Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Galangin, a novel Kv7 potassium channel opener, exerts potent antinociceptive effects in multiple chronic pain mouse models

Abstract

The activation of voltage-gated potassium Kv7/M channels is an attractive therapeutic strategy for chronic pain. Galangin, the principal active component of the medicinal herb Alpinia officinarum Hance, has exhibited analgesic effects in mice. In this study, we investigated the antinociceptive effects of galangin in the treatment of various types of chronic pain and the underlying mechanisms. Using whole-cell recordings of CHO cells expressing Kv7.2/Kv7.3 channels, we showed that galangin enhanced Kv7.2/Kv7.3 currents in a concentration-dependent manner, with an EC50 value of 8.8 ± 1.6 μM, and shifted the voltage-dependent activation curve of the channels toward depolarization. We demonstrated that galangin selectively and potently activated the Kv7.2, Kv7.4, and Kv7.5 channels while reducing the Kv7.1 current and exerting no effect on the Kv7.3 current. Notably, galangin no longer increased the current amplitude and slightly shifted the voltage-dependent activation of the Kv7.2 (E322A) mutant, suggesting that Glu-322 in Kv7.2 is important for galangin activation of the channels. Moreover, we showed that galangin (100 μM) significantly enhanced the M-current and consequently reduced the excitability of DRG neurons in SNI mice. In multiple chronic pain mouse models, the administration of galangin (15 mg/kg, i.p.) significantly increased the threshold for mechanical stimuli and the withdrawal latency to thermal stimuli, which were reversed by the Kv7/M channel blocker XE991. Taken together, the results of this study demonstrated that galangin exerts its antinociceptive effects mainly through the activation of Kv7/M channels, representing a novel approach for treating neuronal excitatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Galangin enhances Kv7.2/Kv7.3 channel currents.
Fig. 2: Selectivity of galangin for the Kv7 channel subtype.
Fig. 3: Effects of galangin on the activation and deactivation kinetics of Kv7 subtypes.
Fig. 4: Amino acid binding site for galangin in the activation of the Kv7.2 channel.
Fig. 5: Effect of galangin on Kv7.2 mutant currents.
Fig. 6: Galangin enhances native M-currents and attenuates neuronal firing in DRG neurons.
Fig. 7: Galangin alleviates chronic pain induced by SNI, CFA, and MIA.

Similar content being viewed by others

References

  1. Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best practices, and new advances. Lancet. 2021;397:2082–97.

    Article  PubMed  Google Scholar 

  2. Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth. 2019;123:E273–E283.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barker BS, Spampanato J, Mccarren HS, Berger K, Jackson CE, Yeung DT, et al. The K(v)7 modulator, retigabine, is an efficacious antiseizure drug for delayed treatment of organophosphate-induced status epilepticus. Neuroscience. 2021;463:143–58.

    Article  CAS  PubMed  Google Scholar 

  4. Mercadante S. Prospects and challenges in opioid analgesia for pain management. Curr Med Res Opin. 2011;27:1741–3.

    Article  CAS  PubMed  Google Scholar 

  5. Power I. An update on analgesics. Br J Anaesth. 2011;107:19–24.

    Article  CAS  PubMed  Google Scholar 

  6. Fillingim RB, Loeser JD, Baron R, Edwards RR. Assessment of chronic pain: domains, methods, and mechanisms. J Pain. 2016;17:T10–T20.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wladyka CL, Kunze DL. KCNQ/M-currents contribute to the resting membrane potential in rat visceral sensory neurons. J Physiol-Lond. 2006;575:175–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peng H, Bian XL, Ma FC, Wang KW. Pharmacological modulation of the voltage-gated neuronal Kv7/KCNQ/M-channel alters the intrinsic excitability and synaptic responses of pyramidal neurons in rat prefrontal cortex slices. Acta Pharmacol Sin. 2017;38:1248–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwake M, Athanasiadu D, Beimgraben C, Blanz J, Beck C, Jentsch TJ, et al. Structural determinants of M-type KCNQ (Kv7) K+ channel assembly. J Neurosci. 2006;26:3757–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D. Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci. 2005;8:51–60.

    Article  CAS  PubMed  Google Scholar 

  11. Jentsch TJ. Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci. 2000;1:21–30.

    Article  CAS  PubMed  Google Scholar 

  12. Zhan D, Zhang J, Su S, Ren X, Zhao S, Zang W, et al. TET1 participates in complete Freund’s adjuvant-induced trigeminal inflammatory pain by regulating Kv7.2 in a mouse model. Neurosci Bull. 2024;40:707–18.

