Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serum amyloid A3 aggravates bleomycin-induced pulmonary fibrosis through Krüppel-like factor 6-dependent interlukin-36α expression

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease; however, effective clinical treatments for IPF are lacking. High serum amyloid A (SAA) expression in serum is closely related to the severity of pulmonary fibrosis, but the underlying mechanisms remain incompletely understood. This study found that the expression of endogenous SAA3 was significantly induced in mice with bleomycin-induced fibrosis. Saa3 deletion alleviated pulmonary fibrosis in mice. Additionally, recombinant IL-36α treatment aggravated fibrosis in bleomycin-induced Saa3−/− mice. Furthermore, SAA3 could induce the expression of IL-36α in macrophages through the NF-κB pathway and transcription factor Krűppel-like factor 6 (KLF6). Also, the Klf6 knockdown alleviated severe lung fibrosis after recombinant SAA3 treatment. In conclusion, our study suggested that SAA3 aggravated bleomycin-induced pulmonary fibrosis by inducing IL-36α expression in macrophages through the NF-κB–KLF6 pathway. It provides new theoretical bases and potential therapeutic targets for treating fibrosis-related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SAA3 is highly induced in BLM-induced pulmonary fibrosis.
Fig. 2: SAA3 aggravates BLM-induced pulmonary fibrosis damage.
Fig. 3: IL-36α is a main partner in the aggravating effect of SAA3 on BLM-induced pulmonary fibrosis.
Fig. 4: SAA3 induces the expression of IL-36α through NF-κB signaling pathway.
Fig. 5: SAA3 induces IL-36α expression through NF-κB-KLF6 in macrophages.
Fig. 6: SAA3 aggravates BLM-induced pulmonary fibrosis via KLF6 induction.
Fig. 7: Serum Amyloid A3 aggravates bleomycin-induced pulmonary fibrosis through Krüppel-like factor 6-dependent interlukin-36α expression.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. Somogyi V, Chaudhuri N, Torrisi SE, Kahn N, Müller V, Kreuter M. The therapy of idiopathic pulmonary fibrosis: What is next? Eur Respir Rev. 2019;28:190021.

  2. Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, et al. Idiopathic pulmonary fibrosis: current and future treatment. Clin Respir J. 2022;16:84–96.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Torrisi SE, Kahn N, Vancheri C, Kreuter M. Evolution and treatment of idiopathic pulmonary fibrosis. Presse Med. 2020;49:104025.

    Article  PubMed  Google Scholar 

  4. Yu QY, Tang XX. Irreversibility of pulmonary fibrosis. Aging Dis. 2022;13:73–86.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ortiz-Zapater E, Signes-Costa J, Montero P, Roger I. Lung fibrosis and fibrosis in the lungs: Is it all about myofibroblasts. Biomedicines. 2022;10:1423.

  6. Ptasinski VA, Stegmayr J, Belvisi MG, Wagner DE, Murray LA. Targeting alveolar repair in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2021;65:347–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Moss BJ, Ryter SW, Rosas IO. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu Rev Pathol. 2022;17:515–46.

    Article  PubMed  CAS  Google Scholar 

  8. Spagnolo P, Tonelli R, Samarelli AV, Castelli G, Cocconcelli E, Petrarulo S, et al. The role of immune response in the pathogenesis of idiopathic pulmonary fibrosis: far beyond the Th1/Th2 imbalance. Expert Opin Ther Targets. 2022;26:617–31.

    Article  PubMed  CAS  Google Scholar 

  9. Bocchino M, Zanotta S, Capitelli L, Galati D. Dendritic cells are the intriguing players in the puzzle of idiopathic pulmonary fibrosis pathogenesis. Front Immunol. 2021;12:664109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Savin IA, Zenkova MA, Sen’kova AV. Pulmonary fibrosis as a result of acute lung inflammation: molecular mechanisms, relevant in vivo models, prognostic and therapeutic approaches. Int J Mol Sci. 2022;23:14959.

  11. Zhang L, Wang Y, Wu G, Xiong W, Gu W, Wang CY. Macrophages: friend or foe in idiopathic pulmonary fibrosis? Respir Res. 2018;19:170.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Elias M, Zhao S, Le HT, Wang J, Neurath MF, Neufert C, et al. IL-36 in chronic inflammation and fibrosis—bridging the gap? J Clin Invest. 2021;131:e144336.

  13. Neurath MF. IL-36 in chronic inflammation and cancer. Cytokine Growth Factor Rev. 2020;55:70–9.

    Article  PubMed  CAS  Google Scholar 

  14. Iznardo H, Puig L. Exploring the role of IL-36 cytokines as a new target in psoriatic disease. Int J Mol Sci. 2021;22:4344.

  15. Wu YR, Hsing CH, Chiu CJ, Huang HY, Hsu YH. Roles of IL-1 and IL-10 family cytokines in the progression of systemic lupus erythematosus: Friends or foes? IUBMB Life. 2022;74:143–56.

