Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STING inhibits the progression of esophageal squamous cell carcinoma by suppressing CPT1A-mediated fatty acid β-oxidation

Abstract

Esophageal squamous cell carcinoma (ESCC) is characterized by high aggressiveness and poor prognosis. Metabolic reprogramming is a hallmark of ESCC, with lipid metabolism frequently upregulated. It has been shown that lipid metabolism, particularly fatty acid β-oxidation (FAO), plays an essential role in energy homeostasis, membrane biosynthesis, and tumor progression. Stimulator of interferon genes (STING), a key innate immune signaling molecule, also acts as a metabolic checkpoint by inhibiting hexokinase 2, thereby limiting aerobic glycolysis and enhancing anti-tumor immune responses. In this study, we investigated the impact of STING on FAO and tumorigenesis in ESCC. We showed that the expression levels of STING were significantly reduced in ESCC compared to adjacent normal tissue. In the ESCC cell line KYSE-510, knockdown of STING significantly elevated lipid metabolites, decreased intracellular lipid droplets, and increased FAO products, whereas overexpression of STING inhibited ESCC cell proliferation and tumor progression by suppressing FAO. Targeted lipid metabolomic analyses revealed that STING interacted with carnitine palmitoyltransferase 1A (CPT1A), a key enzyme in FAO. STING promoted the ubiquitination and degradation of CPT1A by disrupting its interaction with USP15, a deubiquitinating enzyme. Treatment with the CPT1A inhibitor etomoxir (50 μM) reversed the increased FAO induced by STING depletion in KYSE-30 cells. In both in vitro and in vivo models, supplementation with palmitic acid rescued STING-induced growth inhibition, restoring tumor cell growth. In addition, STING knockout in 4-NQO-induced ESCC mice led to accelerated tumor progression, which could be mitigated by CPT1A inhibition. Our results suggest that reduced STING expression enhances FAO and promotes ESCC cell proliferation, implicating FAO suppression as a potential therapeutic strategy for ESCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STING is lowly expressed in ESCC.
Fig. 2: STING inhibits the proliferation of ESCC cells and tumors.
Fig. 3: STING attenuates fatty acid oxidation in ESCC.
Fig. 4: FAO supplementation reverses STING’s inhibition of ESCC cells and tumors.
Fig. 5: STING CDN-binding domain interacts with CPT1A.
Fig. 6: The expression of CPT1A in ESCC was up-regulated and negatively correlated with STING.
Fig. 7: STING promotes K48-linked ubiquitination of CPT1A by inhibiting the interaction between CPT1A and USP15.
Fig. 8: Inhibition of CPT1A suppresses STING-deficiency-induced ESCC progression.
Fig. 9

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the manuscript and its supplementary information files.

References

  1. Yang Z, Tian H, Chen X, Li B, Bai G, Cai Q, et al. Single-cell sequencing reveals immune features of treatment response to neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma. Nat Commun. 2024;15:9097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, et al. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: new estimates from GLOBOCAN 2020. Gastroenterology. 2022;163:649–58.e2.

    Article  PubMed  Google Scholar 

  3. Doki Y, Ajani JA, Kato K, Xu J, Wyrwicz L, Motoyama S, et al. Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma. N Engl J Med. 2022;386:449–62.

    Article  PubMed  CAS  Google Scholar 

  4. Shen L, Kato K, Kim SB, Ajani JA, Zhao K, He Z, et al. Tislelizumab versus chemotherapy as second-line treatment for advanced or metastatic esophageal squamous cell carcinoma (RATIONALE-302): A randomized Phase III study. J Clin Oncol. 2022;40:3065–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tharp KM, Kersten K, Maller O, Timblin GA, Stashko C, Canale FP, et al. Tumor-associated macrophages restrict CD8+ T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment. Nat Cancer. 2024;5:1045–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hu J, Wang SG, Hou Y, Chen Z, Liu L, Li R, et al. Multi-omic profiling of clear cell renal cell carcinoma identifies metabolic reprogramming associated with disease progression. Nat Genet. 2024;56:442–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Meng Y, Guo D, Lin L, Zhao H, Xu W, Luo S, et al. Glycolytic enzyme PFKL governs lipolysis by promoting lipid droplet-mitochondria tethering to enhance β-oxidation and tumor cell proliferation. Nat Metab. 2024;6:1092–107.