    Article  CAS  PubMed  Google Scholar 

  13. Berta T, Strong JA, Zhang JM, Ji RR. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain: an update. Expert Opin Ther Tar. 2023;27:665–78.

    Article  Google Scholar 

  14. Smith PAK. Channels in primary afferents and their role in nerve injury-induced pain. Front Cell Neurosci. 2020;14:566418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Esposito MF, Malayil R, Hanes M, Deer T. Unique characteristics of the dorsal root ganglion as a target for neuromodulation. Pain Med. 2019;20:S23–30.

    Article  Google Scholar 

  16. Tatulian L, Delmas P, Abogadie FC, Brown DA. Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. J Neurosci. 2001;21:5535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klinger F, Geier P, Dorostkar MM, Chandaka GK, Yousuf A, Salzer I, et al. Concomitant facilitation of GABAA receptors and KV7 channels by the non-opioid analgesic flupirtine. Br J Pharmacol. 2012;166:1631–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deeks ED. Retigabine (ezogabine): in partial-onset seizures in adults with epilepsy. CNS Drugs. 2011;25:887–900.

    Article  CAS  PubMed  Google Scholar 

  19. Garin Shkolnik T, Feuerman H, Didkovsky E, Kaplan I, Bergman R, Pavlovsky L, et al. Blue-gray mucocutaneous discoloration: a new adverse effect of ezogabine. JAMA Dermatol. 2014;150:984–9.

    Article  PubMed  Google Scholar 

  20. Djouhri L, Malki MI, Zeidan A, Nagi K, Smith T. Activation of K7 channels with the anticonvulsant retigabine alleviates neuropathic pain behaviour in the streptozotocin rat model of diabetic neuropathy. J Drug Target. 2019;27:1118–26.

    Article  CAS  PubMed  Google Scholar 

  21. Cai J, Fang D, Liu XD, Li S, Ren J, Xing GG. Suppression of KCNQ/M (Kv7) potassium channels in the spinal cord contributes to the sensitization of dorsal horn WDR neurons and pain hypersensitivity in a rat model of bone cancer pain. Oncol Rep. 2015;33:1540–50.

    Article  CAS  PubMed  Google Scholar 

  22. Hayashi H, Iwata M, Tsuchimori N, Matsumoto T. Activation of peripheral KCNQ channels attenuates inflammatory pain. Mol Pain. 2014;10:15.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hirano K, Kuratani K, Fujiyoshi M, Tashiro N, Hayashi E, Kinoshita M. Kv7.2-7.5 voltage-gated potassium channel (KCNQ2-5) opener, retigabine, reduces capsaicin-induced visceral pain in mice. Neurosci Lett. 2007;413:159–62.

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Wang F, Wang X, Sun R, Chen J, Chen B, et al. Antinociceptive efficacy of retigabine in the monosodium lodoacetate rat model for osteoarthritis pain. Pharmacology. 2015;95:251–7.14.

    Article  CAS  PubMed  Google Scholar 

  25. Goodchild CS, Nelson J, Cooke I, Ashby M, Jackson K. Combination therapy with flupirtine and opioid: open-label case series in the treatment of neuropathic pain associated with cancer. Pain Med. 2008;9:939–49.

    Article  PubMed  Google Scholar 

  26. Szelenyi I. Flupirtine, a re-discovered drug, revisited. Inflamm Res. 2013;62:251–8.

    Article  CAS  PubMed  Google Scholar 

  27. Gribkoff VK. The therapeutic potential of neuronal KCNQ channel modulators. Expert Opin Ther Targets. 2003;7:737–48.

    Article  CAS  PubMed  Google Scholar 

  28. Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 2009;8:982–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abubakar IB, Malami I, Yahaya Y, Sule SM. A review on the ethnomedicinal uses, phytochemistry and pharmacology of Alpinia officinarum Hance. J Ethnopharmacol. 2018;224:45–62.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Xie Z, Chen X, Qiu J, Tan Y, Li X, et al. Herb-drug interaction in the protective effect of Alpinia officinarum against gastric injury induced by indomethacin based on pharmacokinetic, tissue distribution and excretion studies in rats. J Pharm Anal. 2021;11:200–9.

