface pMHC-Is through genetic, epigenetic, and proteomic mechanisms and summarize potential therapeutic strategies targeting these mechanisms, which may provide a valuable reference for the development of novel tumor immunotherapies based on pMHC-I modulation.

Tumor cells can achieve immune escape by interfering with the quantity and quality of pMHC-Is, and corresponding immunotherapy can also be achieved by the regulation of pMHC-Is.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumor antigen presentation and its regulatory mechanisms.
Fig. 2: Comparison of RNA expression levels of HLA-A between different tumors and tissues.
Fig. 3: Therapeutic approaches against the down-regulation of pMHC-I expression.

Similar content being viewed by others

References

  1. Gu SS, Zhang W, Wang X, Jiang P, Traugh N, Li Z, et al. Therapeutically increasing MHC-I expression potentiates immune checkpoint blockade. Cancer Discov. 2021;11:1524–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cornel AM, Mimpen IL, Nierkens S. MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancers. 2020;12:1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chisolm DA, Weinmann AS. TCR-signaling events in cellular metabolism and specialization. Front Immunol. 2015;6:292.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dersh D, Hollý J, Yewdell JW. A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat Rev Immunol. 2021;21:116–28.

    Article  CAS  PubMed  Google Scholar 

  5. Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol. 2021;12:636568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21:298–312.

    Article  CAS  PubMed  Google Scholar 

  7. Aptsiauri N, Garrido F. The challenges of HLA class I loss in cancer immunotherapy: facts and hopes. Clin Cancer Res. 2022;28:5021–9.

    Article  CAS  PubMed  Google Scholar 

  8. Catalán E, Charni S, Jaime P, Aguiló JI, Enríquez JA, Naval J, et al. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells. Oncoimmunology. 2015;4:e985924.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wolf NK, Blaj C, Picton LK, Snyder G, Zhang L, Nicolai CJ, et al. Synergy of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC I-deficient and MHC I+ tumors. Proc Natl Acad Sci USA. 2022;119:e2200568119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Watson NFS, Ramage JM, Madjd Z, Spendlove I, Ellis IO, Scholefield JH, et al. Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with a poor prognosis. Int J Cancer. 2006;118:6–10.

    Article  CAS  PubMed  Google Scholar 

  11. Romero I, Garrido C, Algarra I, Chamorro V, Collado A, Garrido F, et al. MHC intratumoral heterogeneity may predict cancer progression and response to immunotherapy. Front Immunol. 2018;9:102.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kloor M, Michel S, von Knebel Doeberitz M. Immune evasion of microsatellite unstable colorectal cancers. Int J Cancer. 2010;127:1001–10.

    Article  CAS  PubMed  Google Scholar 

  13. Menon AG, Tollenaar RAEM, van de Velde CJH, Putter H, Janssen-van Rhijn CM, Keijzer R, et al. p53 and HLA class-I expression are not down-regulated in colorectal cancer liver metastases. Clin Exp Metastasis. 2004;21:79–85.

    Article  CAS  PubMed  Google Scholar 

  14. Balachandran VP, Łuksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551:512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin M, Zhang X-L, You R, Yang Q, Zou X, Yu K, et al. Neoantigen landscape in metastatic nasopharyngeal carcinoma. Theranostics. 2021;11:6427–44.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 2021;18:215–29.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rouyez M-C, Lestingi M, Charon M, Fichelson S, Buzyn A, Dusanter-Fourt I. IFN regulatory factor-2 cooperates with STAT1 to regulate transporter associated with antigen processing-1 promoter activity. J Immunol. 2005;174:3948–58.

    Article  CAS  PubMed  Google Scholar 

  18. Ong CEB, Lyons AB, Woods GM, Flies AS. Inducible IFN-γ Expression for MHC-I upregulation in devil facial tumor cells. Front Immunol. 2018;9:3117.

