Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

USP3 stabilizes MIC19 by deubiquitination under hypoxic stress and promotes the progression of non-small cell lung cancer

Abstract

Hypoxia is a common phenomenon in the microenvironment of solid tumors; mitochondria, as the site of cellular oxidative respiration, are among the first organelles to be affected under hypoxic conditions. Mitochondrial cristae organizing protein 19 (MIC19), a core component of the mitochondrial contact site and cristae organizing system (MICOS), is essential for preserving mitochondrial activity. In this study, we investigated the effects of hypoxia on MIC19 and its regulatory mechanisms in non-small cell lung cancer (NSCLC). We showed that the expression levels of MIC19 were significantly increased in NSCLC, which were associated with advanced stages and a poor prognosis in patients with NSCLC. We demonstrated that MIC19 promoted the proliferation and invasion of A549 and PC9 cells in vitro, and MIC19 played a crucial role in maintaining mitochondrial function. We revealed that USP3 mediated the hypoxia-induced upregulation of MIC19 expression in A549 and PC9 cells. In the hypoxic microenvironment, HIF-1α bound to the USP3 promoter region and promoted USP3 expression, which in turn stabilized MIC19 through K48-linked deubiquitination, thereby driving NSCLC progression. The role of MIC19 in NSCLC growth and progression was confirmed in nude mice bearing A549 xenograft tumors in vivo. In conclusion, under hypoxic conditions, USP3 stabilizes MIC19 through deubiquitination, thereby promoting NSCLC progression. This study reveals the HIF1α–USP3–MIC19 axis in NSCLC progression, providing a theoretical basis for future therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MIC19 plays an important role in NSCLC progression.
Fig. 2: MIC19 maintains mitochondrial structure and function and promotes NSCLC progression via ROS.
Fig. 3: MIC19 is stabilized through deubiquitination under hypoxic stress.
Fig. 4: USP3 mediates the hypoxia-induced increase in MIC19 expression.
Fig. 5: USP3 directly interacts with MIC19 and regulates its protein stability.
Fig. 6: USP3 deubiquitinates MIC19.
Fig. 7: USP3 promotes NSCLC progression through MIC19.
Fig. 8: Schematic diagram illustrating hypoxia-induced promotion of USP3 transcription by HIF-1α, leading to MIC19 stabilization through deubiquitination and subsequent NSCLC progression.

Similar content being viewed by others

Data availability

Supplementary information is available at the website of Acta Pharmacologica Sinica.

References

  1. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83:584–94.

    Article  PubMed  Google Scholar 

  2. Wu H, Chen Q. Hypoxia activation of mitophagy and its role in disease pathogenesis. Antioxid Redox Signal. 2015;22:1032–46.

    Article  CAS  PubMed  Google Scholar 

  3. Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol. 2014;49:1–15.

    Article  CAS  PubMed  Google Scholar 

  4. Ning W, Yang J, Ni R, Yin Q, Zhang M, Zhang F, et al. Hypoxia induced cellular and exosomal RPPH1 promotes breast cancer angiogenesis and metastasis through stabilizing the IGF2BP2/FGFR2 axis. Oncogene. 2025;44:147–64.

    Article  CAS  PubMed  Google Scholar 

  5. Liu Y, Zhang H, Liu Y, Zhang S, Su P, Wang L, et al. Hypoxia-induced GPCPD1 depalmitoylation triggers mitophagy via regulating PRKN-mediated ubiquitination of VDAC1. Autophagy. 2023;19:2443–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li L, Liu D, Chen T, Wei C, Qiao Y, Liu W, et al. Hypoxia-enhanced YAP1-EIF4A3 interaction drives circ_0007386 circularization by competing with CRIM1 pre-mRNA linear splicing and promotes non-small cell lung cancer progression. J Exp Clin Cancer Res. 2024;43:200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu D, Chen T, Zhao X, Huang D, Huang J, Huang Y, et al. HIF1alpha-SP1 interaction disrupts the circ-0001875/miR-31-5p/SP1 regulatory loop under a hypoxic microenvironment and promotes non-small cell lung cancer progression. J Exp Clin Cancer Res. 2022;41:156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20:745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miao Y, Wang W, Dong Y, Hu J, Wei K, Yang S, et al. Hypoxia induces tumor cell growth and angiogenesis in non-small cell lung carcinoma via the Akt-PDK1-HIF1alpha-YKL-40 pathway. Transl Cancer Res. 2020;9:2904–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meng L, Yang X, Xie X, Wang M. Mitochondrial NDUFA4L2 protein promotes the vitality of lung cancer cells by repressing oxidative stress. Thorac Cancer. 2019;10:676–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, et al. ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J Biol Chem. 2011;286:2918–32.