    Article  PubMed  Google Scholar 

  31. Gong J, Zhang Z, Zhang X, Chen F, Tan Y, Li H, et al. Effects and possible mechanisms of Alpinia officinarum ethanol extract on indomethacin-induced gastric injury in rats. Pharm Biol. 2018;56:294–301.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lin K, Wang Z, Wang E, Zhang X, Liu X, Feng F, et al. Targeting TRPV1 signaling: Galangin improves ethanol-induced gastric mucosal injury. J Ethnopharmacol. 2024;335:118605.

    Article  CAS  PubMed  Google Scholar 

  33. Lin K, Wang Y, Gong J, Tan Y, Deng T, Wei N. Protective effects of total flavonoids from Alpinia officinarum rhizoma against ethanol-induced gastric ulcer in vivo and in vitro. Pharm Biol. 2020;58:854–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lei X, Wang J, Zuo K, Xia T, Zhang J, Xu X, et al. Alpinia officinarum Hance: a comprehensive review of traditional uses, phytochemistry, pharmacokinetic and pharmacology. Front Pharmacol. 2024;15:1414635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu D, Qu W, Zhao L, Guan FQ, Liang JY. A new dimeric diarylheptanoid from the rhizomes of Alpinia officinarum. Chin J Nat Med. 2014;12:139–41.

    CAS  PubMed  Google Scholar 

  36. Lee J, Kim KA, Jeong S, Lee S, Park HJ, Kim NJ, et al. Anti-inflammatory, anti-nociceptive, and anti-psychiatric effects by the rhizomes of Alpinia officinarum on complete Freund’s adjuvant-induced arthritis in rats. J Ethnopharmacol. 2009;126:258–64.

    Article  PubMed  Google Scholar 

  37. Honmore VS, Kandhare AD, Kadam PP, Khedkar VM, Sarkar D, Bodhankar SL, et al. Isolates of Alpinia officinarum Hance as COX-2 inhibitors: evidence from anti-inflammatory, antioxidant and molecular docking studies. Int Immunopharmacol. 2016;33:8–17.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu L, Luo Q, Bi J, Ding J, Ge S, Chen F. Galangin inhibits growth of human head and neck squamous carcinoma cells in vitro and in vivo. Chem Biol Interact. 2014;224:149–56.

    Article  CAS  PubMed  Google Scholar 

  39. Zhong Y, Li MY, Han L, Tai Y, Cao S, Li J, et al. Galangin inhibits programmed cell death-ligand 1 expression by suppressing STAT3 and MYC and enhances T cell tumor-killing activity. Phytomedicine. 2023;116:154877.

    Article  CAS  PubMed  Google Scholar 

  40. Ouyang J, Sun F, Feng W, Xie Y, Ren L, Chen Y. Antimicrobial activity of galangin and its effects on murein hydrolases of vancomycin-intermediate Staphylococcus aureus (VISA) Strain Mu50. Chemotherapy. 2018;63:20–28.

    Article  PubMed  Google Scholar 

  41. Fu J, Wang Y, Sun M, Xu Y, Chen L. Antibacterial activity and components of the methanol-phase extract from rhizomes of pharmacophagous plant Alpinia officinarum Hance. Molecules. 2022;27:4308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khawaja G, El-Orfali Y, Shoujaa A, Abou Najem S. Galangin: a promising flavonoid for the treatment of rheumatoid arthritis-mechanisms, evidence, and therapeutic potential. Pharmaceuticals. 2024;17:963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thapa R, Afzal O, Altamimi ASA, Goyal A, Almalki WH, Alzarea SI, et al. Galangin as an inflammatory response modulator: An updated overview and therapeutic potential. Chem Biol Interact. 2023;378:110482.

    Article  CAS  PubMed  Google Scholar 

  44. Tolomeo M, Grimaudo S, Di Cristina A, Pipitone RM, Dusonchet L, Meli M, et al. Galangin increases the cytotoxic activity of imatinib mesylate in imatinib-sensitive and imatinib-resistant Bcr-Abl expressing leukemia cells. Cancer Lett. 2008;265:289–97.

    Article  CAS  PubMed  Google Scholar 

  45. Ha TK, Kim ME, Yoon JH, Bae SJ, Yeom J, Lee JS. Galangin induces human colon cancer cell death via the mitochondrial dysfunction and caspase-dependent pathway. Exp Biol Med. 2013;238:1047–54.

