Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An update for AlphaFold3 versus experimental structures: assessing the precision of small molecule binding in GPCRs

This article has been updated

Abstract

G protein-coupled receptors (GPCRs) are key drug discovery targets with many of them modulated by small molecules via diverse binding mechanisms. AlphaFold3, a leading structure prediction tool, models GPCR-small molecule complexes, but its accuracy remains insufficiently evaluated. In this study we compared 74 AlphaFold3-predicted structures to experimental counterparts. We showed that while AlphaFold3 accurately captured global receptor architecture and orthosteric binding pockets, which was consistent with our previous research, its ligand positioning was highly variable and often inaccurate, rendering predictions unreliable, particularly for allosteric modulators. The significant divergence from experimental structures, particularly for complex ligand interactions, highlighted AlphaFold3’s limitations and underscored that experimental structures remained essential for validating ligand-binding accuracy in GPCR complexes. These findings suggest that while AlphaFold3 offers potential for structure-based drug design, its current inaccuracies necessitate substantial refinement and integration with experimental data. This study highlights the limitation of AlphaFold3 in predicting small molecule binding and reinforces the critical role of high-resolution experimental validation for reliable GPCR-ligand interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evaluation of AlphaFold3 prediction accuracy for small-molecule-GPCR Complexes.
Fig. 2: Evaluation of AlphaFold3 prediction accuracy for class A and B GPCR complexes bound with small-molecule ligands.
Fig. 3: Evaluation of AlphaFold3 prediction accuracy for class C GPCR complexes bound with small-molecule ligands.
Fig. 4: Evaluation of AlphaFold3 prediction accuracy for GPCR complexes bound with small-molecule PAMs or NAMs.
Fig. 5: Evaluation of AlphaFold3 prediction of Global Cα RMSD of TM6 of inactive GPCRs.
Fig. 6: Comparison of molecular docking with AlphaFold3.

Similar content being viewed by others

Change history

  • 23 July 2025

    In this article the acknowledgment section has been omitted. This has been corrected.

References

  1. Albanese KI, Barbe S, Tagami S, Woolfson DN, Schiex T. Computational protein design. Nat Rev Methods Prim. 2025;5:13.

    Article  CAS  Google Scholar 

  2. Callaway E. Chemistry Nobel goes to developers of AlphaFold AI that predicts protein structures. Nature. 2024;634:525–6.

    Article  CAS  PubMed  Google Scholar 

  3. Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beck H, Härter M, Haß B, Schmeck C, Baerfacker L. Small molecules and their impact in drug discovery: a perspective on the occasion of the 125th anniversary of the bayer chemical research laboratory. Drug Discov Today. 2022;27:1560–74.

    Article  CAS  PubMed  Google Scholar 

  5. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao L, He X, Jiang H, Cheng X. Computational characterization of transducer recognition of β2 adrenergic receptor. Biochem Biophys Res Commun. 2022;592:67–73.

    Article  CAS  PubMed  Google Scholar 

  7. Lu S, He X, Yang Z, Chai Z, Zhou S, Wang J, et al. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun. 2021;12:4721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anantakrishnan S, Naganathan AN. Thermodynamic architecture and conformational plasticity of GPCRs. Nat Commun. 2023;14:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou XE, Melcher K, Xu HE. Structural biology of G protein-coupled receptor signaling complexes. Protein Sci. 2019;28:487–501.

    Article  Google Scholar 

  10. Cong X, Ren W, Pacalon J, Xu R, Xu L, Li X, et al. Large-scale G protein-coupled olfactory receptor–ligand pairing. ACS Cent Sci. 2022;8:379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan W, Xu Y, He X, Luo P, Zhu J, Li J, et al. Molecular basis for the activation of PAF receptor by PAF. Cell Rep. 2024;43:114422.

    Article  CAS  PubMed  Google Scholar 

  12. Duan J, He X, Li S, Xu HE. Cryo-electron microscopy for GPCR research and drug discovery in endocrinology and metabolism. Nat Rev Endocrinol. 2024;20:349–65.

    Article  CAS  PubMed  Google Scholar 

  13. He X, Li J, Shen S, Xu HE. AlphaFold3 versus experimental structures: assessment of the accuracy in ligand-bound G protein-coupled receptors. Acta Pharmacol Sin. 2024;46:1111–22.

    Article  PubMed  Google Scholar 

  14. Zhuang Y, Wang Y, He B, He X, Zhou XE, Guo S, et al. Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell. 2022;185:4361–75.

    Article  CAS  PubMed  Google Scholar 

  15. Lee Y, Hou X, Lee JH, Nayak A, Alexander V, Sharma PK, et al. Subtle chemical changes cross the boundary between agonist and antagonist: new A3 adenosine receptor homology models and structural network analysis can predict this boundary. J Med Chem. 2021;64:12525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu H, Zhang Q, He X, Jiang M, Wang S, Yan X, et al. Structural insights into ligand recognition and activation of the medium-chain fatty acid-sensing receptor GPR84. Nat Commun. 2023;14:3271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maiti S, Singh A, Maji T, Saibo NV, De S. Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr Res Struct Biol. 2024;7:100138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Costa MGS, Gur M, Krieger JM, Bahar I. Computational biophysics meets cryo-EM revolution in the search for the functional dynamics of biomolecular systems. Wiley Interdiscip Rev Comput Mol Sci. 2024;14:e1689.