    Article  CAS  PubMed  Google Scholar 

  19. Klar D, Hämmerling GJ. Induction of assembly of MHC class I heavy chains with beta 2microglobulin by interferon-gamma. EMBO J. 1989;8:475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu SX, De Neef E, Thomas JD, Sabio E, Rousseau B, Gigoux M, et al. Pharmacologic modulation of RNA splicing enhances anti-tumor immunity. Cell. 2021;184:4032–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Massafra V, Tundo S, Dietzig A, Ducret A, Jost C, Klein C, et al. Proteolysis-targeting chimeras enhance T cell bispecific antibody-driven T cell activation and effector function through increased MHC class I antigen presentation in cancer cells. J Immunol. 2021;207:493–504.

    Article  CAS  PubMed  Google Scholar 

  22. Jensen SM, Potts GK, Ready DB, Patterson MJ. Specific MHC-I peptides are induced using PROTACs. Front Immunol. 2018;9:2697.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kawazu M, Ueno T, Saeki K, Sax N, Togashi Y, Kanaseki T, et al. HLA class I analysis provides insight into the genetic and epigenetic background of immune evasion in colorectal cancer with high microsatellite instability. Gastroenterology. 2022;162:799–812.

    Article  CAS  PubMed  Google Scholar 

  24. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 2019;30:44–56.

    Article  CAS  PubMed  Google Scholar 

  25. Ventre KS, Karakousi T, Lund AW. Lymph node metastasis fuels systemic disease. Trends Cancer. 2022;8:623–5.

    Article  PubMed  Google Scholar 

  26. Kos K, Aslam MA, van de Ven R, Wellenstein MD, Pieters W, van Weverwijk A, et al. Tumor-educated Tregs drive organ-specific metastasis in breast cancer by impairing NK cells in the lymph node niche. Cell Rep. 2022;38:110447.

    Article  CAS  PubMed  Google Scholar 

  27. Vitale I, Shema E, Loi S, Galluzzi L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med. 2021;27:212–24.

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Lora A, Algarra I, Gaforio JJ, Ruiz-Cabello F, Garrido F. Immunoselection by T lymphocytes generates repeated MHC class I-deficient metastatic tumor variants. Int J Cancer. 2001;91:109–19.

    Article  CAS  PubMed  Google Scholar 

  29. del Campo AB, Kyte JA, Carretero J, Zinchencko S, Méndez R, González-Aseguinolaza G, et al. Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer. 2014;134:102–13.

    Article  PubMed  Google Scholar 

  30. Garrido F, Romero I, Aptsiauri N, Garcia-Lora AM. Generation of MHC class I diversity in primary tumors and selection of the malignant phenotype. Int J Cancer. 2016;138:271–80.

    Article  CAS  PubMed  Google Scholar 

  31. Weeden CE, Gayevskiy V, Marceaux C, Batey D, Tan T, Yokote K, et al. Early immune pressure initiated by tissue-resident memory T cells sculpts tumor evolution in non-small cell lung cancer. Cancer Cell. 2023;41:837–52.

    Article  CAS  PubMed  Google Scholar 

  32. Lerner EC, Woroniecka KI, D’Anniballe VM, Wilkinson DS, Mohan AA, Lorrey SJ, et al. CD8+ T cells maintain killing of MHC-I-negative tumor cells through the NKG2D-NKG2DL axis. Nat Cancer. 2023;4:1258–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11:823–36.

    Article  CAS  PubMed  Google Scholar 

  34. Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nat Rev Immunol. 2008;8:607–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blees A, Januliene D, Hofmann T, Koller N, Schmidt C, Trowitzsch S, et al. Structure of the human MHC-I peptide-loading complex. Nature. 2017;551:525–8.