    Article  Google Scholar 

  46. Lu YH, Lin-Tao, Wang ZT, Wei DZ, Xiang HB. Mechanism and inhibitory effect of galangin and its flavonoid mixture from on mushroom tyrosinase and B16 murine melanoma cells. J Enzym Inhib Med Ch. 2007;22:433–8.

    Article  CAS  Google Scholar 

  47. Zhang F, Yan Y, Zhang LM, Li DX, Li L, Lian WW, et al. Pharmacological activities and therapeutic potential of galangin, a promising natural flavone, in age-related diseases. Phytomedicine. 2023;120:155061.

    Article  CAS  PubMed  Google Scholar 

  48. Hewage SRKM, Piao MJ, Kim KC, Cha JW, Han X, Choi YH, et al. Galangin (3,5,7-trihydroxyflavone) shields human keratinocytes from ultraviolet B-induced oxidative stress. Biomol Ther. 2015;23:165–73.

    Article  CAS  Google Scholar 

  49. Kong J, Li MY, Li YT, Liu M, Zhang Q, Liu J, et al. Effect of the bile salt surfactant sodium taurodeoxycholate on the physicochemical properties of a mixed system of Galangin-Hemoglobin and Baicalein-Hemoglobin. J Mol Liq. 2023;391(Part A):123302.

  50. Lin KW, Fu DT, Wang ZT, Zhang XE, Zhu CY. Analgesic and anti-inflammatory effects of galangin: a potential pathway to inhibit transient receptor potential vanilloid 1 receptor activation. Korean J Pain. 2024;37:151–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Su Y, Shen LX, Xue JF, Zou J, Wan DQ, Shi ZM. Therapeutic evaluation of galangin on cartilage protection and analgesic activity in a rat model of osteoarthritis. Electron J Biotechnol. 2021;53:8–13.

    Article  CAS  Google Scholar 

  52. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.

  53. Zhang F, Liu Y, Tang F, Liang B, Chen H, Zhang H, et al. Electrophysiological and pharmacological characterization of a novel and potent neuronal Kv7 channel opener SCR2682 for antiepilepsy. FASEB J. 2019;33:9154–66.

    Article  CAS  PubMed  Google Scholar 

  54. Isabelle D. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000;87:149–58.

    Article  Google Scholar 

  55. Jiang SS, Li ZYQ, Huang SJ, Zou WY, Luo JG. IRF7 overexpression alleviates CFA-induced inflammatory pain by inhibiting nuclear factor-κB activation and pro-inflammatory cytokines expression in rats. Brain Behav Immun. 2024;120:10–20.

    Article  CAS  PubMed  Google Scholar 

  56. Bonnet CS, Gilbert SJ, Williams AS, Walsh DA, Mason DJ. NBQX, an AMPA-kainate glutamate receptor antagonist, alleviates inflammation and pain related behaviour in two models of osteoarthritis. Int J Exp Pathol. 2016;97:A17–A18.

    Google Scholar 

  57. Zhang F, Mi Y, Qi JL, Li JW, Si M, Guan BC, et al. Modulation of K(v)7 potassium channels by a novel opener pyrazolo[1,5-a]pyrimidin-7(4H)-one compound QO-58. Br J Pharmacol. 2013;168:1030–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brickel N, Gandhi P, Vanlandingham K, Hammond J, Derossett S. The urinary safety profile and secondary renal effects of retigabine (ezogabine): A first-in-class antiepileptic drug that targets KCNQ (Kv7) potassium channels. Epilepsia. 2012;53:606–12.

    Article  CAS  PubMed  Google Scholar 

  59. Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H. The new anticonvulsant retigabine favors voltage-dependent opening of the KV7.2 channel by binding to its activation gate. Mol Pharmacol. 2005;67:1009–17.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang D, Thimmapaya R, Zhang XF, Anderson DJ, Baranowski JL, Scanio M, et al. KCNQ2/3 openers show differential selectivity and site of action across multiple KCNQ channels. J Neurosci Methods. 2011;200:54–62.

    Article  CAS  PubMed  Google Scholar 

  61. Li X, Zhang Q, Guo P, Fu J, Mei L, Lv D, et al. Molecular basis for ligand activation of the human KCNQ2 channel. Cell Res. 2021;31:52–61.