    Article  PubMed  CAS  Google Scholar 

  16. Scheibe K, Kersten C, Schmied A, Vieth M, Primbs T, Carlé B, et al. Inhibiting interleukin 36 receptor signaling reduces fibrosis in mice with chronic intestinal inflammation. Gastroenterology. 2019;156:1082–97.e11.

    Article  PubMed  CAS  Google Scholar 

  17. Melton E, Qiu H. Interleukin-36 cytokine/receptor signaling: a new target for tissue fibrosis. Int J Mol Sci. 2020;21:6458.

  18. Chi HH, Hua KF, Lin YC, Chu CL, Hsieh CY, Hsu YJ, et al. IL-36 signaling facilitates activation of the NLRP3 inflammasome and IL-23/IL-17 axis in renal inflammation and fibrosis. J Am Soc Nephrol. 2017;28:2022–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhang Q, Guo L, Song X, Lv C, Tang P, Li Y, et al. Serum IL-36 cytokines levels in idiopathic pulmonary fibrosis and connective tissue disease-associated interstitial lung diseases. Clin Chim Acta. 2022;530:8–12.

    Article  PubMed  CAS  Google Scholar 

  20. Sack GH Jr. Serum amyloid A (SAA) proteins. Subcell Biochem. 2020;94:421–36.

    Article  PubMed  CAS  Google Scholar 

  21. Malle E, Sodin-Semrl S, Kovacevic A. Serum amyloid A: an acute-phase protein involved in tumour pathogenesis. Cell Mol Life Sci. 2009;66:9–26.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Y, Zhang J, Sheng H, Li H, Wang R. Acute phase reactant serum amyloid A in inflammation and other diseases. Adv Clin Chem. 2019;90:25–80.

    Article  PubMed  CAS  Google Scholar 

  23. Sack GH Jr. Serum amyloid A—a review. Mol Med. 2018;24:46.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kawasaki H, Murakami T, Badr Y, Kamiya S, Shimizu K, Okada A, et al. In vitro and ex vivo expression of serum amyloid A3 in mouse lung epithelia. Exp Lung Res. 2020;46:352–61.

    Article  PubMed  CAS  Google Scholar 

  25. Bang YJ, Hu Z, Li Y, Gattu S, Ruhn KA, Raj P, et al. Serum amyloid A delivers retinol to intestinal myeloid cells to promote adaptive immunity. Science. 2021;373:eabf9232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhang G, Liu J, Wu L, Fan Y, Sun L, Qian F, et al. Elevated expression of serum amyloid A 3 protects colon epithelium against acute injury through TLR2-dependent induction of neutrophil IL-22 expression in a mouse model of colitis. Front Immunol. 2018;9:1503.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vercalsteren E, Vranckx C, Vermeire I, Gooijen M, Lijnen R, Scroyen I. Serum amyloid A3 deficiency impairs in vitro and in vivo adipocyte differentiation. Adipocyte. 2021;10:242–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Yang X, Li R, Xu L, Qian F, Sun L. Serum amyloid A3 is required for caerulein-induced acute pancreatitis through induction of RIP3-dependent necroptosis. Immunol Cell Biol. 2021;99:34–48.

    Article  PubMed  CAS  Google Scholar 

  29. Djurec M, Graña O, Lee A, Troulé K, Espinet E, Cabras L, et al. Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors. Proc Natl Acad Sci USA. 2018;115:E1147–e56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Vietri L, Bennett D, Cameli P, Bergantini L, Cillis G, Sestini P, et al. Serum amyloid A in patients with idiopathic pulmonary fibrosis. Respir Investig. 2019;57:430–4.

    Article  PubMed  Google Scholar 

  31. Liang Q, Cai W, Zhao Y, Xu H, Tang H, Chen D, et al. Lycorine ameliorates bleomycin-induced pulmonary fibrosis via inhibiting NLRP3 inflammasome activation and pyroptosis. Pharmacol Res. 2020;158:104884.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Y, Lei CQ, Hu YH, Xia T, Li M, Zhong B, et al. Krüppel-like factor 6 is a co-activator of NF-κB that mediates p65-dependent transcription of selected downstream genes. J Biol Chem. 2014;289:12876–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Heukels P, Moor CC, von der Thüsen JH, Wijsenbeek MS, Kool M. Inflammation and immunity in IPF pathogenesis and treatment. Respir Med. 2019;147:79–91.

    Article  PubMed  CAS  Google Scholar 

  34. Peng L, Wen L, Shi QF, Gao F, Huang B, Meng J, et al. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis. 2020;11:978.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bolourani S, Brenner M, Wang P. The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. J Mol Med. 2021;99:1373–84.

    Article  PubMed  CAS  Google Scholar 

  36. Dev S, Singh A. Study of role of serum amyloid A (SAA) as a marker of disease activity in juvenile idiopathic arthritis. J Fam Med Prim Care. 2019;8:2129–33.