    Article  CAS  PubMed  Google Scholar 

  12. Sakowska P, Jans DC, Mohanraj K, Riedel D, Jakobs S, Chacinska A. The oxidation status of Mic19 regulates MICOS assembly. Mol Cell Biol. 2015;35:4222–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meng Z, Cheng S, Wang W, Wei Z, Guo Z, Zhao X, et al. Up-regulation of MIC19 promotes growth and metastasis of hepatocellular carcinoma by activating ROS/NF-kappaB signaling. Transl Oncol. 2024;42:101906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao C, Xu Z, Que H, Zhang K, Wang F, Tan R, et al. ASB1 inhibits prostate cancer progression by destabilizing CHCHD3 via K48-linked ubiquitination. Am J Cancer Res. 2024;14:3404–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242–53.

    Article  CAS  PubMed  Google Scholar 

  16. Li A, Wang S, Nie J, Xiao S, Xie X, Zhang Y, et al. USP3 promotes osteosarcoma progression via deubiquitinating EPHA2 and activating the PI3K/AKT signaling pathway. Cell Death Dis. 2024;15:235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liang RP, Zhang XX, Zhao J, Zhu RT, Wang WJ, Lu QW, et al. Ubiquitin-specific protease 3 facilitates cell proliferation by deubiquitinating pyruvate kinase L/R in gallbladder cancer. Lab Invest. 2022;102:1367–76.

    Article  CAS  PubMed  Google Scholar 

  18. Wu X, Liu M, Zhu H, Wang J, Dai W, Li J, et al. Ubiquitin-specific protease 3 promotes cell migration and invasion by interacting with and deubiquitinating SUZ12 in gastric cancer. J Exp Clin Cancer Res. 2019;38:277.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liao XH, Wang Y, Zhong B, Zhu SY. USP3 promotes proliferation of non-small cell lung cancer through regulating RBM4. Eur Rev Med Pharm Sci. 2020;24:3143–51.

    Google Scholar 

  20. Li XG, Zhu GS, Cao PJ, Huang H, Chen YH, Chen C, et al. Genome-wide CRISPR-Cas9 screening identifies ITGA8 responsible for abivertinib sensitivity in lung adenocarcinoma. Acta Pharmacol Sin. 2025;46:1419–32.

    Article  CAS  PubMed  Google Scholar 

  21. Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, et al. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52:192–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019;11:7830–46.

    Article  CAS  PubMed  Google Scholar 

  23. Gao S, Chen T, Li L, Liu X, Liu Y, Zhao J, et al. Hypoxia-Inducible Ubiquitin Specific Peptidase 13 contributes to tumor growth and metastasis via enhancing the toll-like Receptor 4/Myeloid differentiation primary response gene 88/Nuclear Factor-kappaB pathway in hepatocellular carcinoma. Front Cell Dev Biol. 2020;8:587389.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gu J, Xiao X, Zou C, Mao Y, Jin C, Fu D, et al. Ubiquitin-specific protease 7 maintains c-Myc stability to support pancreatic cancer glycolysis and tumor growth. J Transl Med. 2024;22:1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang L, Xu J, Zhou S, Yao F, Zhang R, You W, et al. Endothelial DGKG promotes tumor angiogenesis and immune evasion in hepatocellular carcinoma. J Hepatol. 2024;80:82–98.

