Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PDE4 inhibitor apremilast ameliorates TNBS-induced irritable bowel syndrome in mice by activating the Nrf-2 signaling pathway in enteric glial cells

Abstract

Enteric glial cells (EGCs) play an important role in the pathogenesis of irritable bowel syndrome (IBS). Phosphodiesterase-4 (PDE4) functions as a catalyzing enzyme targeting hydrolyzation of intracellular cyclic adenosine monophosphate (cAMP). Increased PDE4 activity promotes excessive production of pro-inflammatory cytokines and chemokines in various immune and epithelial cells, exacerbating immune cell activation and infiltration in inflamed tissues, inhibition of PDE4 has been proven to be an important strategy for inflammatory and autoimmune diseases. In this study we investigated the pathological role of PDE4 and the therapeutic effects of a PDE4 inhibitor apremilast in IBS. 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced IBS model was established in mice, the mice were treated with apremilast (50 mg/kg, i.g.) for 7 days. After treatment, the intestinal motility and visceral sensitivity were assessed. At the end of the study, the mice were euthanized and the blood and colon tissues were collected for analyses. We showed that apremilast treatment significantly ameliorated IBS symptoms in the mice, evidenced by improvement on delayed intestinal motility and visceral hypersensitivity. We found that EGCs were activated in the colon of IBS mice. We then demonstrated that apremilast (10 μM) significantly suppressed TNF-α/IFN-γ stimulated activation of rat EGC cell line CRL-2690 and primary EGCs in vitro, as well as the secretion of EGCs-derived pain mediators and inflammatory factors while ameliorating oxidative stress. These effects depended on the activation of the nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling pathway, which was validated in Nrf-2 knockout EGCs. These results suggest that inhibition of PDE4 by apremilast suppresses EGCs activation by activating the Nrf-2 signaling pathway, leading to decreased expression of pain mediators and inflammatory factors while ameliorating oxidative stress, ultimately alleviating IBS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Apremilast attenuated the experimental manifestations of IBS by suppressing EGCs activation.
Fig. 2: Apremilast downregulated the secretion of pain mediators and inflammatory factors as well as ameliorated intestinal oxidative stress in IBS.
Fig. 3: Apremilast suppressed the activation of TNF-α/IFN-γ treated EGCs.
Fig. 4: Apremilast reduced the expression of pain mediators and inflammatory factors in TNF-α/IFN-γ stimulated EGCs.
Fig. 5: Apremilast ameliorated oxidative stress in EGCs by activating the Nrf-2 signaling pathway.
Fig. 6: Apremilast regulated the activation and function of EGCs in an Nrf-2 dependent manner.
Fig. 7: Apremilast ameliorated oxidative stress in EGCs in an Nrf-2 dependent manner.
Fig. 8: Apremilast regulates the activation and function of EGCs to ameliorate irritable bowel syndrome via the Nrf-2 pathway.

Similar content being viewed by others

References

  1. Saha L. Irritable bowel syndrome: Pathogenesis, diagnosis, treatment, and evidence-based medicine. World J Gastroenterol. 2014;20:6759–73.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Black CJ, Ford AC. Global burden of irritable bowel syndrome: trends, predictions and risk factors. Nat Rev Gastroenterol Hepatol. 2020;17:473–86.

    Article  PubMed  Google Scholar 

  3. Huang KY, Wang FY, Lv M, Ma XX, Tang XD, Lv L. Irritable bowel syndrome: epidemiology, overlap disorders, pathophysiology and treatment. World J Gastroenterol. 2023;29:4120–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Holtmann GJ, Ford AC, Talley NJ. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol Hepatol. 2016;1:133–46.

    Article  PubMed  Google Scholar 

  5. Aguilera-Lizarraga J, Hussein H, Boeckxstaens GE. Immune activation in irritable bowel syndrome: what is the evidence? Nat Rev Immunol. 2022;22:674–86.

    Article  PubMed  CAS  Google Scholar 

  6. Chey WD, Kurlander J, Eswaran S. Irritable bowel syndrome: a clinical review. JAMA. 2015;313:949–58.

    Article  PubMed  CAS  Google Scholar 

  7. Enck P, Aziz Q, Barbara G, Farmer AD, Fukudo S, Mayer EA, et al. Irritable bowel syndrome. Nat Rev Dis Prim. 2016;2:16014.

    Article  PubMed  Google Scholar 

  8. Harvey JM, Sibelli A, Chalder T, Everitt H, Moss-Morris R, Bishop FL. Desperately seeking a cure: Treatment seeking and appraisal in irritable bowel syndrome. Br J Health Psychol. 2018;23:561–79.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mete R, Tulubas F, Oran M, Yılmaz A, Avci BA, Yildiz K, et al. The role of oxidants and reactive nitrogen species in irritable bowel syndrome: a potential etiological explanation. Med Sci Monit. 2013;19:762–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Choghakhori R, Abbasnezhad A, Hasanvand A, Amani R. Inflammatory cytokines and oxidative stress biomarkers in irritable bowel syndrome: Association with digestive symptoms and quality of life. Cytokine. 2017;93:34–43.