    Article  Google Scholar 

  37. Lakota K, Carns M, Podlusky S, Mrak-Poljsak K, Hinchcliff M, Lee J, et al. Serum amyloid A is a marker for pulmonary involvement in systemic sclerosis. PLoS One. 2015;10:e0110820.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee JY, Hall JA, Kroehling L, Wu L, Najar T, Nguyen HH, et al. Serum amyloid A proteins induce pathogenic Th17 cells and promote inflammatory disease. Cell. 2020;180:79–91.e16.

    Article  PubMed  CAS  Google Scholar 

  39. Fan Y, Zhang G, Vong CT, Ye RD. Serum amyloid A3 confers protection against acute lung injury in Pseudomonas aeruginosa-infected mice. Am J Physiol Lung Cell Mol Physiol. 2020;318:L314–l22.

    Article  PubMed  CAS  Google Scholar 

  40. Ather JL, Dienz O, Boyson JE, Anathy V, Amiel E, Poynter ME. Serum amyloid A3 is required for normal lung development and survival following influenza infection. Sci Rep. 2018;8:16571.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vietri L, d’Alessandro M, Bergantini L, Carleo A, Cameli P, Mazzei MA, et al. Specificity of serum amyloid A as a biomarker of idiopathic pulmonary fibrosis. Intern Med J. 2020;50:1571–4.

    Article  PubMed  CAS  Google Scholar 

  42. Zhao D, Abbasi A, Rossiter HB, Su X, Liu H, Pi Y, et al. Serum amyloid A in stable COPD patients is associated with the frequent exacerbator phenotype. Int J Chron Obstruct Pulmon Dis. 2020;15:2379–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ye RD, Sun L. Emerging functions of serum amyloid A in inflammation. J Leukoc Biol. 2015;98:923–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. He R, Shepard LW, Chen J, Pan ZK, Ye RD. Serum amyloid A is an endogenous ligand that differentially induces IL-12 and IL-23. J Immunol. 2006;177:4072–9.

    Article  PubMed  CAS  Google Scholar 

  45. Facci L, Barbierato M, Zusso M, Skaper SD, Giusti P. Serum amyloid A primes microglia for ATP-dependent interleukin-1β release. J Neuroinflammation. 2018;15:164.

    Article  PubMed  PubMed Central  Google Scholar 

  46. He R, Sang H, Ye RD. Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL1/LXA4R. Blood. 2003;101:1572–81.

    Article  PubMed  CAS  Google Scholar 

  47. Bigonnesse F, Marois M, Maheux R, Akoum A. Interleukin-1 receptor accessory protein is constitutively expressed in human endometrium throughout the menstrual cycle. Mol Hum Reprod. 2001;7:333–9.

    Article  PubMed  CAS  Google Scholar 

  48. Murrieta-Coxca JM, Gómez-Chávez F, Baeza-Martínez DA, Cancino-Diaz ME, Cancino-Diaz JC, Pérez-Tapia SM, et al. Estrous cycle and gestational age-dependent expression of members of the interleukin-36 subfamily in a semi-allogeneic model of infected and non-infected murine pregnancy. Front Immunol. 2016;7:376.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Baker JR, Fenwick PS, Koss CK, Owles HB, Elkin SL, Fine J, et al. IL-36 receptor agonist and antagonist imbalance drives neutrophilic inflammation in COPD. JCI Insight. 2022;7:e155581.

  50. Tian S, Zhou X, Zhang M, Cui L, Li B, Liu Y, et al. Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages. Stem Cell Res Ther. 2022;13:330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ahronian LG, Zhu LJ, Chen YW, Chu HC, Klimstra DS, Lewis BC. A novel KLF6-Rho GTPase axis regulates hepatocellular carcinoma cell migration and dissemination. Oncogene. 2016;35:4653–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yuce K, Ozkan AI. The kruppel-like factor (KLF) family, diseases, and physiological events. Gene. 2024;895:148027.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2023YFA0913700), National Natural Science Foundation of China (82073858, 82173821, 82273934, 82373875, 82072142 and 82473928), the open project of Anhui Province Key Laboratory of Translational Cancer Research (KFKT202302), Health Profession Clinical Research Funds of the Shanghai Municipal Health Commission (Grant No. 202140315), and the Scientific Research Project funded by the Shanghai Municipal Science and Technology Commission (Grant No. 23ZR1449900). Health Profession Clinical Research Funds of the Shanghai Municipal Health Commission (Grant No. 202140315), and the Scientific Research Project funded by the Shanghai Municipal Science and Technology Commission (Grant No. 23ZR1449900).

Author information

Authors and Affiliations

Contributions

LS and FQ conceived the study. LS and XYY designed, XYY, WL, YL, and QL performed, and interpreted experimental data. XYY, HXL, AJX and YWZ analyzed database. XYY, YHC, TYL and WG prepared the data visualization. LS and XYY wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Feng Qian or Lei Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Xy., Liu, Y., Li, W. et al. Serum amyloid A3 aggravates bleomycin-induced pulmonary fibrosis through Krüppel-like factor 6-dependent interlukin-36α expression. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01596-6

Keywords

Search

Quick links