Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SMURF2 inhibition attenuates cardiac hypertrophy through blocking ubiquitination degradation of AXIN1

Abstract

Cardiac hypertrophy as one of the major predisposing factors for chronic heart failure lacks effective interventions. It has been shown that protein ubiquitination plays an important role in cardiac hypertrophy. SMURF2 (SMAD-specific E3 ubiquitin ligase 2) is an important member of NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) family of HECT E3 ubiquitin ligases. In this study we investigated the regulatory role of SMURF2 in cardiac hypertrophy. Experiment models were established in mice by transverse aortic constriction (TAC) in vivo, as well as in neonatal rat cardiomyocytes (NRCMs) by treatment with angiotensin II (Ang II, 1 μM) in vitro. We showed that the expression levels of SMURF2 were significantly elevated in cardiac tissues from patients with cardiac hypertrophy and the two experiment models. In NRCMs, SMURF2 knockdown or treatment with a specific SMURF2 inhibitor heclin (8 μM) significantly inhibited Ang II-induced cardiomyocyte hypertrophy, evidenced by reduced mRNA levels of Anp, Bnp and β-Mhc as well as cell surface. Prophylactic or therapeutic administration of heclin (10 mg·kg–1·d–1, i.p., for 5 or 4 weeks) effectively suppressed TAC-induced cardiac hypertrophy, and rescued heart function. We demonstrated that SMURF2 interacted with AXIN1 and increased ubiquitination degradation of AXIN1 in myocardial tissues, activating the Wnt/β-catenin signaling pathway. Heclin inhibited the ubiquitination degradation of AXIN1 by SMURF2 to alleviate cardiac hypertrophy. In conclusion, upregulated SMURF2 leads to AXIN1 ubiquitination and degradation, thereby facilitating the progression of cardiac hypertrophy. SMURF2 inhibitor heclin may serve as a therapeutic strategy for the treatment of cardiac hypertrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SMURF2 levels are increased in cardiac hypertrophy.
Fig. 2: Heclin alleviates Ang II-induced cardiomyocytes hypertrophy.
Fig. 3: Heclin prophylactic administration alleviates TAC-induced cardiac hypertrophy.
Fig. 4: Heclin therapeutic administration alleviates TAC-induced cardiac hypertrophy.
Fig. 5: Decreased AXIN1 levels are mediated by increased SMURF2 expression during cardiac hypertrophy.
Fig. 6: Heclin alleviates cardiac hypertrophy by inhibiting SMURF2-mediated AXIN1 ubiquitination degradation.

Similar content being viewed by others

References

  1. Zhao S, Song TY, Wang ZY, Gao J, Cao JW, Hu LL, et al. S-nitrosylation of Hsp90 promotes cardiac hypertrophy in mice through GSK3β signaling. Acta Pharmacol Sin. 2022;43:1979–88.

    Article  CAS  PubMed  Google Scholar 

  2. Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15:387–407.

    Article  CAS  PubMed  Google Scholar 

  3. Macdonald MR, Petrie MC, Hawkins NM, Petrie JR, Fisher M, Mckelvie R, et al. Diabetes, left ventricular systolic dysfunction, and chronic heart failure. Eur Heart J. 2008;29:1224–40.

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Zhang M, Wang R, Lin J, Ma Q, Guo H, et al. Therapeutic inhibition of LincRNA-p21 protects against cardiac hypertrophy. Circ Res. 2024;135:434–49.

    Article  CAS  PubMed  Google Scholar 

  5. Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res. 2014;114:565–71.

    Article  CAS  PubMed  Google Scholar 

  6. Ye B, Zhou H, Chen Y, Luo W, Lin W, Zhao Y, et al. USP25 ameliorates pathological cardiac hypertrophy by stabilizing SERCA2a in cardiomyocytes. Circ Res. 2023;132:465–80.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Q, Wang Y, West TM, Liu Y, Reddy GR, Barbagallo F, et al. Carvedilol induces biased β1 adrenergic receptor-nitric oxide synthase 3-cyclic guanylyl monophosphate signalling to promote cardiac contractility. Cardiovasc Res. 2021;117:2237–51.

