Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

SERCA2 regulates Piezo1 channel activation and contributes to the cardiac function and baroreflex in mice

Abstract

Piezo1 channels play important roles in physiological processes such as tactile sensation, blood pressure (BP) control, cardiac development, inflammatory responses as well as in disease processes. Sarco-endoplasmic reticulum Ca2+-transporting ATPase (SERCA) is the only active protein in the SR that orchestrates calcium homeostasis by translocation of Ca2+ from the cytoplasm to the sarcoplasmic reticulum. It has been shown that SERCA2 inhibits Piezo1 function in mammals by directly acting on the Piezo1 mechano-transduction module of mechanosensitive ion channels. In this study, we investigated whether SERCA2 regulates Piezo1 activation indirectly by modulating Ca2+ homeostasis. We showed that treatment with a Piezo1 agonist Yoda1 (5 µM) markedly increased the viability and ATP synthesis of primary cardiomyocytes as well as intracellular Ca2+ content through activation of Piezo1, and upregulated the expression of Piezo1 and SERCA2 in the cardiomyocytes. However, si-Piezo1 transfection resulted in downregulation of SERCA2 expression with opposite effects on viability and ATP synthesis and intracellular Ca2+ content that could not be reversed by application of Yoda1. Interestingly, application of a SERCA2 channel inhibitor paxilline (Pax, 10 µM) reversed the inhibitory effect of si-Piezo1 transfection on cardiomyocyte function. Using patch clamping and Ca2+ transient analyses in cardiomyocytes, we demonstrated that application of Pax inhibited Yoda1-mediated Ca2+ currents and APD50, confirming that Piezo1 activation by Yoda1 was significantly inhibited by Pax. Furthermore, application of Yoda1 was able to reverse si-SERCA2 transfection-induced impairment of myocardial function. Microinjection of Yoda1 and Pax into nodose ganglion (NG) in HFD-HTN model rats also demonstrated that the effect of Yoda1 was inhibited in the presence of Pax, thus confirming that Pax inhibited intracellular Ca2+ recycling by SERCA2. These results demonstrate for the first time that the application of Pax inhibits the recycling of intracellular Ca2+ by SERCA2 and reverses the reduction in cardiomyocyte function caused by downregulation of Piezo1 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct effects of Yoda1 through Piezo1 on primary cardiomyocytes from neonatal rats.
Fig. 2: Effects of Yoda1 on primary cardiomyocyte function after si-Piezo1 transfection.
Fig. 3: Effects of SERCA2 inhibitor Paxilline and Yoda1 on cardiomyocytes function after si-Piezo1 transfection, respectively.
Fig. 4: Effects of SERCA2 inhibitor paxilline on cardiomyocytes function after siPiezo1 transfection.
Fig. 5: Effects of Yoda1 on cardiomyocytes function after si-SERCA2 transfection.
Fig. 6: Effects of Yoda1 and paxilline by microinjected into the NG on BP in HFD-HTN and control rats.
Fig. 7: Proposed mechanism of the activation of Piezo1 by Yoda1 was inhibited in the presence of Pax.

References

  1. Muthu P, Anuradha K. SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve. 2007;35:430–42.

    Article  Google Scholar 

  2. Ma L, Zou R, Shi W, Zhou N, Chen S, Zhou H, et al. SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways. Theranostics. 2022;12:5034–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aldo MH, Luke P, Christopher JB, Bradley SL. Ca2+ leak through ryanodine receptor 1 regulates thermogenesis in resting skeletal muscle. Proc Natl Acad Sci USA. 2022;119:e2119203119.

    Article  Google Scholar 

  4. Larissa L, Zela K, Karl B, Nathalie M, Adeline J, Clotilde R, et al. Expression of sarco (endo) plasmic reticulum calcium ATPase (SERCA) system in normal mouse cardiovascular tissues, heart failure and atherosclerosis. Biochim Biophys Acta. 2014;1843:2705–18.

    Article  Google Scholar 

  5. Ye B, Zhou H, Chen Y, Luo W, Lin W, Zhao Y, et al. USP25 Ameliorates pathological cardiac hypertrophy by stabilizing SERCA2a in cardiomyocytes. Circ Res. 2023;132:465–80.

    Article  CAS  PubMed  Google Scholar 

  6. Takeshi A, Robert MW, David RP, Jia Y, Victor SS, Christian S, et al. S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med. 2004;10:1200–7.

