Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

circSP199a, a circularized RNA sponge targeting miR-199a-5p and -3p, mitigates mouse cardiac hypertrophy and fibrosis

Abstract

Increasing evidence shows that microRNAs (miRNAs) are functionally associated with cardiac remodeling. Functionally, some cytoplasmic circRNAs may act as miRNA sponges to inhibit functions of the combined miRNAs. Our previous study showed that miR-199a-5p and -3p promote cardiac hypertrophy and fibrosis. In this study, we designed and synthesized a novel circularized RNA sponge, circSP199a, and evaluated the therapeutic effects of circSP199a against cardiac hypertrophy and fibrosis. The synthesized circSP199a included 6 repeats of reverse complements of seed sequences of miR-199a-5p and -3p with 515 nt in length. We showed that the synthesized circSP199a and expression vector-mediated circSP199a expression inhibited cardiomyocyte hypertrophy and mitigated the fibrotic phenotypes in neonatal mouse cardiac fibroblasts and human cardiac organoid fibrosis via the combination of miR-199a-5p and -3p. Furthermore, intravenous injection of AAV9-circSP199a for 21 days in advance significantly ameliorated transverse aortic constriction-induced cardiac injury and remodeling in mice. We demonstrated that circSP199a blocked the functions of miR-199a-5p and -3p to enhance the expression of target genes of PGC-1α, Rb1, Sirt1 and Smad1 both in vitro and in vivo. These results provide new insights into the development of RNA sponge-based therapies for cardiac hypertrophy and fibrosis.

The artificial circSP199a functions as a novel inhibitor of miR-199a-5p and -3p, exogenous provision of circSP199a specifically sponges miR-199a-5p and -3p to block their functions with subsequent upregulations of the target genes, including PGC-1α, Rb1, SIRT1 and Smad1, to mitigate the pathological cardiac hypertrophy and fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MiR-199a-5p and -3p inhibitor suppress cardiomyocyte hypertrophy and the fibrotic phenotypes of cardiac fibroblasts.
Fig. 2: The synthetic circSP199a suppresses cardiac hypertrophy and fibrosis in vitro.
Fig. 3: Adenovirus-mediated expression of circSP199a sponges miR-199a-5p and -3p in cardiomyocytes.
Fig. 4: Adenovirus-mediated expression of circSP199a inhibits miR-199a-5p- or -3p-induced NRVC hypertrophy and the fibrotic phenotypes of mCFs.
Fig. 5: Adenovirus-mediated expression of circSP199a inhibits phenylephrine-induced cardiomyocyte hypertrophy and Ang II-induced fibrotic phenotypes of cardiac fibroblasts.
Fig. 6: Adenovirus-mediated expression of circSP199a suppresses cryoinjury-induced fibrosis in human cardiac organoids (COs).
Fig. 7: AAV9-mediated expression of circSP199a inhibits cardiac hypertrophy and fibrosis in TAC mice.
Fig. 8: CircSP199a inhibits hypertrophy and fibrosis through increasing PGC-1α, RB1, Sirt1 and Smad1 expression.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bertero E, Maack C. Metabolic remodeling in heart failure. Nat Rev Cardiol. 2018;15:457–70.

    Article  CAS  PubMed  Google Scholar 

  2. Perrino C, Naga Prasad SV, Mao L, Noma T, Yan Z, Kim HS, et al. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J Clin Invest. 2006;116:1547–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, et al. miRNAs in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39:1073–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dzau VJ, Hodgkinson CP. RNA therapeutics for the cardiovascular system. Circulation. 2024;149:707–16.

    Article  CAS  PubMed  Google Scholar 

  5. Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y, et al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 2017;14:1326–34.

    Article  PubMed  Google Scholar 

  6. Liang Y, Zou Q, Yu W. Steering against wind: a new network of namiRNAs and enhancers. Genomics Proteom Bioinforma. 2017;15:331–7.

    Article  CAS  Google Scholar 

  7. Li J, Salvador AM, Li G, Valkov N, Ziegler O, Yeri A, et al. Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling. Circ Res. 2021;128:e1–e23.

