Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Receptor tyrosine kinase inhibitor tivozanib regulates cell state plasticity and restores MITF dependency in BRAF wild-type melanoma

Abstract

While combination BRAF/MEK inhibition has improved survival in BRAFV600 mutant melanoma, targeted therapies for BRAFWT melanoma remain limited. Microphthalmia transcription factor (MITF), a lineage-specific transcription factor that regulates melanocyte proliferation and melanin synthesis, represents a promising melanoma-specific drug target. In this study, we evaluated TT-012, a recently identified MITF dimerization specific inhibitor, and surprisingly found that most BRAFWT melanoma lines were resistant to TT-012 due to low MITF transcriptional activity and reduced dependency on MITF for proliferation. High-throughput drug screen identified tivozanib, an FDA-approved drug targeting VEGFR and other receptor tyrosine kinases (RTKs), which sensitized cells to TT-012. Mechanistically, tivozanib induced cell state transition from MITFlow to MITFhigh state via VEGFR2 inhibition followed by NF-κB pathway activation, restoring MITF transcriptional activity and growth dependency. The combination of tivozanib and TT-012 synergistically inhibited melanoma growth both in vitro and in vivo, underscoring its potential as a novel therapeutic strategy for BRAFWT melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MITFlow melanoma cells as key determinants of resistance to MITF inhibitor TT-012.
Fig. 2: Compound screening identifies angiogenesis inhibitors that enhance sensitivity to MITF inhibitor in BRAFWT melanoma.
Fig. 3: Tivozanib sensitizes melanoma cells to MITF inhibitor by upregulating MITF expression and activity.
Fig. 4: Tivozanib increases MITF transcriptional activity by inhibiting VEGFR2.
Fig. 5: Tivozanib upregulates MITF expression and transcriptional activity by NF-κB pathway activation.
Fig. 6: Combination of tivozanib and TT-012 effectively inhibits tumor growth in BRAFWT melanoma.
Fig. 7: Model depicting the role of tivozanib in regulating cell state plasticity and restoring MITF dependency in BRAFWT melanoma.

Similar content being viewed by others

References

  1. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9.

    Article  PubMed  Google Scholar 

  2. Robert C, Grob JJ, Stroyakovskiy D, Karaszewska B, Hauschild A, Levchenko E, et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381:626–36.

    Article  CAS  PubMed  Google Scholar 

  3. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386:444–51.

    Article  CAS  PubMed  Google Scholar 

  4. Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field MA, Nones K, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545:175–80.

    Article  CAS  PubMed  Google Scholar 

  5. Ascierto PA, Long GV, Robert C, Brady B, Dutriaux C, Di Giacomo AM, et al. Survival outcomes in patients with previously untreated BRAF wild-type advanced melanoma treated with nivolumab therapy: three-year follow-up of a randomized phase 3 trial. JAMA Oncol. 2019;5:187–94.

    Article  PubMed  Google Scholar 

  6. Johnpulle RA, Johnson DB, Sosman JA. Molecular targeted therapy approaches for BRAF wild-type melanoma. Curr Oncol Rep. 2016;18:6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Massa RC, Kirkwood JM. Targeting the MAPK pathway in advanced BRAF wild-type melanoma. Ann Oncol. 2019;30:503–5.

    Article  CAS  PubMed  Google Scholar 

  8. Goding CR. Commentary. A picture of Mitf in melanoma immortality. Oncogene. 2011;30:2304–6.

    Article  CAS  PubMed  Google Scholar 

  9. Goding CR, Arnheiter H. MITF-the first 25 years. Genes Dev. 2019;33:983–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436:117–22.

    Article  CAS  PubMed  Google Scholar 

  11. Potrony M, Puig-Butille JA, Aguilera P, Badenas C, Tell-Marti G, Carrera C, et al. Prevalence of MITF p.E318K in patients with melanoma independent of the presence of CDKN2A causative mutations. JAMA Dermatol. 2016;152:405–12.

    Article  PubMed  Google Scholar 

  12. Chauhan JS, Holzel M, Lambert JP, Buffa FM, Goding CR. The MITF regulatory network in melanoma. Pigment Cell Melanoma Res. 2022;35:517–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goyal Y, Busch GT, Pillai M, Li J, Boe RH, Grody EI, et al. Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells. Nature. 2023;620:651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov. 2020;19:39–56.

    Article  CAS  PubMed  Google Scholar 

  15. Bai X, Fisher DE, Flaherty KT. Cell-state dynamics and therapeutic resistance in melanoma from the perspective of MITF and IFNgamma pathways. Nat Rev Clin Oncol. 2019;16:549–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rambow F, Marine JC, Goding CR. Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities. Genes Dev. 2019;33:1295–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carotenuto P, Romano A, Barbato A, Quadrano P, Brillante S, Volpe M, et al. Targeting the MITF/APAF-1 axis as salvage therapy for MAPK inhibitors in resistant melanoma. Cell Rep. 2022;41:111601.

    Article  CAS  PubMed  Google Scholar 

  18. Tsoi J, Robert L, Paraiso K, Galvan C, Sheu KM, Lay J, et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell. 2018;33:890–904.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith MP, Brunton H, Rowling EJ, Ferguson J, Arozarena I, Miskolczi Z, et al. Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell. 2016;29:270–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Z, Chen K, Dai J, Xu P, Sun W, Liu W, et al. A unique hyperdynamic dimer interface permits small molecule perturbation of the melanoma oncoprotein MITF for melanoma therapy. Cell Res. 2023;33:55–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boyle H. Tivozanib: a novel VGFR inhibitor for kidney cancer. Transl Androl Urol. 2013;2:114–6.

