Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD73 inhibitor AB680 suppresses glioblastoma in mice by inhibiting purine metabolism and promoting P2RY12+ microglia transformation

Abstract

CD73 (ecto-5’-nucleotidase) is a metabolic immune checkpoint that dephosphorylates AMP to produce adenosine. Adenosine plays a pivotal role in immunosuppressive tumor microenvironment (TME) through adenosine receptors expressed on various immune cells. AB680, a specific CD73 inhibitor, is currently undergoing clinical trials for highly refractory cancers. In this study, we investigated the antitumor effects and mechanisms of AB680 in glioblastoma (GBM). By analyzing the expression pattern of CD73 across all cell types in orthotopic naïve G422TN-GBM tumors (d 7), we found that CD73 and its associated adenosine metabolic signaling were significantly elevated in G422TN-GBM cells compared to all other cell types. High CD73 expression was also observed in human GBM samples and was correlated with shorter patient survival. Administration of AB680 significantly prolonged survival in G422TN-GBM-bearing mice, reduced tumor size, cell proliferation, angiogenesis, and enhanced microglia activation and anti-tumor immune responses. Metabolomic analysis revealed that AB680 markedly increased ADP and AMP levels in the TME of orthotopic G422TN-GBM, thereby stimulating the activation of P2RY12+ microglia to exert their M1-like anti-cancer functions, as confirmed by human GBM scRNA-seq and G422TN-GBM snRNA-seq data. Furthermore, AB680 combined with RT/TMZ exhibited synergistic therapeutic effects by reversing RT/TMZ-induced increases in adenosine levels and promoting the transformation of P2RY12+ microglia. Overall, this study demonstrates that targeting CD73 with AB680 alters purine metabolism in the GBM microenvironment, promotes the transformation of P2RY12+ microglia, and triggers robust anti-tumor immune responses. These results support the rationale for AB680-based therapeutic clinical trials for GBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CD73 is predominantly expressed on tumor cells in GBM tissues and associates to worse prognosis.
Fig. 2: AB680 exerts therapeutic effects in G422TN-GBM mice but does not affect G422TN-GBM cell proliferation in vitro.
Fig. 3: AB680 induces microglia M1-like phenotype transformation in vivo and in vitro.
Fig. 4: AB680 alters purine metabolism and elevates ADP and AMP levels in G422TN-GBM.
Fig. 5: P2RY12+ microglia is identified as an antitumor microglia subset in human gliomas.
Fig. 6: P2RY12+ microglia is a therapeutic effector in AB680-treated G422TN-GBM tumors.
Fig. 7: AB680 enhances the efficacy of RT/TMZ in G422TN-GBM tumors by reversing ADP signaling and inducing P2RY12+ microglia infiltration.
Fig. 8: Schematic illustration of the mechanisms by which AB680 effectively treats GBM in this article.

Similar content being viewed by others

References

  1. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 2020;70:299–312.

    Article  PubMed  Google Scholar 

  2. Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, et al. Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res. 2021;171:105780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xiong M, Chen Z, Zhou C, Yang X, Hu W, Jiang Y, et al. PSMA PET/MR is a new imaging option for identifying glioma recurrence and predicting prognosis. Recent Pat Anticancer Drug Discov. 2024;19:383–95.

    Article  CAS  PubMed  Google Scholar 

  4. Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, et al. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell. 2024;187:294–311.e21.

    Article  CAS  PubMed  Google Scholar 

  5. Agnihotri S, Zadeh G. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol. 2016;18:160–72.

    Article  PubMed  Google Scholar 

  6. Garcia JH, Jain S, Aghi MK. Metabolic drivers of invasion in glioblastoma. Front Cell Dev Biol. 2021;9:683276.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One. 2008;3:e2599.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khalafalla MG, Tran HN, Khalafalla FG. P2Y purinergic signaling in prostate cancer: emerging insights into pathophysiology and therapy. Biochim Biophys Acta Rev Cancer. 2022;1877:188732.

    Article  CAS  PubMed  Google Scholar 

  9. Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, et al. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther. 2021;6:162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kepp O, Bezu L, Yamazaki T, Di Virgilio F, Smyth MJ, Kroemer G, et al. ATP and cancer immunosurveillance. Embo J. 2021;40:e108130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allard B, Allard D, Buisseret L, Stagg J. The adenosine pathway in immuno-oncology. Nat Rev Clin Oncol. 2020;17:611–29.

