Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and mechanistic insights into dual activation of cagrilintide in amylin and calcitonin receptors

Abstract

The global obesity epidemic and its associated metabolic disorders urgently require more effective therapeutic interventions, particularly multi-pathway targeting therapies. Cagrilintide (Cagri), functioning as a dual amylin receptor (AMYRs) and calcitonin receptor (CTR) agonist (DACRA), demonstrates significant efficacy in obesity treatment, although its structural activation mechanism remains unclear. This study elucidates the non-selective activation mechanism by determining cryo-EM structures of Cagri bound to AMY1R-Gs and CTR-Gs complexes. Cagri adopts similar “bypass” binding modes in both receptors, which is distinct from other existing DACRAs that primarily achieve extended half-life through N-terminal lipid modification. Key molecular features include the F23Cagri residue anchoring the peptide at the receptor transmembrane (TM) bundle level and the micelle, an E14-R17 intramolecular salt bridge enhancing helical stability, and C-terminal P37Cagri interaction with the receptor ECD. These features collectively enable non-specific binding and activation across different receptors. Both structural and functional analyses revealed Cagri’s non-selective activation of Gs signaling pathways through CTR and AMY1R. These findings provide a comprehensive structural framework for developing next-generation anti-obesity drugs based on dual receptor activation mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural and functional characterization of Cagri interactions with CTR and AMY1R receptors.
Fig. 2: Molecular mechanism of Cagri recognition by CTR.
Fig. 3: Molecular mechanism of Cagri recognition by AMY1R.
Fig. 4: Structural basis of Cagri’s non-selective activation of CTR and AMY1R.
Fig. 5: Activation mechanism of AMY1R.

Similar content being viewed by others

Data availability

The atomic coordinates for the Cagri‒CTR‒Gs and Cagri‒AMY1R‒Gs complexes have been deposited in the Protein Data Bank (PDB) under accession codes 9UWM and 9UWQ, respectively. Cryo-EM maps have been deposited in the Electron Microscopy Data Bank under the following accession codes: for the Cagri‒CTR‒Gs complex, EMD-64557 (raw map), EMD-64558 (receptor-focused refinement map), and EMD-64560 (composite map); for the Cagri‒AMY1R‒Gs complex, EMD-64562 (raw map), EMD-64561 (receptor-focused refinement map), and EMD-64563 (composite map).

References

  1. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98.

    Article  PubMed  Google Scholar 

  2. Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: a review of multi-target drugs. Molecules. 2020;25:1987.

  3. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65:1038–48.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao F, Zhou Q, Cong Z, Hang K, Zou X, Zhang C, et al. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nat Commun. 2022;13:1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eržen S, Tonin G, Jurišić Eržen D, Klen J. Amylin, another important neuroendocrine hormone for the treatment of diabesity. Int J Mol Sci 2024;25:1517.

  6. Hartter E, Svoboda T, Ludvik B, Schuller M, Lell B, Kuenburg E, et al. Basal and stimulated plasma levels of pancreatic amylin indicate its co-secretion with insulin in humans. Diabetologia. 1991;34:52–4.

    Article  CAS  PubMed  Google Scholar 

  7. Butler PC, Chou J, Carter WB, Wang YN, Bu BH, Chang D, et al. Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes. 1990;39:752–6.

    Article  CAS  PubMed  Google Scholar 

  8. Pioszak AA, Hay DL. RAMPs as allosteric modulators of the calcitonin and calcitonin-like class B G protein-coupled receptors. Adv Pharmacol. 2020;88:115–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuwasako K, Hay DL, Nagata S, Murakami M, Kitamura K, Kato J. Functions of third extracellular loop and helix 8 of Family B GPCRs complexed with RAMPs and characteristics of their receptor trafficking. Curr Protein Pept Sci. 2013;14:416–28.

    Article  CAS  PubMed  Google Scholar 

  10. Lee SM, Hay DL, Pioszak AA. Calcitonin and amylin receptor peptide interaction mechanisms: insights into peptide-binding modes and allosteric modulation of the calcitonin receptor by receptor activity-modifying proteins. J Biol Chem. 2016;291:8686–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mathiesen DS, Lund A, Vilsbøll T, Knop FK, Bagger JI. Amylin and calcitonin: potential therapeutic strategies to reduce body weight and liver fat. Front Endocrinol (Lausanne). 2020;11:617400.

