Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antiemetic drug fosaprepitant exerts anti-tumor effects against NSCLC by targeting FAK to inhibit AKT and JNK/c-Jun pathways

Abstract

Non-small cell lung cancer (NSCLC) is an aggressive malignancy with a poor prognosis. Abnormal expression of focal adhesion kinase (FAK) is closely linked to NSCLC progression, highlighting the need for effective FAK inhibitors in NSCLC treatment. In this study we conducted high-throughput virtual screening combined with cellular assays to identify potential FAK inhibitors for NSCLC treatment. Fosaprepitant (FOS), a clinical antiemetic drug, exhibited a high affinity for FAK with a KD value of 4.35 × 10⁻⁵ M. The direct interaction between FOS and FAK was confirmed by molecular docking, molecular dynamics, drug affinity responsive target stability and surface plasmon resonance analysis. We showed that FOS (15, 25 μM) dose-dependently inhibited the proliferation, migration and invasion of A549 and H1299 cells by targeting FAK. The IC50 values in inhibiting the cell viability at 24 h were 73.05 and 126.1 μM, respectively. Knockdown FAK reversed the inhibitory effects of FOS on A549 cells. Using RNA sequencing and Western blotting analysis, we demonstrated that FOS treatment led to downregulation of the AKT and JNK/c-Jun signaling pathways in A549 and H1299 cells. Importantly, point mutation analyses revealed that FOS primarily targeted the Y925 phosphorylation site on FAK. In A549 cells xenograft nude mouse model, administration of FOS (20, 60 mg/kg, i.p. every 2 d for 2 weeks) dose-dependently suppressed the tumor growth. Collectively, FOS exhibits significant anti-NSCLC activity both in vitro and in vivo by binding to FAK and inhibiting its phosphorylation, thereby blocking the AKT and JNK/c-Jun signaling pathways. These results suggest FOS as a novel FAK inhibitor for NSCLC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of FOS as a FAK inhibitor via Virtual Screening (VS).
Fig. 2: FOS suppresses the proliferation of NSCLC cells by targeting FAK.
Fig. 3: FOS inhibits NSCLC cell proliferation and cell cycle.
Fig. 4: FOS inhibits NSCLC cell migration and cell invasion.
Fig. 5: Knocking down FAK suppresses the inhibitory effect of FOS on NSCLC.
Fig. 6: FOS suppresses the proliferation of xenografted NSCLC cells.
Fig. 7: FOS inhibits the phosphorylation of multiple sites on FAK and blocks the AKT/JNK/c-Jun signaling.
Fig. 8: FOS suppresses NSCLC mainly by inhibiting Y925 phosphorylation of FAK.
Fig. 9: Mechanistic model showing the suppressive effect of FOS on NSCLC.

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA. 2015;65:87–108.

    PubMed  Google Scholar 

  2. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, et al. NCCN guidelines® insights: non–small cell lung cancer, version 2.2023: featured updates to the NCCN guidelines. J Natl Compr Canc Netw. 2023;21:340–50.

    Article  CAS  PubMed  Google Scholar 

  3. Chan BA, Hughes BG. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res. 2015;4:36.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54.

    Article  CAS  PubMed  Google Scholar 

  5. Yang M, Xiang H, Luo G. Targeting focal adhesion kinase (FAK) for cancer therapy: FAK inhibitors, FAK-based dual-target inhibitors and PROTAC degraders. Biochem Pharmacol. 2024;224:116246.

  6. McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC. The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nat Rev Cancer. 2005;5:505–15.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao J, Guan J. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. 2009;28:35–49.

    Article  PubMed  Google Scholar 

  8. Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Oncogene. 2014;14:598–610.

    CAS  Google Scholar 

  9. Mitra S, Lim S, Chi A, Schlaepfer D. Intrinsic focal adhesion kinase activity controls orthotopic breast carcinoma metastasis via the regulation of urokinase plasminogen activator expression in a syngeneic tumor model. Oncogene. 2006;25:4429–40.

    Article  CAS  PubMed  Google Scholar 

  10. Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. Biochim Biophys Acta (BBA)-Mol Cell Res. 2004;1692:103–19.

    Article  CAS  Google Scholar 

  11. Pan J, Zhang D, Zhang J, Qin P, Wang J. LncRNA RMRP silence curbs neonatal neuroblastoma progression by regulating microRNA-206/tachykinin-1 receptor axis via inactivating extracellular signal-regulated kinases. Cancer Biol Ther. 2019;20:653–65.

    Article  CAS  PubMed  Google Scholar 

  12. Lin H, Sun W, Zeng T, Li H, Xu C, Chen Y, et al. Identification of fosaprepitant as a novel GSTP1 inhibitor through structure-based virtual screening, molecular dynamics simulation, and biological evaluation. N J Chem. 2022;46:1042–53.

    Article  CAS  Google Scholar 

  13. Scott KL, Nogueira C, Heffernan TP, Van Doorn R, Dhakal S, Hanna JA, et al. Proinvasion metastasis drivers in early-stage melanoma are oncogenes. Cancer Cell. 2011;20:92–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mehta RR, Yamada T, Taylor BN, Christov K, King ML, Majumdar D, et al. A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt. Angiogenesis. 2011;14:355–69.

    Article  CAS  PubMed  Google Scholar 

  15. Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.