    Article  CAS  PubMed  Google Scholar 

  62. Beyak MJ, Vanner S. Inflammation-induced hyperexcitability of nociceptive gastrointestinal DRG neurones: the role of voltage-gated ion channels. Neurogastroenterol Motil. 2005;17:175–86.

    Article  CAS  PubMed  Google Scholar 

  63. Podgorski Iii E, Mascaro P, Patin D. Comparison of FDA-approved electrical neuromodulation techniques for focal neuropathic pain: a narrative review of DRG, HF10, and burst neuromodulation. Pain Physician. 2021;24:E407–E423.

    PubMed  Google Scholar 

  64. Rose K, Ooi L, Dalle C, Robertson B, Wood IC, Gamper N. Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. Pain. 2011;152:742–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zheng Q, et al. Suppression of KCNQ/M (Kv7) potassium channels in dorsal root ganglion neurons contributes to the development of bone cancer pain in a rat model. Pain. 2013;154:434–48.

    Article  CAS  PubMed  Google Scholar 

  66. Alhassen L, Alhassen W, Wong C, Sun Y, Xia Z, Civelli O, et al. Dehydroepiandrosterone sulfate (DHEAS) is an endogenous Kv7 channel modulator that reduces Kv7/M-current suppression and inflammatory pain. J Neurosci. 2023;43:7073–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu Y, Bian X, Wang K. Pharmacological activation of neuronal voltage-gated Kv7/KCNQ/M-channels for potential therapy of epilepsy and pain. Handb Exp Pharmacol. 2021;267:231–51.

    Article  CAS  PubMed  Google Scholar 

  68. Shah M, Mistry M, Marsh SJ, Brown DA, Delmas P. Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol. 2002;544:29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Passmore GM, Selyanko AA, Mistry M, Al-Qatari M, Marsh SJ, Matthews EA, et al. KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci. 2003;23:7227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xiao Y, Wu Y, Zhao B, Xia Z. Decreased voltage-gated potassium currents in rat dorsal root ganglion neurons after chronic constriction injury. Neuroreport. 2016;27:104–9.

    Article  PubMed  Google Scholar 

  71. Du XN, Zhang X, Qi JL, An HL, Li JW, Wan YM, et al. Characteristics and molecular basis of celecoxib modulation on KV7 potassium channels. Br J Pharmacol. 2011;164:1722–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gao Z, Zhang T, Wu M, Xiong Q, Sun H, Zhang Y, et al. Isoform-specific prolongation of Kv7 (KCNQ) potassium channel opening mediated by new molecular determinants for drug-channel interactions. J Biol Chem. 2010;285:28322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ballantyne JC, Sullivan MD, Koob GF. Refractory dependence on opioid analgesics. Pain. 2019;160:2655–60.

    Article  CAS  PubMed  Google Scholar 

  74. Davis MP. Opioid receptor targeting ligands for pain management: a review and update. Expert Opin Drug Discov. 2010;5:1007–22.

    Article  CAS  PubMed  Google Scholar 

  75. Teng BC, Song Y, Zhang F, Ma TY, Qi JL, Zhang HL, et al. Activation of neuronal Kv7/KCNQ/M-channels by the opener QO58-lysine and its anti-nociceptive effects on inflammatory pain in rodents. Acta Pharmacol Sin. 2016;37:1054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Devulder J. Flupirtine in pain management pharmacological properties and clinical use. CNS Drugs. 2010;24:867–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by STI 2030-Major Projects [Grant 2021ZD 0203200-04, China] (to FZ), the National Natural Science Foundation of China [Grant 32171018 and 32471066, China] (to FZ), the Natural Science Foundation of Hebei Province [Grant H2022206011 and C2024206032, China] (to FZ), and the Top Talent of Young People of Hebei Province (to FZ).

Author information

Authors and Affiliations

Authors

Contributions

BY and Hui L conducted the pharmacological experiments, analyzed the data and wrote the paper. WJZ, JRM, ZSK and YJZ were involved in the animal experiments. YLG, XKL and ZWM analyzed the data. RFC and YLW edited and proofread the drafts and the final version of the article. FZ and Han L conceived/supervised the projects, designed the experiments, and revised the article.

Corresponding authors

Correspondence to Han Li or Fan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Liu, H., Zhao, Wj. et al. Galangin, a novel Kv7 potassium channel opener, exerts potent antinociceptive effects in multiple chronic pain mouse models. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01627-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01627-2

Keywords

Search

Quick links