    Article  CAS  PubMed  Google Scholar 

  36. Liu QJ, Gao B. Manipulation of MHC-I/TCR interaction for immune therapy. Cell Mol Immunol. 2008;5:171–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Calzada-Fraile D, Iborra S, Ramírez-Huesca M, Jorge I, Dotta E, Hernández-García E, et al. Immune synapse formation promotes lipid peroxidation and MHC-I upregulation in licensed dendritic cells for efficient priming of CD8+ T cells. Nat Commun. 2023;14:6772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moretti M, La Rocca R, Perrone Donnorso M, Torre B, Canale C, Malerba M, et al. Clustering of major histocompatibility complex-class I molecules in healthy and cancer colon cells revealed from their nanomechanical properties. ACS Nano. 2021;15:7500–12.

    Article  CAS  PubMed  Google Scholar 

  39. Romero JM, Jiménez P, Cabrera T, Cózar JM, Pedrinaci S, Tallada M, et al. Coordinated downregulation of the antigen presentation machinery and HLA class I/beta2-microglobulin complex is responsible for HLA-ABC loss in bladder cancer. Int J Cancer. 2005;113:605–10.

    Article  CAS  PubMed  Google Scholar 

  40. Challa-Malladi M, Lieu YK, Califano O, Holmes AB, Bhagat G, Murty VV, et al. Combined genetic inactivation of β2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell. 2011;20:728–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oberg L, Johansson S, Michaëlsson J, Tomasello E, Vivier E, Kärre K, et al. Loss or mismatch of MHC class I is sufficient to trigger NK cell-mediated rejection of resting lymphocytes in vivo - role of KARAP/DAP12-dependent and -independent pathways. Eur J Immunol. 2004;34:1646–53.

    Article  PubMed  Google Scholar 

  42. Karnaukhov V, Paes W, Woodhouse IB, Partridge T, Nicastri A, Brackenridge S, et al. HLA variants have different preferences to present proteins with specific molecular functions which are complemented in frequent haplotypes. Front Immunol. 2022;13:1067463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS, et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat Biotechnol. 2015;33:1152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brady CS, Bartholomew JS, Burt DJ, Duggan-Keen MF, Glenville S, Telford N, et al. Multiple mechanisms underlie HLA dysregulation in cervical cancer. Tissue Antigens. 2000;55:401–11.

    Article  CAS  PubMed  Google Scholar 

  45. Jiménez P, Cabrera T, Méndez R, Esparza C, Cozar JM, Tallada M, et al. A nucleotide insertion in exon 4 is responsible for the absence of expression of an HLA-A*0301 allele in a prostate carcinoma cell line. Immunogenetics. 2001;53:606–10.

    Article  PubMed  Google Scholar 

  46. Tsao H-W, Anderson S, Finn KJ, Perera JJ, Pass LF, Schneider EM, et al. Targeting the aminopeptidase ERAP enhances antitumor immunity by disrupting the NKG2A-HLA-E inhibitory checkpoint. Immunity. 2024;57:2863–78.

    Article  CAS  PubMed  Google Scholar 

  47. Kaiser BK, Pizarro JC, Kerns J, Strong RK. Structural basis for NKG2A/CD94 recognition of HLA-E. Proc Natl Acad Sci USA. 2008;105:6696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cathro HP, Smolkin ME, Theodorescu D, Jo VY, Ferrone S, Frierson HF. Relationship between HLA class I antigen processing machinery component expression and the clinicopathologic characteristics of bladder carcinomas. Cancer Immunol Immunother. 2010;59:465–72.

    Article  CAS  PubMed  Google Scholar 

  49. Hammer GE, Gonzalez F, Champsaur M, Cado D, Shastri N. The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. Nat Immunol. 2006;7:103–12.

    Article  CAS  PubMed  Google Scholar 

  50. Arshad N, Cresswell P. Tumor-associated calreticulin variants functionally compromise the peptide loading complex and impair its recruitment of MHC-I. J Biol Chem. 2018;293:9555–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Luoto S, Hermelo I, Vuorinen EM, Hannus P, Kesseli J, Nykter M, et al. Computational characterization of suppressive immune microenvironments in glioblastoma. Cancer Res. 2018;78:5574–85.

    Article  CAS  PubMed  Google Scholar 

  52. Nie Y, Yang G, Song Y, Zhao X, So C, Liao J, et al. DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis. 2001;22:1615–23.