    Article  CAS  Google Scholar 

  16. Kwon GT, Cho HJ, Chung W-Y, Park KK, Moon A, Park JHY. Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling. J Nutr Biochem. 2009;20:663–76.

    Article  CAS  PubMed  Google Scholar 

  17. Pan Q, Wang Q, Zhao T, Zhao X, Liang Y, Shi M, et al. FAK inhibitor PF-562271 inhibits the migration and proliferation of high-grade serous ovarian cancer cells through FAK and FAK mediated cell cycle arrest. Med Oncol. 2023;40:215.

    Article  CAS  PubMed  Google Scholar 

  18. Aboubakar Nana F, Lecocq M, Ladjemi MZ, Detry B, Dupasquier S, Feron O, et al. Therapeutic potential of focal adhesion kinase inhibition in small cell lung cancer. Mol Cancer Ther. 2019;18:17–27.

    Article  PubMed  Google Scholar 

  19. Eom JW, Lim JW, Kim H. Lutein induces reactive oxygen species-mediated apoptosis in gastric cancer AGS cells via NADPH oxidase activation. Molecules. 2023;28:1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang B, Qi X, Li D, Feng M, Meng X, Fu S. Expression of pY397 FAK promotes the development of non‑small cell lung cancer. Oncol Lett. 2016;11:979–83.

    Article  CAS  PubMed  Google Scholar 

  21. Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143:3050–60.

    Article  CAS  PubMed  Google Scholar 

  22. Balsas P, Palomero J, Eguileor Á, Rodríguez ML, Vegliante MC, Planas-Rigol E, et al. SOX11 promotes tumor protective microenvironment interactions through CXCR4 and FAK regulation in mantle cell lymphoma. Blood. 2017;130:501–13.

    Article  CAS  PubMed  Google Scholar 

  23. Dong C, Li X, Yang J, Yuan D, Zhou Y, Zhang Y, et al. PPFIBP1 induces glioma cell migration and invasion through FAK/Src/JNK signaling pathway. Cell Death Dis. 2021;12:827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu HH, Wang SQ, Shang HL, Lv HF, Chen BB, Gao SG, et al. Roles and inhibitors of FAK in cancer: current advances and future directions. Front Pharmacol. 2024;15:1274209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mustafa M, Abd El-Hafeez AA, Abdelhafeez DA, Abdelhamid D, Mostafa YA, Ghosh P, et al. FAK inhibitors as promising anticancer targets: present and future directions. Future Med Chem. 2021;13:1559–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spallarossa A, Tasso B, Russo E, Villa C, Brullo C. The development of FAK inhibitors: a five-year update. Int J Mol Sci. 2022;23:6381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu X, Wang J, Liang Q, Tong R, Huang J, Yang X, et al. Recent progress on FAK inhibitors with dual targeting capabilities for cancer treatment. Biomed Pharmacother. 2022;151:113116.

    Article  CAS  PubMed  Google Scholar 

  28. Gerber DE, Camidge DR, Morgensztern D, Cetnar J, Kelly RJ, Ramalingam SS, et al. Phase 2 study of the focal adhesion kinase inhibitor defactinib (VS-6063) in previously treated advanced KRAS mutant non-small cell lung cancer. Lung Cancer. 2020;139:60–7.

    Article  PubMed  Google Scholar 

  29. Liu X, Wang Y, Shao P, Chen Y, Yang C, Wang J, et al. Sargentodoxa cuneata and Patrinia villosa extract inhibits LPS-induced inflammation by shifting macrophages polarization through FAK/PI3K/Akt pathway regulation and glucose metabolism reprogramming. J Ethnopharmacol. 2024;318:116855.

    Article  CAS  PubMed  Google Scholar 

  30. Brami‐Cherrier K, Gervasi N, Arsenieva D, Walkiewicz K, Boutterin MC, Ortega A, et al. FAK dimerization controls its kinase‐dependent functions at focal adhesions. EMBO J. 2014;33:356–70.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Horikiri Y, Shimo T, Kurio N, Okui T, Matsumoto K, Iwamoto M, et al. Sonic hedgehog regulates osteoblast function by focal adhesion kinase signaling in the process of fracture healing. PLoS One. 2013;8:e76785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harb LH, Arooj M, Vrielink A, Mancera RL. Computational site‐directed mutagenesis studies of the role of the hydrophobic triad on substrate binding in cholesterol oxidase. Proteins Struct Funct Bioinforma. 2017;85:1645–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the 6th “ 333 High-level Talents Training Project ” of Jiangsu Province (Grant No. 2022-3-25-162), the Jiangsu Provincial Medical Key Discipline (Grant No. ZDXK202201), Original Exploration program for Suzhou Basic Research (Grant No. SSD2024036), the Scientific Research Project of Jiangsu Provincial Health Commission (Grant No. H2023115), and Suzhou Medical College-QiLu Medical Research Program of Soochow University (Grant No. 24QL200104).

Author information

Authors and Affiliations

Authors

Contributions

YW and YNS edited the manuscript; CKM, CYS, and YHZ processed the data; DL, HLZ; JJZ, YYZ, and JJL supervised; ZWY and ZYL provided funding.

Corresponding authors

Correspondence to Zhao-wei Yan or Ze-yi Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shao, Yn., Ma, Ck. et al. Antiemetic drug fosaprepitant exerts anti-tumor effects against NSCLC by targeting FAK to inhibit AKT and JNK/c-Jun pathways. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01645-0

Keywords

Search

Quick links