    Article  CAS  PubMed  Google Scholar 

  8. Gao L, Qiu F, Cao H, Li H, Dai G, Ma T, et al. Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine. Theranostics. 2023;13:685–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ramanujam D, Schön AP, Beck C, Vaccarello P, Felician G, Dueck A, et al. MicroRNA-21-dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload. Circulation. 2021;143:1513–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li G, Shao Y, Guo HC, Zhi Y, Qiao B, Ma K, et al. MicroRNA-27b-3p down-regulates FGF1 and aggravates pathological cardiac remodelling. Cardiovasc Res. 2022;118:2139–51.

    Article  CAS  PubMed  Google Scholar 

  11. Liu X, Li H, Hastings MH, Xiao C, Damilano F, Platt C, et al. miR-222 inhibits pathological cardiac hypertrophy and heart failure. Cardiovasc Res. 2024;120:262–72.

    Article  PubMed  Google Scholar 

  12. Zeng N, Huang YQ, Yan YM, Hu ZQ, Zhang Z, Feng JX, et al. Diverging targets mediate the pathological role of miR-199a-5p and miR-199a-3p by promoting cardiac hypertrophy and fibrosis. Mol Ther Nucleic Acids. 2021;26:1035–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32:453–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang C, Huo ST, Wu Z, Chen L, Wen C, Chen H, et al. Rapid development of targeting circRNAs in cardiovascular diseases. Mol Ther Nucleic Acids. 2020;21:568–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu X, Abraham JM, Cheng Y, Wang Z, Wang Z, Zhang G, et al. Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol Ther Nucleic Acids. 2018;13:312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Z, Ma K, Cheng Y, Abraham JM, Liu X, Ke X, et al. Synthetic circular multi-miR sponge simultaneously inhibits miR-21 and miR-93 in esophageal carcinoma. Lab Invest. 2019;99:1442–53.

    Article  PubMed  Google Scholar 

  17. Jost I, Shalamova LA, Gerresheim GK, Niepmann M, Bindereif A, Rossbach O. Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges. RNA Biol. 2018;15:1032–9.

    PubMed  PubMed Central  Google Scholar 

  18. Lavenniah A, Luu TDA, Li YP, Lim TB, Jiang J, Ackers-Johnson M, et al. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol Ther. 2020;28:1506–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang CM, Liu FZ, Zhu JN, Fu YH, Lin QX, Deng CY, et al. Myocyte-specific enhancer factor 2C: a novel target gene of miR-214-3p in suppressing angiotensin II-induced cardiomyocyte hypertrophy. Sci Rep. 2016;6:36146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang JN, Zou X, Fang XH, Xu JD, Xiao Z, Zhu JN, et al. The Smad3-miR-29b/miR-29c axis mediates the protective effect of macrophage migration inhibitory factor against cardiac fibrosis. Biochim Biophys Acta Mol Basis Dis. 2019;1865:2441–50.

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Xu JD, Fang XH, Zhu JN, Yang J, Pan R, et al. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res. 2020;116:1323–34.

    Article  CAS  PubMed  Google Scholar 

  22. Lewis-Israeli YR, Wasserman AH, Gabalski MA, Volmert BD, Ming Y, Ball KA, et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat Commun. 2021;12:5142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang J, Lei W, Xiao Y, Tan S, Yang J, Lin Y, et al. Generation of human vascularized and chambered cardiac organoids for cardiac disease modelling and drug evaluation. Cell Prolif. 2024;57:e13631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang S, Zou X, Zhu JN, Fu YH, Lin QX, Liang YY, et al. Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy. J Cell Mol Med. 2015;19:608–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang C, Shan G. What happens at or after transcription: Insights into circRNA biogenesis and function. Transcription. 2015;6:61–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ye Z, Jin H, Qian Q. Argonaute 2: a novel rising star in cancer research. J Cancer. 2015;6:877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Segers VFM, Brutsaert DL, De Keulenaer GW. Cardiac remodeling: endothelial cells have more to say than just NO. Front Physiol. 2018;9:382.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Talman V, Kivelä R. Cardiomyocyte-endothelial cell interactions in cardiac remodeling and regeneration. Front Cardiovasc Med. 2018;5:101.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vishnoi A, Rani S. miRNA biogenesis and regulation of diseases: an updated overview. Methods Mol Biol. 2023;2595:1–12.

