Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GRK2-mediated phosphorylation and de-succinylation of PKM2 reduce macrophage glycolysis in rheumatoid arthritis

Abstract

Glucose metabolism disorder is an important hallmark of rheumatoid arthritis (RA). Inhibiting key glycolysis enzymes is the primary approach, but effective treatments targeting glycolytic metabolism have not yet reached clinical practice. G protein-coupled receptor kinase 2 (GRK2) as a multi-signals regulatory hub has attracted wide attention. In this study, we investigated the role of GRK2 inhibitor on glycolysis of monocyte-derived macrophages (MDMs), the primary source of inflammatory mediators in RA synovium. Human peripheral mononuclear cells were obtained from RA patients and differentiated into MDMs with M-CSF (100 ng/ml) for 5 days. By analyzing the metabolic status of RA MDMs in normoxia and hypoxia, we found that glycolysis was increased in RA MDMs, and inhibiting glycolysis could suppress the macrophage inflammatory phenotype. The antiglycolytic role of GRK2 deletion was tested in MDMs in vitro and in vivo. We conducted proteomics and mass spectrometric analysis and confirmed the inhibitory role of GRK2 on several key glycolytic enzymes. GRK2 maintained PKM2 tetramer stability through two synergistic modifications—phosphorylation at S406 and de-succinylation at K433. In RA, decreased cytoplasmic GRK2 protein levels impaired its regulation toward PKM2, leading to enhanced glycolysis and accelerating RA progression. Administration of GRK2 inhibitors paroxetine, CP-25, or the glycolysis inhibitor 2-DG for 21 days in the CIA mouse model all restored cytoplasmic GRK2 levels and homeostatic regulation, offering a potential therapeutic approach for RA glycolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Increased glycolysis of MDMs in RA.
Fig. 2: GRK2 deletion enhances glycolysis of BMDMs.
Fig. 3: Identification of PKM2 as a GRK2-binding protein.
Fig. 4: GRK2 determines PKM2 dimer/tetramer equilibrium.
Fig. 5: GRK2 promotes PKM2 phosphorylation and de-succinylation.
Fig. 6: GRK2 phosphorylates PKM2 at S406 and de-succinylates it at K433.
Fig. 7: GRK2 activity inhibitor restores GRK2-PKM2 interaction to reduce the glycolysis of CIA MDMs.

Similar content being viewed by others

References

  1. Brown P, Pratt AG, Hyrich KL. Therapeutic advances in rheumatoid arthritis. BMJ. 2024;384:e070856.

    Article  PubMed  CAS  Google Scholar 

  2. Yang X, Zhang W, Wang L, Zhao Y, Wei W. Metabolite-sensing GPCRs in rheumatoid arthritis. Trends Pharmacol Sci. 2024;45:118–33.

    Article  PubMed  CAS  Google Scholar 

  3. Souto-Carneiro M, Tóth L, Behnisch R, Urbach K, Klika KD, Carvalho RA, et al. Differences in the serum metabolome and lipidome identify potential biomarkers for seronegative rheumatoid arthritis versus psoriatic arthritis. Ann Rheum Dis. 2020;79:499–506.

    Article  PubMed  CAS  Google Scholar 

  4. Wu B, Qiu J, Zhao TV, Wang Y, Maeda T, Goronzy IN, et al. Succinyl-CoA ligase deficiency in oro-inflammatory and tissue-invasive T cells. Cell Metab. 2020;32:967–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Meyer A, Zack SR, Nijim W, Burgos A, Patel V, Zanotti B, et al. Metabolic reprogramming by Syntenin-1 directs RA FLS and endothelial cell-mediated inflammation and angiogenesis. Cell Mol Immunol. 2024;21:33–46.

    Article  PubMed  CAS  Google Scholar 

  6. You DG, Lim GT, Kwon S, Um W, Oh BH, Song SH, et al. Metabolically engineered stem cell-derived exosomes to regulate macrophage heterogeneity in rheumatoid arthritis. Sci Adv. 2021;7:eabe0083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Evans HG, Gullick NJ, Kelly S, Pitzalis C, Lord GM, Kirkham BW, et al. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proc Natl Acad Sci USA. 2009;106:6232–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yang X, Zhao Y, Wei Q, Zhu X, Wang L, Zhang W, et al. GRK2 inhibits Flt-1+ macrophage infiltration and its proangiogenic properties in rheumatoid arthritis. Acta Pharm Sin B. 2024;14:241–55.

    Article  PubMed  CAS  Google Scholar 

  9. Grayson PC, Eddy S, Taroni JN, Lightfoot YL, Mariani L, Parikh H, et al. Metabolic pathways and immunometabolism in rare kidney diseases. Ann Rheum Dis. 2018;77:1226–33.

    Article  PubMed  Google Scholar 

  10. Liu Z, Xu J, Ma Q, Zhang X, Yang Q, Wang L, et al. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche. Sci Transl Med. 2020;12:eaay1371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jia N, Gao Y, Li M, Liang Y, Li Y, Lin Y, et al. Metabolic reprogramming of proinflammatory macrophages by target delivered roburic acid effectively ameliorates rheumatoid arthritis symptoms. Signal Transduct Target Ther. 2023;8:280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Van Raemdonck K, Umar S, Palasiewicz K, Volin MV, Elshabrawy HA, Romay B, et al. Interleukin-34 reprograms glycolytic and osteoclastic rheumatoid arthritis macrophages via syndecan 1 and macrophage colony-stimulating factor receptor. Arthritis Rheumatol. 2021;73:2003–14.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jing C, Castro-Dopico T, Richoz N, Tuong ZK, Ferdinand JR, Lok LSC, et al. Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis. Proc Natl Acad Sci USA. 2020;117:15160–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hanlon MM, McGarry T, Marzaioli V, Amaechi S, Song Q, Nagpal S, et al. Rheumatoid arthritis macrophages are primed for inflammation and display bioenergetic and functional alterations. Rheumatology. 2023;62:2611–20.