    PubMed  PubMed Central  Google Scholar 

  22. Masone MC. Tivozanib monotherapy outperforms combination therapy in post-ICI RCC. Nat Rev Urol. 2024;21:706.

  23. Chang E, Weinstock C, Zhang L, Fiero MH, Zhao M, Zahalka E, et al. FDA approval summary: tivozanib for relapsed or refractory renal cell carcinoma. Clin Cancer Res. 2022;28:441–5.

    Article  CAS  PubMed  Google Scholar 

  24. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16:1289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–902.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng S, Wang W, Aldahdooh J, Malyutina A, Shadbahr T, Tanoli Z, et al. SynergyFinder Plus: toward better interpretation and annotation of drug combination screening datasets. Genomics Proteomics Bioinformatics. 2022;20:587–96.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics. 2009;10:161.

  31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lomazzi M, Moroni MC, Jensen MR, Frittoli E, Helin K. Suppression of the p53- or pRB-mediated G1 checkpoint is required for E2F-induced S-phase entry. Nat Genet. 2002;31:190–4.

    Article  CAS  PubMed  Google Scholar 

  33. Hallstrom TC, Mori S, Nevins JR. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell. 2008;13:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yadav B, Wennerberg K, Aittokallio T, Tang J. Searching for drug synergy in complex dose–response landscapes using an interaction potency model. Comput Struct Biotechnol J. 2015;13:504–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakamura K, Taguchi E, Miura T, Yamamoto A, Takahashi K, Bichat F, et al. KRN951, a highly potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, has antitumor activities and affects functional vascular properties. Cancer Res. 2006;66:9134–42.

    Article  CAS  PubMed  Google Scholar 

  36. Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci. 2015;72:1249–60.

    Article  CAS  PubMed  Google Scholar 

  37. Saha B, Singh SK, Sarkar C, Bera R, Ratha J, Tobin DJ, et al. Activation of the Mitf promoter by lipid-stimulated activation of p38-stress signalling to CREB. Pigment Cell Res. 2006;19:595–605.

    Article  CAS  PubMed  Google Scholar 

  38. Goodall J, Carreira S, Denat L, Kobi D, Davidson I, Nuciforo P, et al. Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res. 2008;68:7788–94.

    Article  CAS  PubMed  Google Scholar 

  39. Smith MP, Sanchez-Laorden B, O’Brien K, Brunton H, Ferguson J, Young H, et al. The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFalpha. Cancer Discov. 2014;4:1214–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med. 2006;12:406–14.

    Article  CAS  PubMed  Google Scholar 

  41. Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, et al. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2024;52:D174–D82.

    Article  CAS  PubMed  Google Scholar 

  42. Croft M, Salek-Ardakani S, Ware CF. Targeting the TNF and TNFR superfamilies in autoimmune disease and cancer. Nat Rev Drug Discov. 2024;23:939–61.

    Article  CAS  PubMed  Google Scholar 

  43. Takada H, Sasagawa Y, Yoshimura M, Tanaka K, Iwayama Y, Hayashi T, et al. Single-cell transcriptomics uncovers EGFR signaling-mediated gastric progenitor cell differentiation in stomach homeostasis. Nat Commun. 2023;14:3750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller I, Min M, Yang C, Tian C, Gookin S, Carter D, et al. Ki67 is a graded rather than a binary marker of proliferation versus quiescence. Cell Rep. 2018;24:1105–12.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Long GV, Hauschild A, Santinami M, Kirkwood JM, Atkinson V, Mandala M, et al. Final results for adjuvant dabrafenib plus trametinib in stage III melanoma. N Engl J Med. 2024;391:1709–20.

    Article  CAS  PubMed  Google Scholar 

  46. Wellbrock C, Arozarena I. Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res. 2015;28:390–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature. 2012;490:412–6.

    Article  CAS  PubMed  Google Scholar 

  48. Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA, Piris A, et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 2014;4:816–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the the Science and Technology Commission of Shanghai Municipality (No. YDZX20223100003007 to Wei Guo), SHIPM-mu fund (No. JC202001 to Xu-hui Ma) from Shanghai Institute of Precision Medicine, Ninth People’s Hospital Shanghai Jiao Tong University School of Medicine, National Natural Science Foundation of China (No. 82204421 to Han-lin Zeng), the SHIPM-pi fund (XK2020015 to Han-lin Zeng) from the Shanghai Institute of Precision Medicine, the Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine. This work was also supported by the Class IV Peak Disciplines (Shanghai Institute of Precision Medicine), and the Innovative Research Team of High-Level Local Universities (SHSMU-ZLCX20211700) from the Shanghai Municipal Education Commission. We gratefully acknowledge the TT-012 and TYR-luciferase plasmid provided by Dr. Wang Jing from Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences. We thank Hong Lu, Shu-fang He, Jie Huang, and all staff members of the Bioimaging Facility, and Proteomics Platform at the Shanghai Institute of Precision Medicine for providing technical support and assistance in data collection.

Author information

Authors and Affiliations

Authors

Contributions

HLZ, YNM, XHM, ML designed research; XHM, YZ, XYC, YJZ, WG, MJ contributed clinical samples; YNM, MLH, XYC, YNC, SNZ performed experiments; RXL, JY, MLH analyzed data; WG, XHM, HLZ acquired funding; YZ, MJ provided resources; HLZ, YNM wrote the paper; HLZ, XHM, WG, MJ supervised the research. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Xu-hui Ma, Min Jiang, Wei Guo or Han-lin Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Yn., Ma, Xh., Hao, Ml. et al. Receptor tyrosine kinase inhibitor tivozanib regulates cell state plasticity and restores MITF dependency in BRAF wild-type melanoma. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01599-3

Keywords

Search

Quick links