Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Senkyunolide A ameliorates cholestatic liver fibrosis by controlling CLCC1-mediated endoplasmic reticulum Ca2+ release

Abstract

Cholestatic liver disease is characterized by highly accumulated bile acids and cholangiocyte proliferation, resulting in the development of fibrosis, cirrhosis, and ultimately liver failure necessitating liver transplantation. Calcium (Ca2+) signaling is commonly dysregulated in cholestasis and serves as an important regulator mediating cell proliferation. However, the role of Ca2+-mediated cholangiocyte proliferation and treatment strategies in bile duct ligation (BDL)-induced liver injury remains poorly understood. By integrating transcriptomic analysis with molecular biology techniques, we explored the mechanisms of liver injury across BDL animal models, primary cholangiocytes, and human intrahepatic biliary epithelial cholangiocytes. Here, we found that a natural ingredient, senkyunolide A (SenA), effectively alleviated cholestasis-induced Ca2+ release from ER by inhibiting RYR channel, thereby preventing FIP200-mediated ER autophagy in response to Ca2+ transients on the cytosolic ER surface. Increased cytosolic Ca2+ further triggered ER stress, cholangiocyte cycle progression, and ductular reaction (DR). Importantly, SenA reversed the above process through its binding to chloride Channel CLIC Like 1 (CLCC1) for ubiquitination, thereby inhibiting CLCC1 activity and ER Ca2+ release. si-CLCC1-loaded liposomes targeting cholangiocytes enhanced the anti-DR effects of SenA. Collectively, by controlling ER release of Ca2+ in cholangiocytes, SenA presents potential for the development of therapeutic strategies aimed at addressing cholestatic fibrosis.

SenA inhibited Ca2+-mediated cholangiocyte proliferation by binding to and promoting the ubiquitination of CLCC1, thereby alleviating cholestatic liver fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SenA ameliorated BDL-induced cholestatic liver fibrosis.
Fig. 2: SenA inhibited cholangiocyte proliferation in BDL mice.
Fig. 3: SenA inhibited cholangiocyte proliferation through the regulation of Ca2+ release from the ER.
Fig. 4: SenA suppressed the RYR-mediated release of Ca2+ from the ER.
Fig. 5: SenA reduced the release of Ca2+ from ER by ubiquitylating CLCC1.
Fig. 6: SenA inhibited the formation of FIP200 autophagy vesicles induced by increased Ca2+.
Fig. 7: SenA prevented the increase of intracellular Ca2+ and cell through the suppression of FIP200 autophagy vesicle formation.
Fig. 8: SenA ameliorated BDL-induced cholestatic liver damage by inhibiting CLCC1.

Similar content being viewed by others

References

  1. Chiang JYL, Ferrell JM. Bile acid biology, pathophysiology, and therapeutics. Clin Liver Dis. 2020;15:91–4.

    Article  Google Scholar 

  2. Hasegawa S, Yoneda M, Kurita Y, Nogami A, Honda Y, Hosono K, et al. Cholestatic liver disease: current treatment strategies and new therapeutic agents. Drugs. 2021;81:1181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu H, Chen C, Ziani S, Nelson LJ, Ávila MA, Nevzorova YA, et al. Fibrotic events in the progression of cholestatic liver disease. Cells. 2021;10:1107.

  4. Zeng J, Fan J, Zhou H. Bile acid-mediated signaling in cholestatic liver diseases. Cell Biosci. 2023;13:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu YN, Xu W, Zhang X, Wang DY, Zheng XR, Liu W, et al. BM-MSCs overexpressing the Numb enhance the therapeutic effect on cholestatic liver fibrosis by inhibiting the ductular reaction. Stem Cell Res Ther. 2023;14:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mavila N, Siraganahalli Eshwaraiah M, Kennedy J. Ductular reactions in liver injury, regeneration, and disease progression—an overview. Cells. 2024;13:579.

  7. Wang M, Zhang M, Fu L, Lin J, Zhou X, Zhou P, et al. Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis. Theranostics. 2020;10:36–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiao WC, Zhang J, Chen SL, Shi YJ, Xiao F, An W. Alleviation of palmitic acid-induced endoplasmic reticulum stress by augmenter of liver regeneration through IP3R-controlled Ca2+ release. J Cell Physiol. 2018;233:6148–57.

    Article  CAS  PubMed  Google Scholar 

  9. López-Neblina F, Toledo-Pereyra LH, Toledo AH, Walsh J. Ryanodine receptor antagonism protects the ischemic liver and modulates TNF-alpha and IL-10. J Surg Res. 2007;140:121–8.

    Article  PubMed  Google Scholar 

  10. Corazzari M, Gagliardi M, Fimia GM, Piacentini M. Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Front Oncol. 2017;7:78.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Trampert DC, Nathanson MH. Regulation of bile secretion by calcium signaling in health and disease. Biochim Biophys Acta Mol Cell Res. 2018;1865:1761–70.