    Article  CAS  PubMed  Google Scholar 

  26. Yoshioka K, Nakagawa R, Nguyen CLK, Suzuki H, Ishigaki K, Mizuno S, et al. Proximity-dependent biotinylation reveals an interaction between ubiquitin-specific peptidase 46 and centrosome-related proteins. FEBS Open Bio. 2025;15:151–64.

    Article  CAS  PubMed  Google Scholar 

  27. Sahoo G, Bandyopadhyay S, Tripathi E, Karyala P. Deubiquitinating enzymes in breast cancer: in silico analysis of gene expression and metastatic correlation. J Biomol Struct Dyn. 2024;13:1–10.

  28. Wang G, Dai S, Chen J, Zhang K, Huang C, Zhang J, et al. USP19 potentiates autophagic cell death via inhibiting mTOR pathway through deubiquitinating NEK9 in pancreatic cancer. Cell Death Differ. 2025;32:702–13.

    Article  CAS  PubMed  Google Scholar 

  29. Lancini C, van den Berk PC, Vissers JH, Gargiulo G, Song JY, Hulsman D, et al. Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells. J Exp Med. 2014;211:1759–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shen K, Zhang Q. Literature review: nuclear factor kappa B (NF-kappaB) regulation in human cancers mediated by ubiquitin-specific proteases (USPs). Ann Transl Med. 2024;12:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li S, Xiong S, Li Z, Yang L, Yang H, Xiong J, et al. USP3 promotes DNA damage response and chemotherapy resistance through stabilizing and deubiquitinating SMARCA5 in prostate cancer. Cell Death Dis. 2024;15:790.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu X, Wang H, Zhu D, Chai Y, Wang J, Dai W, et al. USP3 promotes gastric cancer progression and metastasis by deubiquitination-dependent COL9A3/COL6A5 stabilisation. Cell Death Dis. 2021;13:10.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shi K, Zhang JZ, Yang L, Li NN, Yue Y, Du XH, et al. Protein deubiquitylase USP3 stabilizes Aurora A to promote proliferation and metastasis of esophageal squamous cell carcinoma. BMC Cancer. 2021;21:1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qin W, Steinek C, Kolobynina K, Forne I, Imhof A, Cardoso MC, et al. Probing protein ubiquitination in live cells. Nucleic Acids Res. 2022;50:e125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: from mechanisms to their inhibition by small molecules. Mol Cell. 2022;82:15–29.

    Article  CAS  PubMed  Google Scholar 

  36. Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer. 2022;22:280–97.

    Article  CAS  PubMed  Google Scholar 

  37. Tuli HS, Kaur J, Vashishth K, Sak K, Sharma U, Choudhary R, et al. Molecular mechanisms behind ROS regulation in cancer: A balancing act between augmented tumorigenesis and cell apoptosis. Arch Toxicol. 2023;97:103–20.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, et al. The double-edged roles of ROS in cancer prevention and therapy. Theranostics. 2021;11:4839–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murphy MP. Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metab. 2013;18:145–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (82473191, 82072595, and 82172569). Natural Science Foundation of Tianjin (23JCZDJC00710, 23JCYBJC01010). Tianjin Health Science and Technology Project (TJWJ2022XK005). Beijing Science and Technology Innovation Medical Development Fund grant (KC2023-JX-0288-PZ78).

Author information

Authors and Affiliations

Authors

Contributions

JC, WHZ, and HYL designed the research studies. WHZ, CD, HH, ZXZ, CYJ, YJW, ZXH, and GNW performed the experiments. YWL, HH, CD, and ZXZ analyzed data. WHZ, HH and JHL wrote the manuscript. JC provided financial support. HYL, YWL, and JHL supervised the project.

Corresponding authors

Correspondence to Hong-yu Liu or Jun Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Wh., Huang, H., Ding, C. et al. USP3 stabilizes MIC19 by deubiquitination under hypoxic stress and promotes the progression of non-small cell lung cancer. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01625-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01625-4

Keywords

Search

Quick links