    Article  PubMed  CAS  Google Scholar 

  8. Xiong J. Fatty acid oxidation in cell fate determination. Trends Biochem Sci. 2018;43:854–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Nandi I, Ji L, Smith HW, Avizonis D, Papavasiliou V, Lavoie C, et al. Targeting fatty acid oxidation enhances response to HER2-targeted therapy. Nat Commun. 2024;15:6587.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yang T, Hui R, Nouws J, Sauler M, Zeng T, Wu Q. Untargeted metabolomics analysis of esophageal squamous cell cancer progression. J Transl Med. 2022;20:127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Woo MS, Mayer C, Binkle-Ladisch L, Sonner JK, Rosenkranz SC, Shaposhnykov A, et al. STING orchestrates the neuronal inflammatory stress response in multiple sclerosis. Cell. 2024;187:4043–60.e30.

    Article  PubMed  CAS  Google Scholar 

  12. Gulen MF, Samson N, Keller A, Schwabenland M, Liu C, Glück S, et al. cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature. 2023;620:374–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Xiao R, Zhang A. Involvement of the STING signaling in COVID-19. Front Immunol. 2022;13:1006395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sun Y, Patterson-Fortin J, Han S, Li Z, Nowicka Z, Hirohashi Y, et al. 53BP1 loss elicits cGAS-STING-dependent antitumor immunity in ovarian and pancreatic cancer. Nat Commun. 2024;15:6676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Li J, Canham SM, Wu H, Henault M, Chen L, Liu G, et al. Activation of human STING by a molecular glue-like compound. Nat Chem Biol. 2024;20:365–72.

    Article  PubMed  CAS  Google Scholar 

  16. Liu R, Li J, Shao J, Lee JH, Qiu X, Xiao Y, et al. Innate immune response orchestrates phosphoribosyl pyrophosphate synthetases to support DNA repair. Cell Metab. 2021;33:2076–89.e9.

    Article  PubMed  CAS  Google Scholar 

  17. Vila IK, Chamma H, Steer A, Saccas M, Taffoni C, Turtoi E, et al. STING orchestrates the crosstalk between polyunsaturated fatty acid metabolism and inflammatory responses. Cell Metab. 2022;34:125–39.e8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Shin H, Chung H. SMPDL3A links cholesterol metabolism to the cGAS-STING pathway. Immunity. 2023;56:2459–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhang L, Jiang C, Zhong Y, Sun K, Jing H, Song J, et al. STING is a cell-intrinsic metabolic checkpoint restricting aerobic glycolysis by targeting HK2. Nat Cell Biol. 2023;25:1208–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Akhmetova K, Balasov M, Chesnokov I. Drosophila STING protein has a role in lipid metabolism. eLife. 2021;10.