    Article  PubMed  Google Scholar 

  12. Ryan G, Briscoe TA, Jobe L. Review of pramlintide as adjunctive therapy in treatment of type 1 and type 2 diabetes. Drug Des Devel Ther. 2009;2:203–14.

    PubMed  PubMed Central  Google Scholar 

  13. Ryan GJ, Jobe LJ, Martin R. Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clin Ther. 2005;27:1500–12.

    Article  CAS  PubMed  Google Scholar 

  14. Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide. Front Endocrinol (Lausanne). 2019;10:155.

    Article  PubMed  Google Scholar 

  15. Lau DCW, Erichsen L, Francisco AM, Satylganova A, le Roux CW, McGowan B, et al. Once-weekly cagrilintide for weight management in people with overweight and obesity: a multicentre, randomised, double-blind, placebo-controlled and active-controlled, dose-finding phase 2 trial. Lancet. 2021;398:2160–72.

    Article  CAS  PubMed  Google Scholar 

  16. D’Ascanio AM, Mullally JA, Frishman WH. Cagrilintide: a long-acting amylin analog for the treatment of obesity. Cardiol Rev. 2024;32:83–90.

    Article  PubMed  Google Scholar 

  17. Enebo LB, Berthelsen KK, Kankam M, Lund MT, Rubino DM, Satylganova A, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2·4 mg for weight management: a randomised, controlled, phase 1b trial. Lancet. 2021;397:1736–48.

    Article  CAS  PubMed  Google Scholar 

  18. Kruse T, Hansen JL, Dahl K, Schaffer L, Sensfuss U, Poulsen C, et al. Development of cagrilintide, a long-acting amylin analogue. J Med Chem. 2021;64:11183–94.

    Article  CAS  PubMed  Google Scholar 

  19. Frias JP, Deenadayalan S, Erichsen L, Knop FK, Lingvay I, Macura S, et al. Efficacy and safety of co-administered once-weekly cagrilintide 2·4 mg with once-weekly semaglutide 2·4 mg in type 2 diabetes: a multicentre, randomised, double-blind, active-controlled, phase 2 trial. Lancet. 2023;402:720–30.

    Article  CAS  PubMed  Google Scholar 

  20. Singh G, Krauthamer M, Bjalme-Evans M. Wegovy (semaglutide): a new weight loss drug for chronic weight management. J Investig Med. 2022;70:5–13.

    Article  PubMed  Google Scholar 

  21. Cao J, Belousoff MJ, Liang YL, Johnson RM, Josephs TM, Fletcher MM, et al. A structural basis for amylin receptor phenotype. Science. 2022;375:eabm9609.

    Article  CAS  PubMed  Google Scholar 

  22. Cao J, Belousoff MJ, Gerrard E, Danev R, Fletcher MM, Dal Maso E, et al. Structural insight into selectivity of amylin and calcitonin receptor agonists. Nat Chem Biol. 2024;20:162–9.

    Article  CAS  PubMed  Google Scholar 

  23. Dal Maso E, Glukhova A, Zhu Y, Garcia-Nafria J, Tate CG, Atanasio S, et al. The molecular control of calcitonin receptor signaling. ACS Pharmacol Transl Sci. 2019;2:31–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A, Tarrasch J, et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature. 2017;546:118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao LH, Ma S, Sutkeviciute I, Shen DD, Zhou XE, de Waal PW, et al. Structure and dynamics of the active human parathyroid hormone receptor-1. Science. 2019;364:148–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nehmé R, Carpenter B, Singhal A, Strege A, Edwards PC, White CF, et al. Mini-G proteins: Novel tools for studying GPCRs in their active conformation. PLoS One. 2017;12:e0175642.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhao LH, Yuan QN, Dai AT, He XH, Chen CW, Zhang C, et al. Molecular recognition of two endogenous hormones by the human parathyroid hormone receptor-1. Acta Pharmacol Sin. 2023;44:1227–37.