    Article  CAS  PubMed  Google Scholar 

  12. Cai X, Yu X, Yang J, Lu L, Hua N, Duan X, et al. TRPM2 regulates cell cycle through the Ca2+-CaM-CaMKII signaling pathway to promote HCC. Hepatol Commun. 2023;7:e0101.

  13. Patergnani S, Danese A, Bouhamida E, Aguiari G, Previati M, Pinton P, et al. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int J Mol Sci. 2020;21:8323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kondratskyi A, Kondratska K, Skryma R, Klionsky DJ, Prevarskaya N. Ion channels in the regulation of autophagy. Autophagy. 2018;14:3–21.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng Q, Chen Y, Chen D, Zhao H, Feng Y, Meng Q, et al. Calcium transients on the ER surface trigger liquid-liquid phase separation of FIP200 to specify autophagosome initiation sites. Cell. 2022;185:4082–98.e22.

    Article  CAS  PubMed  Google Scholar 

  16. Petrescu AD, Grant S, Williams E, Frampton G, Reinhart EH, Nguyen A, et al. Ghrelin reverses ductular reaction and hepatic fibrosis in a rodent model of cholestasis. Sci Rep. 2020;10:16024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu L, Lu T, Wu Y, Wang Y, Ke X, Yang R. Research on the effectiveness and material basis of Ligusticum chuanxiong in alleviating acute liver injury. J Ethnopharmacol. 2023;314:116643.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Ma Z, Ding M, Jia K, Xu B, Zhou F, et al. Chuanxiong Rhizoma extracts prevent cholestatic liver injury by targeting H3K9ac-mediated and cholangiocyte-derived secretory protein PAI-1 and FN. Chin J Nat Med. 2023;21:694–709.

    CAS  PubMed  Google Scholar 

  19. Wu JZ, Li YJ, Huang GR, Xu B, Zhou F, Liu RP, et al. Mechanisms exploration of Angelicae Sinensis Radix and Ligusticum Chuanxiong Rhizoma herb-pair for liver fibrosis prevention based on network pharmacology and experimental pharmacology. Chin J Nat Med. 2021;19:241–54.

    CAS  PubMed  Google Scholar 

  20. Li Y, Li F, Ding M, Ma Z, Li S, Qu J, et al. Chuanxiong Rhizoma extracts prevent liver fibrosis via targeting CTCF-c-MYC-H19 pathway. Chin Herb Med. 2024;16:82–93.

    CAS  PubMed  Google Scholar 

  21. Huang Y, Ni N, Hong Y, Lin X, Feng Y, Shen L. Progress in traditional Chinese medicine for the treatment of migraine. Am J Chin Med. 2020;48:1731–48.

    Article  PubMed  Google Scholar 

  22. Shao M, Lv D, Zhou K, Sun H, Wang Z. Senkyunolide A inhibits the progression of osteoarthritis by inhibiting the NLRP3 signalling pathway. Pharm Biol. 2022;60:535–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lei W, Deng YF, Hu XY, Ni JN, Jiang M, Bai G. Phthalides, senkyunolide A and ligustilide, show immunomodulatory effect in improving atherosclerosis, through inhibiting AP-1 and NF-κB expression. Biomed Pharmacother. 2019;117:109074.

    Article  CAS  PubMed  Google Scholar 

  24. Duan S, Li X, Han J, Yang Y, Luo R, Cai Y, et al. Transcriptotype-driven discovery of apigenin as a therapy against cholestatic liver fibrosis: through inhibition of PANoptosis and following type-I interferon responses. Antioxidants. 2024;13:256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X, Liu R, Yang J, Sun L, Zhang L, Jiang Z, et al. The role of long noncoding RNA H19 in gender disparity of cholestatic liver injury in multidrug resistance 2 gene knockout mice. Hepatology. 2017;66:869–84.

    Article  CAS  PubMed  Google Scholar 

  26. Ji R, Chen J, Xie Y, Dou X, Qing B, Liu Z, et al. Multi-omics profiling of cholangiocytes reveals sex-specific chromatin state dynamics during hepatic cystogenesis in polycystic liver disease. J Hepatol. 2023;78:754–69.

    Article  CAS  PubMed  Google Scholar 

  27. Jia K, Zhang Y, Luo R, Liu R, Li Y, Wu J, et al. Acteoside ameliorates hepatic ischemia-reperfusion injury via reversing the senescent fate of liver sinusoidal endothelial cells and restoring compromised sinusoidal networks. Int J Biol Sci. 2023;19:4967–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu Y, Bao X, Zhang Z, Chen L, Liang Y, Qu Y, et al. Hepatic progenitor cell-originated ductular reaction facilitates liver fibrosis through activation of hedgehog signaling. Theranostics. 2024;14:2379–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alpini G, Glaser SS, Ueno Y, Rodgers R, Phinizy JL, Francis H, et al. Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid-regulated ductal secretion. Gastroenterology. 1999;116:179–86.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Aoki H, Yang J, Peng K, Liu R, Li X, et al. The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice. Hepatology. 2017;65:2005–18.