    Article  CAS  PubMed  Google Scholar 

  12. Azambuja JH, Gelsleichter NE, Beckenkamp LR, Iser IC, Fernandes MC, Figueiró F, et al. CD73 downregulation decreases in vitro and in vivo glioblastoma growth. Mol Neurobiol. 2019;56:3260–79.

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Zhang J, Zhang W, Zheng M, Guo H, Pan X, et al. The inhibitory effect of adenosine on tumor adaptive immunity and intervention strategies. Acta Pharm Sin B. 2024;14:1951–64.

    Article  CAS  PubMed  Google Scholar 

  14. Azambuja JH, Schuh RS, Michels LR, Gelsleichter NE, Beckenkamp LR, Iser IC, et al. Nasal administration of cationic nanoemulsions as CD73-siRNA delivery system for glioblastoma treatment: a new therapeutical approach. Mol Neurobiol. 2020;57:635–49.

    Article  CAS  PubMed  Google Scholar 

  15. Goswami S, Walle T, Cornish AE, Basu S, Anandhan S, Fernandez I, et al. Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nat Med. 2020;26:39–46.

    Article  CAS  PubMed  Google Scholar 

  16. Quezada C, Garrido W, Oyarzún C, Fernández K, Segura R, Melo R, et al. 5’-ectonucleotidase mediates multiple-drug resistance in glioblastoma multiforme cells. J Cell Physiol. 2013;228:602–8.

    Article  CAS  PubMed  Google Scholar 

  17. Lawson KV, Kalisiak J, Lindsey EA, Newcomb ET, Leleti MR, Debien L, et al. Discovery of AB680: a potent and selective inhibitor of CD73. J Med Chem. 2020;63:11448–68.

    Article  CAS  PubMed  Google Scholar 

  18. Jeffrey JL, Lawson KV, Powers JP. Targeting metabolism of extracellular nucleotides via inhibition of ectonucleotidases CD73 and CD39. J Med Chem. 2020;63:13444–65.

    Article  CAS  PubMed  Google Scholar 

  19. Kim M, Min YK, Jang J, Park H, Lee S, Lee CH. Single-cell RNA sequencing reveals distinct cellular factors for response to immunotherapy targeting CD73 and PD-1 in colorectal cancer. J Immunother Cancer 2021; 9:e002503.

  20. Noh JY, Lee IP, Han NR, Kim M, Min YK, Lee SY, et al. Additive effect of CD73 inhibitor in colorectal cancer treatment with CDK4/6 inhibitor through regulation of PD-L1. Cell Mol Gastroenterol Hepatol. 2022;14:769–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Q, Yin H, He J, Xie Y, Wang W, Xu H, et al. Tumor microenvironment responsive CD8+ T cells and myeloid-derived suppressor cells to trigger CD73 inhibitor AB680-based synergistic therapy for pancreatic cancer. Adv Sci. 2023;10:e2302498.

    Article  Google Scholar 

  22. Jacoberger-Foissac C, Cousineau I, Bareche Y, Allard D, Chrobak P, Allard B, et al. CD73 inhibits cGAS-STING and cooperates with CD39 to promote pancreatic cancer. Cancer Immunol Res. 2023;11:56–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lawrence AR, Canzi A, Bridlance C, Olivié N, Lansonneur C, Catale C, et al. Microglia maintain structural integrity during fetal brain morphogenesis. Cell. 2024;187:962–80.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schädlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B. The role of the ATP-adenosine axis in ischemic stroke. Semin Immunopathol. 2023;45:347–65.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shieh CH, Heinrich A, Serchov T, van Calker D, Biber K. P2X7-dependent, but differentially regulated release of IL-6, CCL2, and TNF-α in cultured mouse microglia. Glia. 2014;62:592–607.

    Article  PubMed  Google Scholar 

  26. Kenkhuis B, Somarakis A, Kleindouwel LRT, van Roon-Mom WMC, Höllt T, van der Weerd L. Co-expression patterns of microglia markers Iba1, TMEM119 and P2RY12 in Alzheimer’s disease. Neurobiol Dis. 2022;167:105684.

    Article  CAS  PubMed  Google Scholar 

  27. Allard D, Cousineau I, Ma EH, Allard B, Bareche Y, Fleury H, et al. The CD73 immune checkpoint promotes tumor cell metabolic fitness. Elife. 2023;12:e84508.