    Article  CAS  PubMed  Google Scholar 

  53. Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F, et al. Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2’-deoxycytidine treatment. Int J Cancer. 2001;94:243–51.

    Article  CAS  PubMed  Google Scholar 

  54. Ye Q, Shen Y, Wang X, Yang J, Miao F, Shen C, et al. Hypermethylation of HLA class I gene is associated with HLA class I down-regulation in human gastric cancer. Tissue Antigens. 2010;75:30–9.

    Article  CAS  PubMed  Google Scholar 

  55. Qifeng S, Bo C, Xingtao J, Chuanliang P, Xiaogang Z. Methylation of the promoter of human leukocyte antigen class I in human esophageal squamous cell carcinoma and its histopathological characteristics. J Thorac Cardiovasc Surg. 2011;141:808–14.

    Article  PubMed  Google Scholar 

  56. Yang W, Li Y, Gao R, Xiu Z, Sun T. MHC class I dysfunction of glioma stem cells escapes from CTL-mediated immune response via activation of Wnt/β-catenin signaling pathway. Oncogene. 2020;39:1098–111.

    Article  CAS  PubMed  Google Scholar 

  57. Ylitalo EB, Thysell E, Jernberg E, Lundholm M, Crnalic S, Egevad L, et al. Subgroups of castration-resistant prostate cancer bone metastases defined through an inverse relationship between androgen receptor activity and immune response. Eur Urol. 2017;71:776–87.

    Article  PubMed  Google Scholar 

  58. Ling A, Löfgren-Burström A, Larsson P, Li X, Wikberg ML, Öberg Å, et al. TAP1 down-regulation elicits immune escape and poor prognosis in colorectal cancer. Oncoimmunology. 2017;6:e1356143.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Henle AM, Nassar A, Puglisi-Knutson D, Youssef B, Knutson KL. Downregulation of TAP1 and TAP2 in early stage breast cancer. PLoS One. 2017;12:e0187323.

    Article  PubMed  PubMed Central  Google Scholar 

  60. van Hall T, Wolpert EZ, van Veelen P, Laban S, van der Veer M, Roseboom M, et al. Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants. Nat Med. 2006;12:417–24.

    Article  PubMed  Google Scholar 

  61. Garbi N, Tan P, Diehl AD, Chambers BJ, Ljunggren HG, Momburg F, et al. Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat Immunol. 2000;1:234–8.

    Article  CAS  PubMed  Google Scholar 

  62. Sari G, Rock KL. Tumor immune evasion through loss of MHC class-I antigen presentation. Curr Opin Immunol. 2023;83:102329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang Q, Lv Z, Wang M, Kong M, Zhong C, Gao K, et al. LATS1/2 loss promote tumor immune evasion in endometrial cancer through downregulating MHC-I expression. J Exp Clin Cancer Res. 2024;43:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Burr ML, Sparbier CE, Chan KL, Chan Y-C, Kersbergen A, Lam EYN, et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell. 2019;36:385–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dersh D, Phelan JD, Gumina ME, Wang B, Arbuckle JH, Holly J, et al. Genome-wide screens identify lineage- and tumor-specific genes modulating MHC-I- and MHC-II-restricted immunosurveillance of human lymphomas. Immunity. 2021;54:116–31.

    Article  CAS  PubMed  Google Scholar 

  66. Lin W, Chen L, Zhang H, Qiu X, Huang Q, Wan F, et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat Commun. 2023;14:265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Demel UM, Böger M, Yousefian S, Grunert C, Zhang L, Hotz PW, et al. Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer. J Clin Invest. 2022;132:e152383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dopler A, Alkan F, Malka Y, van der Kammen R, Hoefakker K, Taranto D, et al. P-stalk ribosomes act as master regulators of cytokine-mediated processes. Cell. 2024;187:6981–93.