    Article  CAS  PubMed  Google Scholar 

  31. Santos-Laso A, Izquierdo-Sanchez L, Rodrigues PM, Huang BQ, Azkargorta M, Lapitz A, et al. Proteostasis disturbances and endoplasmic reticulum stress contribute to polycystic liver disease: new therapeutic targets. Liver Int. 2020;40:1670–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Che Y, Xu W, Ding C, He T, Xu X, Shuai Y, et al. Bile acids target mitofusin 2 to differentially regulate innate immunity in physiological versus cholestatic conditions. Cell Rep. 2023;42:112011.

    Article  CAS  PubMed  Google Scholar 

  33. Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev. 2024;104:1335–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Filadi R, Greotti E, Pizzo P. Highlighting the endoplasmic reticulum-mitochondria connection: focus on Mitofusin 2. Pharmacol Res. 2018;128:42–51.

    Article  CAS  PubMed  Google Scholar 

  35. Park JH, Kim HK, Jung H, Kim KH, Kang MS, Hong JH, et al. NecroX-5 prevents breast cancer metastasis by AKT inhibition via reducing intracellular calcium levels. Int J Oncol. 2017;50:185–92.

    Article  CAS  PubMed  Google Scholar 

  36. Guo L, Mao Q, He J, Liu X, Piao X, Luo L, et al. Disruption of ER ion homeostasis maintained by an ER anion channel CLCC1 contributes to ALS-like pathologies. Cell Res. 2023;33:497–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol. 2019;16:269–81.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Arruda AP, Hotamisligil GS. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. 2015;22:381–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo S, Zhao X, Jiang J, Deng B, Liu S, Xu H, et al. Piezo1 specific deletion in macrophage protects the progression of liver fibrosis in mice. Theranostics. 2023;13:5418–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li W, Chen JY, Sun C, Sparks RP, Pantano L, Rahman RU, et al. Nanchangmycin regulates FYN, PTK2, and MAPK1/3 to control the fibrotic activity of human hepatic stellate cells. eLife. 2022;11:e74513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ali ES, Rychkov GY, Barritt GJ. Deranged hepatocyte intracellular Ca2+ homeostasis and the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma. Cell Calcium. 2019;82:102057.

    Article  CAS  PubMed  Google Scholar 

  42. Guo M, Liu R, Zhang F, Qu J, Yang Y, Li X. A new perspective on liver diseases: Focusing on the mitochondria-associated endoplasmic reticulum membranes. Pharmacol Res. 2024;208:107409.

    Article  CAS  PubMed  Google Scholar 

  43. Raut SK, Singh K, Sanghvi S, Loyo-Celis V, Varghese L, Singh ER, et al. Chloride ions in health and disease. Biosci Rep. 2024;44:BSR20240029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao J, Wei B, de Assuncao TM, Liu Z, Hu X, Ibrahim S, et al. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol. 2020;73:1144–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Q, Sheng J, Baruscotti M, Liu Z, Wang Y, Zhao L. Identification of Senkyunolide I as a novel modulator of hepatic steatosis and PPARα signaling in zebrafish and hamster models. J Ethnopharmacol. 2025;336:118743.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Scientific Research Innovation Capability Support Project for Young Faculty (ZYGXQNJSKYCXNLZCXM-H4); National Natural Science Foundation of China (Grant No. 82322075 to RPL and 82274186 to XJYL); National High-Level Talents Special Support Program to XJYL; Beijing Municipal Science & Technology Commission (Grant No. 7212174 to XJYL); National Key Research and Development Program on Modernization of Traditional Chinese Medicine to XJYL; Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (Grant No. ZYYCXTD-C-202006 to XJYL).

Author information

Authors and Affiliations

Authors

Contributions

YJL: methodology, formal analysis, writing—original draft. MYG: methodology, writing—original draft. WQQ: validation. JNL: methodology. YFL: validation. FKZ: methodology. XYX: methodology. RPL: investigation. SL: methodology. JRQ: investigation. LW: methodology. XJYL: conceptualization, writing—review and editing.

Corresponding author

Correspondence to Xiao-jiao-yang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yj., Guo, My., Qin, Wq. et al. Senkyunolide A ameliorates cholestatic liver fibrosis by controlling CLCC1-mediated endoplasmic reticulum Ca2+ release. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01615-6

Keywords

Search

Quick links