    Article  Google Scholar 

  19. Li X, Shen C, Zhu H, Yang Y, Wang Q, Yang J, et al. A high-quality data set of protein–ligand binding interactions via comparative complex structure modeling. J Chem Inf Model. 2024;64:2454–66.

    Article  CAS  PubMed  Google Scholar 

  20. Lan J, He X, Ren Y, Wang Z, Zhou H, Fan S, et al. Structural insights into the SARS-CoV-2 omicron RBD-ACE2 interaction. Cell Res. 2022;32:593–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu H, Zheng Y, Wang Y, Wang Y, He X, Xu P, et al. Recognition of methamphetamine and other amines by trace amine receptor TAAR1. Nature. 2023;624:663–71.

    Article  CAS  PubMed  Google Scholar 

  22. Ciancetta A, Jacobson KA. Breakthrough in GPCR crystallography and its impact on computer-aided drug design. Methods Mol Biol. 2018;1705:45–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duan J, Liu H, Zhao F, Yuan Q, Ji Y, Cai X, et al. GPCR activation and GRK2 assembly by a biased intracellular agonist. Nature. 2023;620:676–81.

    Article  CAS  PubMed  Google Scholar 

  24. He X, You C, Jiang H, Jiang Y, Xu HE, Cheng X. AlphaFold2 versus experimental structures: evaluation on G protein-coupled receptors. Acta Pharmacol Sin. 2023;44:1–7.

    Article  CAS  PubMed  Google Scholar 

  25. Meli R, Biggin PC. spyrmsd: symmetry-corrected RMSD calculations in Python. J Cheminform. 2020;12:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide:  a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–49.

    Article  CAS  PubMed  Google Scholar 

  27. Rimac H, Grishina M, Potemkin V. Use of the complementarity principle in docking procedures: a new approach for evaluating the correctness of binding poses. J Chem Inf Model. 2021;61:1801–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ibrahim P, Wifling D, Clark T. Universal activation index for class A GPCRs. J Chem Inf Model. 2019;59:3938–45.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao L, He Q, Yuan Q, Gu Y, He X, Shan H, et al. Conserved class B GPCR activation by a biased intracellular agonist. Nature. 2023;621:635–41.

    Article  CAS  PubMed  Google Scholar 

  30. Otanuly M, Kubitschke M, Masseck OA. A bright future? A perspective on class C GPCR based genetically encoded biosensors. ACS Chem Neurosci. 2024;15:889–97.

    Article  CAS  PubMed  Google Scholar 

  31. He X, Ni D, Lu S, Zhang J. Characteristics of allosteric proteins, sites, and modulators. Adv Exp Med Biol. 2019;1163:107–39.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther. 2024;9:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature. 2013;504:101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu S, He X, Ni D, Zhang J. Allosteric modulator discovery: from serendipity to structure-based design. J Med Chem. 2019;62:6405–21.

    Article  CAS  PubMed  Google Scholar 

  35. He X, Duan J, Ji Y, Zhao L, Jiang H, Jiang Y, et al. Hinge region mediates signal transmission of luteinizing hormone and chorionic gonadotropin receptor. Comput Struct Biotechnol J. 2022;20:6503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. He X, Zhao L, Tian Y, Li R, Chu Q, Gu Z, et al. Highly accurate carbohydrate-binding site prediction with DeepGlycanSite. Nat Commun. 2024;15:5163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yim J, Stärk H, Corso G, Jing B, Barzilay R, Jaakkola TS. Diffusion models in protein structure and docking. Wiley Interdiscip Rev Comput Mol Sci. 2024;14:e1711.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (32130022 and 82121005 to HEX); the National Key R&D Program of China (2022YFC2703105 to HEX, 2019YFA0904200); CAS Strategic Priority Research Program (XDB37030103 to HEX); Shanghai Municipal Science and Technology Major Project (2019SHZDZX02 to HEX); the Lingang Laboratory (LG-GG-202204-01 to HEX); State Key Laboratory of Drug Research (SKLDR-2023-TT-04 to HEX).

Author information

Authors and Affiliations

Authors

Contributions

XHH, JRL, YSW and SNL deployed AlphaFold3 locally; SYS evaluated and analyzed the structures and data, and performed molecular docking; SYS, XHH and HEX wrote the paper.

Corresponding authors

Correspondence to H. Eric Xu or Xin-heng He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Sy., Li, Jr., Wang, Ys. et al. An update for AlphaFold3 versus experimental structures: assessing the precision of small molecule binding in GPCRs. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01617-4

Keywords

Search

Quick links