  28. Neo SY, Yang Y, Record J, Ma R, Chen X, Chen Z, et al. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J Clin Invest. 2020;130:1185–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19:355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu F, Zhou Q, Jiang HF, Zhang TT, Miao C, Xu XH, et al. Piperlongumine conquers temozolomide chemoradiotherapy resistance to achieve immune cure in refractory glioblastoma via boosting oxidative stress-inflamation-CD8+-T cell immunity. J Exp Clin Cancer Res. 2023;42:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu F, Xu X, Li C, Li C, Li Y, Yin S, et al. Mannose synergizes with chemoradiotherapy to cure cancer via metabolically targeting HIF-1 in a novel triple-negative glioblastoma mouse model. Clin Transl Med. 2020;10:e226.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Horbinski C, Berger T, Packer RJ, Wen PY. Clinical implications of the 2021 edition of the WHO classification of central nervous system tumours. Nat Rev Neurol. 2022;18:515–29.

    Article  PubMed  Google Scholar 

  33. Zhang QL, Fu BM, Zhang ZJ. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood-brain barrier permeability. Drug Deliv. 2017;24:1037–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu F, Xu XH, Li CY, Zhang TT, Yin SL, Liu GQ, et al. Rapid tumor recurrence in a novel murine GBM surgical model is associated with Akt/PD-L1/vimentin signaling. Biochem Biophys Res Commun. 2021;569:1–9.

    Article  CAS  PubMed  Google Scholar 

  35. Li C, Miao C, Ge Y, Wu J, Gao P, Yin S, et al. A molecularly distinct cell type in the midbrain regulates intermale aggression behaviors in mice. Theranostics. 2025;15:707–25.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li CY, Jiang HF, Li L, Lai XJ, Liu QR, Yu SB, et al. Neuroglobin facilitates neuronal oxygenation through tropic migration under hypoxia or anemia in rat: how does the brain breathe? Neurosci Bull. 2023;39:1481–96.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kale NS, Haug K, Conesa P, Jayseelan K, Moreno P, Rocca-Serra P, et al. MetaboLights: an open-access database repository for metabolomics data. Curr Protoc Bioinform. 2016;53:14.3.1–.3.8.

    Article  Google Scholar 

  38. Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47:D330-d8.

  39. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–d61.

    Article  CAS  PubMed  Google Scholar 

  41. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8:281–91.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Coy S, Wang S, Stopka SA, Lin JR, Yapp C, Ritch CC, et al. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma. Nat Commun. 2022;13:4814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun R, Han R, McCornack C, Khan S, Tabor GT, Chen Y, et al. TREM2 inhibition triggers antitumor cell activity of myeloid cells in glioblastoma. Sci Adv. 2023;9:eade3559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16:1289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gravendeel LA, Kouwenhoven MC, Gevaert O, de Rooi JJ, Stubbs AP, Duijm JE, et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res. 2009;69:9065–72.

    Article  CAS  PubMed  Google Scholar 

  52. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.

    Article  Google Scholar 

  53. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sidders B, Zhang P, Goodwin K, O’Connor G, Russell DL, Borodovsky A, et al. Adenosine signaling is prognostic for cancer outcome and has predictive utility for immunotherapeutic response. Clin Cancer Res. 2020;26:2176–87.

    Article  CAS  PubMed  Google Scholar 

  55. Meng L, Chu X, Xing H, Liu X, Xin X, Chen L, et al. Improving glioblastoma therapeutic outcomes via doxorubicin-loaded nanomicelles modified with borneol. Int J Pharm. 2019;567:118485.

    Article  CAS  PubMed  Google Scholar 

  56. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23:1231–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer. 2010;10:319–31.

    Article  CAS  PubMed  Google Scholar 

  58. Lu T, Zhang Z, Zhang J, Pan X, Zhu X, Wang X, et al. CD73 in small extracellular vesicles derived from HNSCC defines tumour-associated immunosuppression mediated by macrophages in the microenvironment. J Extracell Vesicles. 2022;11:e12218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Perrot I, Michaud HA, Giraudon-Paoli M, Augier S, Docquier A, Gros L, et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 2019;27:2411–25.e9.

    Article  CAS  PubMed  Google Scholar 

  60. Poon CC, Sarkar S, Yong VW, Kelly JJP. Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis. Brain. 2017;140:1548–60.