    Article  CAS  PubMed  Google Scholar 

  30. Couzin J. MicroRNAs make big impression in disease after disease. Science. 2008;319:1782–4.

    Article  CAS  PubMed  Google Scholar 

  31. Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet. 2022;38:613–26.

    Article  CAS  PubMed  Google Scholar 

  32. Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy. Int J Mol Sci. 2022;23:7167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seyhan AA. Trials and tribulations of microRNA therapeutics. Int J Mol Sci. 2024;25:1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA. 2010;16:2043–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4:721–6.

    Article  CAS  PubMed  Google Scholar 

  36. Li D, Zhang J, Li J. Role of miRNA sponges in hepatocellular carcinoma. Clin Chim Acta. 2020;500:10–19.

    Article  CAS  PubMed  Google Scholar 

  37. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lin KH, Kumar VB, Shanmugam T, Shibu MA, Chen RJ, Kuo CH, et al. miR-145-5p targets paxillin to attenuate angiotensin II-induced pathological cardiac hypertrophy via downregulation of Rac1, pJNK, p-c-Jun, NFATc3, ANP and by Sirt-1 upregulation. Mol Cell Biochem. 2021;476:3253–60.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou W, Ji L, Liu X, Tu D, Shi N, Yangqu W, et al. AIFM1, negatively regulated by miR-145-5p, aggravates hypoxia-induced cardiomyocyte injury. Biomed J. 2022;45:870–82.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou Q, Deng J, Yao J, Song J, Meng D, Zhu Y, et al. Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction. EBioMedicine. 2021;74:103713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riehle C, Abel ED. PGC-1 proteins and heart failure. Trends Cardiovasc Med. 2012;22:98–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Zhao R, Wu C, Liang X, He L, Wang L, et al. Activation of the sirtuin silent information regulator 1 pathway inhibits pathological myocardial remodeling. Front Pharmacol. 2023;14:1111320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Humeres C, Venugopal H, Frangogiannis NG. Smad-dependent pathways in the infarcted and failing heart. Curr Opin Pharmacol. 2022;64:102207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu L, Liu K, Feng Q, Liao Y. Cardiac organoids: a 3D technology for modeling heart development and disease. Stem Cell Rev Rep. 2022;18:2593–605.

    Article  PubMed  Google Scholar 

  45. Cho J, Lee H, Rah W, Chang HJ, Yoon YS. From engineered heart tissue to cardiac organoid. Theranostics. 2022;12:2758–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (No. 82200325, 82070254, 82300277, 82400331 and 82470253), High-level Hospital Construction Project of Guangdong Provincial People’s Hospital (No. DFJH201902, No. DFJHBF202102), Basic and Applied Basic Research Foundation of Guangdong Province (No. 2023A1515010201, 2025A1515011249, 2025A1515010873). We appreciate BioRender (https://www.biorender.com) for help in figure production during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

XHF and ZXS conceived the project. HYW, CMZ, YG, HLZ, YTH and MZZ performed laboratory experiments. YHW and WYD performed the viral preparation and infection. XYL and LZ analyzed bioinformatics data. HLZ, HL, YL and JNZ prepared the figures. JDX, NM and YPL made the statistical analysis. XLZ, XHF and ZXS supervised the research. HYW and ZXS wrote and revised the manuscript. All authors have read and approved the article.

Corresponding authors

Correspondence to Xian-hong Fang or Zhi-xin Shan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Hy., Zhou, Cm., Gao, Y. et al. circSP199a, a circularized RNA sponge targeting miR-199a-5p and -3p, mitigates mouse cardiac hypertrophy and fibrosis. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01620-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01620-9

Keywords

Search

Quick links