  21. Shi Y, Wu Z, Liu S, Zuo D, Niu Y, Qiu Y, et al. Targeting PRMT3 impairs methylation and oligomerization of HSP60 to boost anti-tumor immunity by activating cGAS/STING signaling. Nat Commun. 2024;15:7930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wen F, Han Y, Zhang H, Zhao Z, Wang W, Chen F, et al. Epstein-Barr virus infection upregulates extracellular OLFM4 to activate YAP signaling during gastric cancer progression. Nat Commun. 2024;15:10543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lv G, Wang Q, Lin L, Ye Q, Li X, Zhou Q, et al. mTORC2-driven chromatin cGAS mediates chemoresistance through epigenetic reprogramming in colorectal cancer. Nat Cell Biol. 2024;26:1585–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Leuzzi G, Vasciaveo A, Taglialatela A, Chen X, Firestone TM, Hickman AR, et al. SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion. Cell. 2024;187:861–81.e32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Cho MG, Kumar RJ, Lin CC, Boyer JA, Shahir JA, Fagan-Solis K, et al. MRE11 liberates cGAS from nucleosome sequestration during tumorigenesis. Nature. 2024;625:585–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, et al. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Lett. 2018;435:92–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang X, Zhu L, Liu J, Ma Y, Qiu C, Liu C, et al. Palmitic acid in type 2 diabetes mellitus promotes atherosclerotic plaque vulnerability via macrophage Dll4 signaling. Nat Commun. 2024;15:1281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jia M, Chai L, Wang J, Wang M, Qin D, Song H, et al. S-nitrosothiol homeostasis maintained by ADH5 facilitates STING-dependent host defense against pathogens. Nat Commun. 2024;15:1750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wu J, Liu Q, Zhang X, Tan M, Li X, Liu P, et al. The interaction between STING and NCOA4 exacerbates lethal sepsis by orchestrating ferroptosis and inflammatory responses in macrophages. Cell Death Dis. 2022;13:653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li R, Li X, Zhao J, Meng F, Yao C, Bao E, et al. Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation. Theranostics. 2022;12:976–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hwang SM, Awasthi D, Jeong J, Sandoval TA, Chae CS, Ramos Y, et al. Transgelin 2 guards T cell lipid metabolism and antitumour function. Nature. 2024;635:1010–8.

    Article  PubMed  Google Scholar 

  32. Liu Z, Liu W, Wang W, Ma Y, Wang Y, Drum DL, et al. CPT1A-mediated fatty acid oxidation confers cancer cell resistance to immune-mediated cytolytic killing. Proc Natl Acad Sci USA. 2023;120:e2302878120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dai W, Xiang W, Han L, Yuan Z, Wang R, Ma Y, et al. PTPRO represses colorectal cancer tumorigenesis and progression by reprogramming fatty acid metabolism. Cancer Commun. 2022;42:848–67.

    Article  Google Scholar 

  34. Hao X, Zhao B, Towers M, Liao L, Monteiro EL, Xu X, et al. TXNRD1 drives the innate immune response in senescent cells with implications for age-associated inflammation. Nat Aging. 2024;4:185–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jiang N, Xie B, Xiao W, Fan M, Xu S, Duan Y, et al. Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nat Commun. 2022;13:1511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mertens RT, Misra A, Xiao P, Baek S, Rone JM, Mangani D, et al. A metabolic switch orchestrated by IL-18 and the cyclic dinucleotide cGAMP programs intestinal tolerance. Immunity. 2024;57:2077–94.e12.

    Article  PubMed  CAS  Google Scholar 

  37. Morehouse BR, Govande AA, Millman A, Keszei AFA, Lowey B, Ofir G, et al. STING cyclic dinucleotide sensing originated in bacteria. Nature. 2020;586:429–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Maxwell MB, Hom-Tedla MS, Yi J, Li S, Rivera SA, Yu J, et al. ARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity. Cell. 2024;187:3390–408.e19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Guanizo AC, Luong Q, Jayasekara WSN, de Geus ED, Inampudi C, Xue VS, et al. A STAT3-STING-IFN axis controls the metastatic spread of small cell lung cancer. Nat Immunol. 2024;25:2259–69.

    Article  PubMed  CAS  Google Scholar 

  40. Wang R, Li B, Huang B, Li Y, Liu Q, Lyu Z, et al. Gut microbiota-derived butyrate induces epigenetic and metabolic reprogramming in myeloid-derived suppressor cells to alleviate primary biliary Cholangitis. Gastroenterology. 2024;167:733–49.e3.