    Article  CAS  PubMed  Google Scholar 

  8. Kahlon T, Carlisle S, Otero Mostacero D, Williams N, Trainor P, Defilippis AP. Angiotensinogen: more than its downstream products: evidence from population studies and novel therapeutics. JACC Heart Fail 2022;10:699–713.

    Article  CAS  PubMed  Google Scholar 

  9. Wang P, Xu S, Xu J, Xin Y, Lu Y, Zhang H, et al. Elevated MCU expression by CaMKIIδB limits pathological cardiac remodeling. Circulation. 2022;145:1067–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao Y, Xu C, Ye J, He Q, Zhang X, Jia S, et al. Miro2 regulates inter-mitochondrial communication in the heart and protects against TAC-induced cardiac dysfunction. Circ Res. 2019;125:728–43.

    Article  CAS  PubMed  Google Scholar 

  11. Naito AT, Okada S, Minamino T, Iwanaga K, Liu ML, Sumida T, et al. Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury. Circ Res. 2010;106:1692–702.

    Article  CAS  PubMed  Google Scholar 

  12. Glembotski CC. Breaking down the COP9 Signalsome in the heart: how inactivating a protein ubiquitin ligase increases protein ubiquitylation and protects the heart. Circ Res. 2015;117:914–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu N, Gulick J, Osinska H, Yu Y, Mclendon PM, Shay-Winkler K, et al. Ube2v1 positively regulates protein aggregation by modulating ubiquitin proteasome system performance partially through K63 ubiquitination. Circ Res. 2020;126:907–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Willis MS, Townley-Tilson WH, Kang EY, Homeister JW, Patterson C. Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease. Circ Res. 2010;106:463–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao D, Zhong G, Li J, Pan J, Zhao Y, Song H, et al. Targeting E3 ubiquitin ligase WWP1 prevents cardiac hypertrophy through destabilizing DVL2 via inhibition of K27-linked ubiquitination. Circulation. 2021;144:694–711.

    Article  CAS  PubMed  Google Scholar 

  16. Tang X, Liu X, Sha X, Zhang Y, Zu Y, Fan Q, et al. NEDD4-mediated GSNOR degradation aggravates cardiac hypertrophy and dysfunction. Circ Res. 2025;136:422–38.

    Article  CAS  PubMed  Google Scholar 

  17. Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol. 2020;67:102–16.

    Article  CAS  PubMed  Google Scholar 

  18. Ni C, Chen Y, Xu Y, Zhao J, Li Q, Xiao C, et al. Flavin containing monooxygenase 2 prevents cardiac fibrosis via CYP2J3-SMURF2 axis. Circ Res. 2022; 101161circresaha122320538.

  19. Huang Y, Xu Y, Feng S, He P, Sheng B, Ni J. miR-19b enhances osteogenic differentiation of mesenchymal stem cells and promotes fracture healing through the WWP1/Smurf2-mediated KLF5/β-catenin signaling pathway. Exp Mol Med. 2021;53:973–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    Article  CAS  PubMed  Google Scholar 

  21. Mund T, Lewis MJ, Maslen S, Pelham HR. Peptide and small molecule inhibitors of HECT-type ubiquitin ligases. Proc Natl Acad Sci USA. 2014;111:16736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, et al. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell. 2012;149:1245–56.

    Article  CAS  PubMed  Google Scholar 

  23. Chen X, Li Y, Yuan X, Yuan W, Li C, Zeng Y, et al. Methazolamide attenuates the development of diabetic cardiomyopathy by promoting β-catenin degradation in type 1 diabetic mice. Diabetes. 2022;71:795–811.

    Article  CAS  PubMed  Google Scholar 

  24. Swatek KN, Komander D. Ubiquitin modifications. Cell Res. 2016;26:399–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, et al. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer. 2024;23:148.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bernassola F, Chillemi G, Melino G. HECT-type E3 ubiquitin ligases in cancer. Trends Biochem Sci. 2019;44:1057–75.