    Article  PubMed  Google Scholar 

  61. Zhang C, Zhou Y, Gao Y, Zhu Z, Zeng X, Liang W, et al. Radiated glioblastoma cell-derived exosomal circ_0012381 induce M2 polarization of microglia to promote the growth of glioblastoma by CCL2/CCR2 axis. J Transl Med. 2022;20:388.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fu B, Xiong Y, Sha Z, Xue W, Xu B, Tan S, et al. SEPTIN2 suppresses an IFN-γ-independent, proinflammatory macrophage activation pathway. Nat Commun. 2023;14:7441.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-mediated IFN-γR2 membrane translocation is required to activate macrophage innate response. Cell. 2018;175:1336–51.e17.

    Article  CAS  PubMed  Google Scholar 

  64. Klemm F, Maas RR, Bowman RL, Kornete M, Soukup K, Nassiri S, et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell. 2020;181:1643–60.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kilian M, Sheinin R, Tan CL, Friedrich M, Krämer C, Kaminitz A, et al. MHC class II-restricted antigen presentation is required to prevent dysfunction of cytotoxic T cells by blood-borne myeloids in brain tumors. Cancer Cell. 2023;41:235–51.e9.

    Article  CAS  PubMed  Google Scholar 

  66. Utzschneider DT, Delpoux A, Wieland D, Huang X, Lai CY, Hofmann M, et al. Active maintenance of T cell memory in acute and chronic viral infection depends on continuous expression of FOXO1. Cell Rep. 2018;22:3454–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rao RR, Li Q, Gubbels Bupp MR, Shrikant PA. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8+ T cell differentiation. Immunity. 2012;36:374–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017;16:79.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yegutkin GG, Boison D. ATP and adenosine metabolism in cancer: exploitation for therapeutic gain. Pharmacol Rev. 2022;74:797–822.

    Article  PubMed  Google Scholar 

  70. Xia C, Yin S, To KKW, Fu L. CD39/CD73/A2AR pathway and cancer immunotherapy. Mol Cancer. 2023;22:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu S, Shao QQ, Sun JT, Yang N, Xie Q, Wang DH, et al. Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas. Neuro Oncol. 2013;15:1160–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stagg J, Golden E, Wennerberg E, Demaria S. The interplay between the DNA damage response and ectonucleotidases modulates tumor response to therapy. Sci Immunol. 2023;8:eabq3015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Linden J, Koch-Nolte F, Dahl G. Purine release, metabolism, and signaling in the inflammatory response. Annu Rev Immunol. 2019;37:325–47.

    Article  CAS  PubMed  Google Scholar 

  74. Schafer ST, Mansour AA, Schlachetzki JCM, Pena M, Ghassemzadeh S, Mitchell L, et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell. 2023;186:2111–26.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caponegro MD, Oh K, Madeira MM, Radin D, Sterge N, Tayyab M, et al. A distinct microglial subset at the tumor-stroma interface of glioma. Glia. 2021;69:1767–81.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 82173197 to XQC); the Hubei Provincial Natural Science Foundation of China (Grant No. 2024AFB978 to FL); the Jingzhou Joint Scientific Research Fund (Grant No. 2024LHY14 to FL); the Scientific Research Starting Foundation for Doctor, the First People’s Hospital of Jingzhou (Grant No. 2023DIF01 to FL); the National Natural Science Foundation of China (Grant No. 32270715 to MFL).

Author information

Authors and Affiliations

Authors

Contributions

PPG performed experiments, acquisition and analysis of data, bioinformatics analysis, and wrote the manuscript. HFJ performed experiments, bioinformatics analysis, and wrote the manuscript. YWD, YS, EZY, JXW, XXL, SDW, ZHD, and XHX performed experiments. YWW, FL were involved in writing, review, and/or revision of the manuscript. QA and CM help experiments. XMH and MFL assisted with bioinformatics analysis and provided a server operating on the Linux platform for the purposes of our research. XQC designed the scheme of the study and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Feng Liu or Xiao-qian Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Pp., Jiang, Hf., Du, Yw. et al. CD73 inhibitor AB680 suppresses glioblastoma in mice by inhibiting purine metabolism and promoting P2RY12+ microglia transformation. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01585-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01585-9

Keywords

Search

Quick links