  28. Zhao LH, He Q, Yuan Q, Gu Y, He X, Shan H, et al. Conserved class B GPCR activation by a biased intracellular agonist. Nature. 2023;621:635–41.

  29. Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods. 2017;14:331–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rohou A, Grigorieff N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol. 2015;192:216–21.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zivanov J, Nakane T, Scheres SHW. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ. 2020;7:253–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Computat Chem. 2004;25:1605–12.

    Article  CAS  Google Scholar 

  33. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–32.

    Article  PubMed  Google Scholar 

  34. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66:213–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang JJ, Jin S, Zhang H, Xu Y, Hu W, Jiang Y, et al. Molecular recognition and activation of the prostacyclin receptor by anti-pulmonary arterial hypertension drugs. Sci Adv. 2024;10:eadk5184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao LH, Lin J, Ji SY, Zhou XE, Mao C, Shen DD, et al. Structure insights into selective coupling of G protein subtypes by a class B G protein-coupled receptor. Nat Commun. 2022;13:6670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hollenstein K, de Graaf C, Bortolato A, Wang MW, Marshall FH, Stevens RC. Insights into the structure of class B GPCRs. Trends Pharmacol Sci. 2014;35:12–22.

    Article  CAS  PubMed  Google Scholar 

  38. Cao J, Belousoff MJ, Johnson RM, Keov P, Mariam Z, Deganutti G, et al. Structural and dynamic features of cagrilintide binding to calcitonin and amylin receptors. Nat Commun. 2025;16:3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dong M, Deganutti G, Piper SJ, Liang YL, Khoshouei M, Belousoff MJ, et al. Structure and dynamics of the active Gs-coupled human secretin receptor. Nat Commun. 2020;11:4137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma S, Shen Q, Zhao LH, Mao C, Zhou XE, Shen DD, et al. Molecular basis for hormone recognition and activation of corticotropin-releasing factor receptors. Mol Cell. 2020;77:669–80.e4.

    Article  CAS  PubMed  Google Scholar 

  41. Josephs TM, Belousoff MJ, Liang YL, Piper SJ, Cao J, Garama DJ, et al. Structure and dynamics of the CGRP receptor in apo and peptide-bound forms. Science. 2021;372:eabf7258.

Download references

Acknowledgements

We acknowledge the use of cryo-EM facilities at the Advanced Center for Electron Microscopy, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. We are grateful to WH and KW for technical assistance with data collection. This work was supported by the National Natural Science Foundation of China (32371255 and 32071203 to LHZ, 32130022 and 82121005 to HEX, 82404881 to QNY); the Natural Science Foundation of Shanghai (23ZR1475200 to LHZ); the National Key R&D Program of China (2022YFC2703105 to HEX, 2019YFA0904200); the CAS Strategic Priority Research Program (XDB37030103 to HEX); the Shanghai Municipal Science and Technology Major Project (2019SHZDZX02 to HEX); the Young Innovator Association of CAS (Y2022078 to LHZ); the Lingang Laboratory (LG-GG-202204-01 to HEX); the State Key Laboratory of Drug Research (SKLDR-2023-TT-04 to HEX).

Author information

Authors and Affiliations

Authors

Contributions

YMG designed the expression constructs and purified the protein complex under supervision of LHZ and HEX; LHZ and QNY prepared the grids. QNY performed cryo-EM data processing and model building. YMG constructed all the mutated plasmids and conducted functional studies under supervision of LHZ; XL carried out functional experiments supervised by LHZ; YMG, QH, and LHZ analyzed the structures. YMG prepared the figures and contributed to manuscript writing. All authors discussed and commented on the manuscript. LHZ and HEX wrote, revised, and finalized the manuscript, and jointly conceived, designed, and supervised the project.

Corresponding authors

Correspondence to H. Eric Xu or Li-hua Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Ym., Yuan, Qn., Li, X. et al. Structural and mechanistic insights into dual activation of cagrilintide in amylin and calcitonin receptors. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01635-2

Keywords

Search

Quick links