    Article  PubMed  CAS  Google Scholar 

  41. Tan Z, Xiao L, Tang M, Bai F, Li J, Li L, et al. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy. Theranostics. 2018;8:2329–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mo X, Niu Q, Ivanov AA, Tsang YH, Tang C, Shu C, et al. Systematic discovery of mutation-directed neo-protein-protein interactions in cancer. Cell. 2022;185:1974–85.e12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Fu H, Mo X, Ivanov AA. Decoding the functional impact of the cancer genome through protein-protein interactions. Nat Rev Cancer. 2025;25:189–208.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Yang JY, Lei XY, He KY, Guo JR, Liu MJ, Li JQ, et al. HMGA1 drives chemoresistance in esophageal squamous cell carcinoma by suppressing ferroptosis. Cell Death Dis. 2024;15:158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Liu MJ, Zhao Y, Li QT, Lei XY, He KY, Guo JR, et al. HMGA1 promotes the progression of esophageal squamous cell carcinoma by elevating TKT-mediated upregulation of pentose phosphate pathway. Cell Death Dis. 2024;15:541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Meng Q, Zhang Y, Sun H, Yang X, Hao S, Liu B, et al. Human papillomavirus-16 E6 activates the pentose phosphate pathway to promote cervical cancer cell proliferation by inhibiting G6PD lactylation. Redox Biol. 2024;71:103108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhao Y, Liu MJ, Zhang L, Yang Q, Sun QH, Guo JR, et al. High mobility group A1 (HMGA1) promotes the tumorigenesis of colorectal cancer by increasing lipid synthesis. Nat Commun. 2024;15:9909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chen L, Qiu W, Sun X, Gao M, Zhao Y, Li M, et al. Novel insights into causal effects of serum lipids and lipid-modifying targets on cholelithiasis. Gut. 2024;73:521–32.

    PubMed  CAS  Google Scholar 

  49. Darrous L, Hemani G, Davey Smith G, Kutalik Z. PheWAS-based clustering of Mendelian Randomisation instruments reveals distinct mechanism-specific causal effects between obesity and educational attainment. Nat Commun. 2024;15:1420.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Guo JR, He KY, Yuan JL, An W, Yin WT, Li QT, et al. HMGA1 sensitizes esophageal squamous cell carcinoma to mTOR inhibitors through the ETS1-FKBP12 axis. Int J Biol Sci. 2024;20:2640–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hale BD, Severin Y, Graebnitz F, Stark D, Guignard D, Mena J, et al. Cellular architecture shapes the naïve T cell response. Science. 2024;384:eadh8697.

    Article  PubMed  CAS  Google Scholar 

  52. He KY, Lei XY, Wu DH, Zhang L, Li JQ, Li QT, et al. Akkermansia muciniphila protects the intestine from irradiation-induced injury by secretion of propionic acid. Gut Microbes. 2023;15:2293312.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lv H, Zong Q, Chen C, Lv G, Xiang W, Xing F, et al. TET2-mediated tumor cGAS triggers endothelial STING activation to regulate vasculature remodeling and anti-tumor immunity in liver cancer. Nat Commun. 2024;15:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Vicari M, Mirzazadeh R, Nilsson A, Shariatgorji R, Bjärterot P, Larsson L, et al. Spatial multimodal analysis of transcriptomes and metabolomes in tissues. Nat Biotechnol. 2024;42:1046–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank scientists in the Xu Lab for their technical support and constructive discussions. This work was supported by the National Key Research and Development Program of China (2023YFE0109800), the National Natural Science Foundation of China (Nos. 82020108024, 82400658, and 82200596), the China Postdoctoral Science Foundation (No. 2022M721014) and the Scientific and Technological Research Project of Henan Province (No. 252102311069).

Author information

Authors and Affiliations

Authors

Contributions

LZ wrote the manuscript and designed the study. LJZ, YZ, XYL, DHW, KYH, MJL, JYY, JRG, ZHJ, and ZHY performed the experiments. YPJ and ZXX contributed to the conception and writing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhi-xiang Xu or Yong-ping Jian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at Henan University, China, and complied with institutional guidelines. Experiments were conducted at the Laboratory Animal Center of Henan University.

Consent for publication

All authors have reviewed, approved, and consented to the submission and publication of this article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhu, Lj., Zhao, Y. et al. STING inhibits the progression of esophageal squamous cell carcinoma by suppressing CPT1A-mediated fatty acid β-oxidation. Acta Pharmacol Sin 46, 2793–2807 (2025). https://doi.org/10.1038/s41401-025-01581-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01581-z

Keywords

Search

Quick links