    Article  Google Scholar 

  7. Morad HOJ, Luqman S, Pinto LG, Cunningham KP, Vilar B, Clayton G, et al. Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release. Sci Rep. 2022;12:11078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou Y, Lingle CJ. Paxilline inhibits BK channels by an almost exclusively closed-channel block mechanism. J Gen Physiol. 2014;144:415–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Okhuarobo A, Kreifeldt M, Gandhi PJ, Lopez C, Martinez B, Fleck K, et al. Ethanol’s interaction with BK channel α subunit residue K361 does not mediate behavioral responses to alcohol in mice. Mol Psychiatry. 2024;29:529–42.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou Y, Xia XM, Lingle CJ. The functionally relevant site for Paxilline inhibition of BK channels. Proc Natl Acad Sci USA. 2019;117:1021–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Park M, Mun SY, Zhuang W, Jeong J, Kim HR, Park H, et al. The antidiabetic drug ipragliflozin induces vasorelaxation of rabbit femoral artery by activating a Kv channel, the SERCA pump, and the PKA signaling pathway. Eur J Pharm. 2024;972:176589.

    Article  CAS  Google Scholar 

  12. Eulashini CB, Oleksandr VP, Melanie JL, David JC, David JB. PIEZO1 and PECAM1 interact at cell-cell junctions and partner in endothelial force sensing. Commun Biol. 2023;6:358.

    Article  Google Scholar 

  13. Zhang T, Chi S, Jiang F, Zhao Q, Xiao B. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels. Nat Commun. 2017;8:1797.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sanjeev SR, Qiu ZZ, Woo SH, Hur SS, Swetha EM, Murthy SE, et al. Patapoutian A. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci USA. 2014;111:10347–52.

    Article  Google Scholar 

  15. Chi S, Cui Y, Wang H, Jiang J, Zhang T, Sun S, et al. Astrocytic Piezo1-mediated mechanotransduction determines adult neurogenesis and cognitive functions. Neuron. 2022;110:2984–99.

    Article  CAS  PubMed  Google Scholar 

  16. Sun M, Mao S, Wu C, Zhao X, Guo C, Hu J, et al. Piezo1-mediated neurogenic inflammatory cascade exacerbates ventricular remodeling after myocardial infarction. Circulation. 2024;149:1516–33.

    Article  CAS  PubMed  Google Scholar 

  17. Hu C, Ma L, Gao S, Yang MY, Mu MD, Chang L, et al. PPP1R3A inhibits osteogenesis and negatively regulates intracellular calcium levels in calcific tendinopathy. iScience. 2023;26:107784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bratengeier C, Liszka A, Hoffman J, Bakker AD, Fahlgren A. High shear stress amplitude in combination with prolonged stimulus duration determine induction of osteoclast formation by hematopoietic progenitor cells. FASEB J. 2020;34:3755–72.

    Article  CAS  PubMed  Google Scholar 

  19. Fabrice G, Laura B, Camille B, Maya D, Yves G, Gabriel B, et al. SERCA2 phosphorylation at serine 663 is a key regulator of Ca2+ homeostasis in heart diseases. Nat Commun. 2023;14:3346.

    Article  Google Scholar 

  20. Jonas S, Ingrid A, Karina H, Gustav BL, Marianne L, Olav SE, et al. Disruption of phosphodiesterase 3A binding to SERCA2 increases SERCA2 activity and reduces mortality in mice with chronic heart failure. Circulation. 2023;147:1221–36.

    Article  PubMed  Google Scholar 

  21. Honka H, Solis-Herrera C, Triplitt C, Norton L, Butler J, DeFronzo R. Therapeutic Manipulation of Myocardial Metabolism: JACC State-of-the-Art Review. J Am Coll Cardiol. 2021;77:2022–39.

    Article  CAS  PubMed  Google Scholar 

  22. Ng S, Neubauer S, Rider O. Myocardial Metabolism in Heart Failure. Curr heart Fail Rep. 2023;20:63–75.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Perrone M, Patergnani S, Di Mambro T, Palumbo L, Wieckowski M, Giorgi C, et al. Calcium homeostasis in the control of mitophagy. Antioxid Redox Signal. 2023;38:581–98.

    CAS  PubMed  Google Scholar 

  24. Yan J, Ma X, Liang D, Ran M, Zheng D, Chen X, et al. An autocatalytic multicomponent DNAzyme nanomachine for tumor-specific photothermal therapy sensitization in pancreatic cancer. Nat Commun. 2023;14:6905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meng TG, Guo JN, Zhu L, Yin Y, Wang F, Han ZM, et al. NLRP14 safeguards calcium homeostasis via regulating the K27 ubiquitination of Nclx in oocyte-to-embryo transition. Adv Sci. 2023;10:e2301940.