    Article  PubMed  CAS  Google Scholar 

  15. Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004;104:2224–34.

    Article  PubMed  CAS  Google Scholar 

  16. Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, et al. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun. 2016;7:11635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Leach RM, Treacher DF. Oxygen transport-2. Tissue hypoxia. BMJ. 1998;317:1370–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Radoux-Mergault A, Oberhauser L, Aureli S, Gervasio FL, Stoeber M. Subcellular location defines GPCR signal transduction. Sci Adv. 2023;9:eadf6059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cheng J, Klei LR, Hubel NE, Zhang M, Schairer R, Maurer LM, et al. GRK2 suppresses lymphomagenesis by inhibiting the MALT1 proto-oncoprotein. J Clin Invest. 2020;130:1036–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Evron T, Daigle TL, Caron MG. GRK2: multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol Sci. 2012;33:154–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tu J, Chen W, Fang Y, Han D, Chen Y, Jiang H, et al. PU.1 promotes development of rheumatoid arthritis via repressing FLT3 in macrophages and fibroblast-like synoviocytes. Ann Rheum Dis. 2023;82:198–211.

    Article  PubMed  CAS  Google Scholar 

  22. Habtemichael EN, Li DT, Camporez JP, Westergaard XO, Sales CI, Liu X, et al. Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake. Nat Metab. 2021;3:378–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wang S, Zhou L, Ji N, Sun C, Sun L, Sun J, et al. Targeting ACYP1-mediated glycolysis reverses lenvatinib resistance and restricts hepatocellular carcinoma progression. Drug Resist Updat. 2023;69:100976.

    Article  PubMed  CAS  Google Scholar 

  24. Jia H, Li M, Li W, Liu L, Jian Y, Yang Z, et al. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun. 2020;11:988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    Article  PubMed  CAS  Google Scholar 

  26. Han C, Jiang L, Wang W, Zuo S, Gu J, Chen L, et al. GRK2 activates TRAF2–NF-κB signaling to promote hyperproliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Acta Pharm Sin B. 2025. https://doi.org/10.1016/j.apsb.2025.02.031.

  27. Yang Y, Ren P, Liu X, Sun X, Zhang C, Du X, et al. PPP1R26 drives hepatocellular carcinoma progression by controlling glycolysis and epithelial-mesenchymal transition. J Exp Clin Cancer Res. 2022;41:101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Theret M, Gsaier L, Schaffer B, Juban G, Ben Larbi S, Weiss-Gayet M, et al. AMPKα1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis. EMBO J. 2017;36:1946–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Xu J, Jiang C, Wang X, Geng M, Peng Y, Guo Y, et al. Upregulated PKM2 in macrophages exacerbates experimental arthritis via STAT1 signaling. J Immunol. 2020;205:181–92.

    Article  PubMed  CAS  Google Scholar 

  30. Li X, Tian BM, Deng DK, Liu F, Zhou H, Kong DQ, et al. LncRNA GACAT2 binds with protein PKM1/2 to regulate cell mitochondrial function and cement genesis in an inflammatory environment. Bone Res. 2022;10:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Qi H, Ning X, Yu C, Ji X, Jin Y, McNutt MA, et al. Succinylation-dependent mitochondrial translocation of PKM2 promotes cell survival in response to nutritional stress. Cell Death Dis. 2019;10:170.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yang XZ, Wei W. CP-25, a compound derived from paeoniflorin: research advance on its pharmacological actions and mechanisms in the treatment of inflammation and immune diseases. Acta Pharmacol Sin. 2020;41:1387–94.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82473931, 82430114 and 82204405), the Natural Science Foundation of Anhui Provincial (No. 2408085MH217), the Young Elite Scientists Sponsorship Program of Anhui Association for Science and Technology (No. RCTJ202427), the Research Fund of Anhui Institute of translational medicine (No. 2022zhyx-B04), and the Anhui Province Excellent Research and Innovation Team Project (No. 2024AH010013).

Author information

Authors and Affiliations

Authors

Contributions

WW and XZY conceived and designed the experiments. XZY, WKZ, LPW, ZQZ, WZ, and LLL performed the experiments. XZY, WKZ, and LPW analyzed the data. WW, XZY, YC, and YJZ contributed reagents/materials/analysis tools. XZY wrote the manuscript.

Corresponding authors

Correspondence to Xue-zhi Yang, Ying-jie Zhao, Yan Chang or Wei Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Xz., Zhang, Wk., Zhu, Zq. et al. GRK2-mediated phosphorylation and de-succinylation of PKM2 reduce macrophage glycolysis in rheumatoid arthritis. Acta Pharmacol Sin 46, 2693–2706 (2025). https://doi.org/10.1038/s41401-025-01582-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01582-y

Keywords

Search

Quick links