    Article  CAS  PubMed  Google Scholar 

  69. Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu X, Bao X, Hu M, Chang H, Jiao M, Cheng J, et al. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature. 2020;588:693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Feist E, Burmester G-R, Krüger E. The proteasome - victim or culprit in autoimmunity. Clin Immunol. 2016;172:83–9.

    Article  CAS  PubMed  Google Scholar 

  72. Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, et al. A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell. 2023;186:3903–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goodman AM, Castro A, Pyke RM, Okamura R, Kato S, Riviere P, et al. MHC-I genotype and tumor mutational burden predict response to immunotherapy. Genome Med. 2020;12:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 2018;359:582–7.

    Article  CAS  PubMed  Google Scholar 

  76. Tran E, Robbins PF, Lu Y-C, Prickett TD, Gartner JJ, Jia L, et al. T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med. 2016;375:2255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jones PA, Ohtani H, Chakravarthy A, De Carvalho DD. Epigenetic therapy in immune-oncology. Nat Rev Cancer. 2019;19:151–61.

    Article  CAS  PubMed  Google Scholar 

  78. Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, et al. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567:479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol Cell Proteom. 2015;14:658–73.

    Article  CAS  Google Scholar 

  80. Hoof I, van Baarle D, Hildebrand WH, Keşmir C. Proteome sampling by the HLA class I antigen processing pathway. PLoS Comput Biol. 2012;8:e1002517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jaeger AM, Stopfer L, Lee S, Gaglia G, Sandel D, Santagata S, et al. Rebalancing protein homeostasis enhances tumor antigen presentation. Clin Cancer Res. 2019;25:6392–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Abi Habib J, Lesenfants J, Vigneron N, Van, den Eynde BJ. Functional differences between proteasome subtypes. Cells. 2022;11:421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lahman MC, Schmitt TM, Paulson KG, Vigneron N, Buenrostro D, Wagener FD, et al. Targeting an alternate Wilms’ tumor antigen 1 peptide bypasses immunoproteasome dependency. Sci Transl Med. 2022;14:eabg8070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Del Campo AB, Carretero J, Muñoz JA, Zinchenko S, Ruiz-Cabello F, González-Aseguinolaza G, et al. Adenovirus expressing β2-microglobulin recovers HLA class I expression and antitumor immunity by increasing T-cell recognition. Cancer Gene Ther. 2014;21:317–32.

    Article  PubMed  Google Scholar 

  85. Rosa FF, Pires CF, Kurochkin I, Ferreira AG, Gomes AM, Palma LG, et al. Direct reprogramming of fibroblasts into antigen-presenting dendritic cells. Sci Immunol. 2018;3:eaau4292.

    Article  PubMed  Google Scholar 

  86. Rosa FF, Pires CF, Kurochkin I, Halitzki E, Zahan T, Arh N, et al. Single-cell transcriptional profiling informs efficient reprogramming of human somatic cells to cross-presenting dendritic cells. Sci Immunol. 2022;7:eabg5539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ascic E, Åkerström F, Sreekumar Nair M, Rosa A, Kurochkin I, Zimmermannova O, et al. In vivo dendritic cell reprogramming for cancer immunotherapy. Science. 2024;386:eadn9083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hwang MS, Mog BJ, Douglass J, Pearlman AH, Hsiue EH-C, Paul S, et al. Targeting loss of heterozygosity for cancer-specific immunotherapy. Proc Natl Acad Sci USA. 2021;118:e2022410118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark Res. 2020;8:49.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ren J, Li N, Pei S, Lian Y, Li L, Peng Y, et al. Histone methyltransferase WHSC1 loss dampens MHC-I antigen presentation pathway to impair IFN-γ-stimulated antitumor immunity. J Clin Invest. 2022;132:e153167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol. 2008;9:1364–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yu Q, Dong Y, Wang X, Su C, Zhang R, Xu W, et al. Pharmacological induction of MHC-I expression in tumor cells revitalizes T cell anti-tumor immunity. JCI Insight. 2024;9:e177788.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mangalhara KC, Varanasi SK, Johnson MA, Burns MJ, Rojas GR, Esparza Moltó PB, et al. Manipulating mitochondrial electron flow enhances tumor immunogenicity. Science. 2023;381:1316–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ennishi D, Takata K, Béguelin W, Duns G, Mottok A, Farinha P, et al. Molecular and genetic characterization of mhc deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discov. 2019;9:546–63.