    Article  Google Scholar 

  26. Belenichev I, Goncharov O, Bukhtiyarova N, Kuchkovskyi O, Ryzhenko V, Makyeyeva L, et al. Beta-Blockers of different generations: features of influence on the disturbances of myocardial energy metabolism in doxorubicin-induced chronic heart failure in rats. Biomedicines. 2024;12:1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shanna H, Roland V, Andriy B, Dmitry T. The role of calcium homeostasis remodeling in inherited cardiac arrhythmia syndromes. Pflug Arch. 2021;473:377–87.

    Article  Google Scholar 

  28. Yada Y, Matsumoto M, Inoue T, Baba A, Higuchi R, Kawai C, et al. STIM-mediated calcium influx regulates maintenance and selection of germinal center B cells. J Exp Med. 2024;221:e20222178.

    Article  CAS  PubMed  Google Scholar 

  29. Ye Y, Barghouth M, Dou H, Luan C, Wang Y, Karagiannopoulos A, et al. A critical role of the mechanosensor PIEZO1 in glucose-induced insulin secretion in pancreatic β-cells. Nat Commun. 2022;13:4237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. James TT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, et al. Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol. 2008;14:4984–91.

    Article  Google Scholar 

  31. Santella L, Kyozuka K, Riso LD, Carafoli E. Calcium, protease action, and the regulation of the cell cycle. Cell Calcium. 1998;23:123–30.

    Article  CAS  PubMed  Google Scholar 

  32. Li M, Zhang X, Wang M, Wang Y, Qian J, Xing X, et al. Activation of Piezo1 contributes to matrix stiffness-induced angiogenesis in hepatocellular carcinoma. Cancer Commun. 2022;42:1162–84.

    Article  CAS  Google Scholar 

  33. Venkatraman R, Aditi J, Arushi T, Kaushik C, Nagalingam RS. Isolation and culture of neonatal murine primary cardiomyocytes. Curr Protoc. 2021;1:e196.

    Article  Google Scholar 

  34. Zhang YQ, Shen X, Xiao XL, Liu MY, Li SL, Dong DL. Mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone induces vasorelaxation without involving K(ATP) channel activation in smooth muscle cells of arteries. Br J Pharmacol. 2016;173:3145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang X, Zou X, Yang B, Li Z, Xue Y, Zhou Y, et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell. 2014;158:607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gee KR, Brown KA, Chen WN, Bishop SJ, Gray D, Johnson I. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium. 2000;27:97–106.

    Article  CAS  PubMed  Google Scholar 

  37. Vladimir VM, Michael B, Josh LM, Anca R, Kyle RG. Novel fluo-4 analogs for fluorescent calcium measurements. Cell Calcium. 2004;36:509–14.

    Article  Google Scholar 

  38. Thiago RL, Fabrício AV, Lorena SF, Franciely AS, Paula C, et al. High-fat diet and fructose drink introduced after weaning rats, induces a better human obesity model than very high-fat diet. J Food Biochem. 2021;45:e13671.

    Google Scholar 

  39. Cui CP, Xiong X, Zhao JX, Fu DH, Zhang Y, Ma PB, et al. Piezo1 channel activation facilitates baroreflex afferent neurotransmission with subsequent blood pressure reduction in control and hypertension rats. Acta Pharmacol Sin. 2024;45:76–86.

    Article  CAS  PubMed  Google Scholar 

  40. Chen P, Xu B, Feng Y, Li KX, Liu Z, Sun X, et al. FGF-21 ameliorates essential hypertension of SHR via baroreflex afferent function. Brain Res Bull. 2020;154:9–20.

    Article  CAS  PubMed  Google Scholar 

  41. Steve PH, Richard ER, Brad RS, Christopher GS, Christopher HG, Clare S, et al. Goals and practicalities of immunoblotting and immunohistochemistry: a guide for submission to the British Journal of Pharmacology. Br J Pharmacol. 2018;175:407–11.

    Article  Google Scholar 

  42. Rathod N, Bak JJ, Primeau JO, Fisher ME, Espinoza LM, Lemieux MJ, et al. Nothing regular about the regulins: distinct functional properties of SERCA transmembrane peptide regulatory subunits. Int J Mol Sci. 2021;22:8891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (81971326 and 81573431).

Author information

Authors and Affiliations

Authors

Contributions

CPC and JXZ designed research; JXZ and YZX performed research; YZX contributed new reagents or analytic tools; HXF, JQL, MY, ZYX and XLL analyzed data; CPC and BYL wrote the paper.

Corresponding authors

Correspondence to Chang-peng Cui or Bai-yan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Jx., Xu, Yz., Fu, Hx. et al. SERCA2 regulates Piezo1 channel activation and contributes to the cardiac function and baroreflex in mice. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01610-x

Keywords

Search

Quick links