    Article  CAS  PubMed  Google Scholar 

  27. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242–53.

    Article  CAS  PubMed  Google Scholar 

  28. Liu J, Li W, Deng KQ, Tian S, Liu H, Shi H, et al. The E3 ligase TRIM16 is a key suppressor of pathological cardiac hypertrophy. Circ Res. 2022;130:1586–600.

    Article  CAS  PubMed  Google Scholar 

  29. Lorenzana-Carrillo MA, Tejay S, Nanoa J, Huang G, Liu Y, Haromy A, et al. TRIM35 monoubiquitinates H2B in cardiac cells, implications for heart failure. Circ Res. 2024;135:301–13.

    Article  CAS  PubMed  Google Scholar 

  30. Nayakanti SR, Friedrich A, Sarode P, Jafari L, Maroli G, Boehm M, et al. Targeting Wnt-ß-catenin-FOSL signaling ameliorates right ventricular remodeling. Circ Res. 2023;132:1468–85.

    Article  CAS  PubMed  Google Scholar 

  31. Xiang FL, Fang M, Yutzey KE. Loss of β-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice. Nat Commun. 2017;8:712.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bergmann MW. WNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. Circ Res. 2010;107:1198–208.

    Article  CAS  PubMed  Google Scholar 

  33. Kim S, Jho EH. The protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2). J Biol Chem. 2010;285:36420–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hou N, Ye B, Li X, Margulies KB, Xu H, Wang X, et al. Transcription factor 7-like 2 mediates canonical Wnt/β-catenin signaling and c-Myc upregulation in heart failure. Circ Heart Fail. 2016;9:e003010.

    Article  CAS  PubMed  Google Scholar 

  35. Pan L, Huang C, Jin X, Wu J, Jin K, Lin J, et al. Cardiac secreted HSP90α exacerbates pressure overload myocardial hypertrophy and heart failure. Redox Biol. 2025;79:103466.

    Article  CAS  PubMed  Google Scholar 

  36. Tseng PC, Kuo CF, Cheng MH, Wan SW, Lin CF, Chang CP, et al. HECT E3 ubiquitin ligase-regulated Txnip degradation facilitates TLR2-mediated inflammation during Group A Streptococcal infection. Front Immunol. 2019;10:2147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim S, Lee W, Cho K. P62 links the autophagy pathway and the ubiquitin-proteasome system in endothelial cells during atherosclerosis. Int J Mol Sci. 2021;22:7791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Redondo J, Popik B, Casagrande M, Silva MO, Quillfeldt JA, De Oliveira Alvares L, et al. Hippocampal HECT E3 ligase inhibition facilitates consolidation, retrieval, and reconsolidation, and inhibits extinction of contextual fear memory. Neurobiol Learn Mem. 2020;167:107135.

    Article  CAS  PubMed  Google Scholar 

  39. Ho CY, López B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med. 2010;363:552–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (grant No. 82121001, 92468301, 82030013, 82241211, 82222009, 82070278, 82470270, 82170404), the Noncommunicable Chronic Diseases-National Science and Technology Major Project of China (grant No. 2023ZD0503100), and the Natural Science Foundation of Jiangsu Province (BK20240129).

Author information

Authors and Affiliations

Authors

Contributions

YJ and LPX contribute to conceptualization; YK, YZ and XML contribute to methodology; YK, QYF and SQC implemented software; XT, YK, YZ and QYF validated; YJ, XT, YK, YZ and QYF conducted investigations; YJ, LPX, XT provided resources; YK, XML and LLR contributes to writing original draft; XT reviewed and edited the text; XT and YK contribute to visualization; YJ, LPX, XT contribute to supervision; YJ, LPX, XT contribute to funding acquisition.

Corresponding authors

Correspondence to Xin Tang, Li-ping Xie or Yong Ji.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Zu, Y., Fan, Qy. et al. SMURF2 inhibition attenuates cardiac hypertrophy through blocking ubiquitination degradation of AXIN1. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01597-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01597-5

Keywords

Search

Quick links