    Article  PubMed  Google Scholar 

  95. Isshiki Y, Chen X, Teater M, Karagiannidis I, Nam H, Cai W, et al. EZH2 inhibition enhances T cell immunotherapies by inducing lymphoma immunogenicity and improving T cell function. Cancer Cell. 2025;43:49–68.

    Article  CAS  PubMed  Google Scholar 

  96. Hiatt JB, Sandborg H, Garrison SM, Arnold HU, Liao SY, Norton JP, et al. Inhibition of lsd1 with bomedemstat sensitizes small cell lung cancer to immune checkpoint blockade and T-cell killing. Clin Cancer Res. 2022;28:4551–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun X, Watanabe T, Oda Y, Shen W, Ahmad A, Ouda R, et al. Targeted demethylation and activation of NLRC5 augment cancer immunogenicity through MHC class I. Proc Natl Acad Sci USA. 2024;121:e2310821121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ferrari V, Lo Cascio A, Melacarne A, Tanasković N, Mozzarelli AM, Tiraboschi L, et al. Sensitizing cancer cells to immune checkpoint inhibitors by microbiota-mediated upregulation of HLA class I. Cancer Cell. 2023;41:1717–30.

    Article  CAS  PubMed  Google Scholar 

  99. Kwok DW, Stevers NO, Etxeberria I, Nejo T, Colton Cove M, Chen LH, et al. Tumour-wide RNA splicing aberrations generate actionable public neoantigens. Nature. 2025;639:463–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Smart AC, Margolis CA, Pimentel H, He MX, Miao D, Adeegbe D, et al. Intron retention is a source of neoepitopes in cancer. Nat Biotechnol. 2018;36:1056–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Matsushima S, Ajiro M, Iida K, Chamoto K, Honjo T, Hagiwara M. Chemical induction of splice-neoantigens attenuates tumor growth in a preclinical model of colorectal cancer. Sci Transl Med. 2022;14:eabn6056.

    Article  CAS  PubMed  Google Scholar 

  102. Jayasinghe RG, Cao S, Gao Q, Wendl MC, Vo NS, Reynolds SM, et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep. 2018;23:270–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kahles A, Lehmann K-V, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018;34:211–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21:181–200.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Moser SC, Voerman JSA, Buckley DL, Winter GE, Schliehe C. Acute pharmacologic degradation of a stable antigen enhances its direct presentation on MHC class I molecules. Front Immunol. 2017;8:1920.

    Article  PubMed  Google Scholar 

  106. Zhao Y, Song D, Wang Z, Huang Q, Huang F, Ye Z, et al. Antitumour vaccination via the targeted proteolysis of antigens isolated from tumour lysates. Nat Biomed Eng. 2025;9:234–48.

    Article  CAS  PubMed  Google Scholar 

  107. Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol. 2013;31:443–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dong J, Miao J, Miao Y, Qu Z, Zhang S, Zhu P, et al. Small molecule degraders of protein tyrosine phosphatase 1B and T-cell protein tyrosine phosphatase for cancer immunotherapy. Angew Chem Int Ed Engl. 2023;62:e202303818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82204413, 82304361 and 82473827), the Zhejiang Provincial Natural Science Foundation (LR22H310002 and LQ23H300004). Figures for this article were created with BioRender.com.

Author information

Authors and Affiliations

Corresponding authors

Correspondence to Ji Cao, Jun Li or Wen-bin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zc., Shen, Y., Lin, Ys. et al. Peptide-MHC I regulatory mechanisms and intervention strategies in anti-tumor T cell immunity. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01574-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01574-y

Keywords

Search

Quick links