    Article  PubMed  CAS  Google Scholar 

  11. Jia H, Zhang Y, Si X, Jin Y, Jiang D, Dai Z, et al. Quercetin alleviates oxidative damage by activating nuclear factor erythroid 2-related factor 2 signaling in porcine enterocytes. Nutrients. 2021;13:375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94:329–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Verne GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 2012;24:503–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Xiong Y, Wei H, Chen C, Jiao L, Zhang J, Tan Y, et al. Coptisine attenuates post‑infectious IBS via Nrf2‑dependent inhibition of the NLPR3 inflammasome. Mol Med Rep. 2022;26:362.

    Article  PubMed  CAS  Google Scholar 

  15. Zeng L, Li K, Wei H, Hu J, Jiao L, Yu S, et al. A novel ephA2 inhibitor exerts beneficial effects in PI-IBS in vivo and in vitro models via Nrf2 and NF-κB signaling pathways. Front Pharmacol. 2018;9:272.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xia Y, Tan W, Yuan F, Lin M, Luo H. Luteolin attenuates oxidative stress and colonic hypermobility in water avoidance stress rats by activating the Nrf2 signaling pathway. Mol Nutr Food Res. 2024;68:e2300126.

    Article  PubMed  Google Scholar 

  17. Liu S, Pi J, Zhang Q. Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway. Redox Biol. 2022;54:102389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–48.

    Article  PubMed  CAS  Google Scholar 

  19. Linan-Rico A, Ochoa-Cortes F, Schneider R, Christofi FL. Mini-review: Enteric glial cell reactions to inflammation and potential therapeutic implications for GI diseases, motility disorders, and abdominal pain. Neurosci Lett. 2023;812:137395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Morales-Soto W, Gulbransen BD. Enteric glia: A new player in abdominal pain. Cell Mol Gastroenterol Hepatol. 2019;7:433–45.

    Article  PubMed  Google Scholar 

  21. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation. Science. 2016;354:572–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain. 2013;154:S10–s28.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Benvenuti L, D’Antongiovanni V, Pellegrini C, Antonioli L, Bernardini N, Blandizzi C, et al. Enteric glia at the crossroads between intestinal immune system and epithelial barrier: implications for parkinson disease. Int J Mol Sci. 2020;21:9199.

  25. Kimono D, Sarkar S, Albadrani M, Seth R, Bose D, Mondal A, et al. Dysbiosis-associated enteric glial cell immune-activation and redox imbalance modulate tight junction protein expression in gulf war illness pathology. Front Physiol. 2019;10:1229.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Capoccia E, Cirillo C, Gigli S, Pesce M, D’Alessandro A, Cuomo R, et al. Enteric glia: a new player in inflammatory bowel diseases. Int J Immunopathol Pharmacol. 2015;28:443–51.

    Article  PubMed  CAS  Google Scholar 

  27. Meira de‐Faria F, Casado‐Bedmar M, Mårten Lindqvist C, Jones MP, Walter SA, Keita ÅV. Altered interaction between enteric glial cells and mast cells in the colon of women with irritable bowel syndrome. Neurogastroenterol Motil. 2021;33:e14130.

    Article  PubMed  Google Scholar 

  28. Spadaccini M, D’Alessio S, Peyrin-Biroulet L, Danese S. PDE4 inhibition and inflammatory bowel disease: a novel therapeutic avenue. Int J Mol Sci. 2017;18:1276.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schafer PH, Truzzi F, Parton A, Wu L, Kosek J, Zhang LH, et al. Phosphodiesterase 4 in inflammatory diseases: effects of apremilast in psoriatic blood and in dermal myofibroblasts through the PDE4/CD271 complex. Cell Signal. 2016;28:753–63.

    Article  PubMed  CAS  Google Scholar 

  30. Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol. 2018;9:1048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yang Z, Grinchuk V, Ip SP, Che CT, Fong HH, Lao L, et al. Anti-inflammatory activities of a chinese herbal formula IBS-20 in vitro and in vivo. Evid Based Complement Altern Med. 2012;2012:491496.

    Article  Google Scholar 

  32. Jang JH, Jang SY, Ahn S, Oh JY, Yeom M, Ko SJ, et al. Chronic gut inflammation and dysbiosis in IBS: Unraveling their contribution to atopic dermatitis progression. Int J Mol Sci. 2024;25:2573.

    Article  Google Scholar 

  33. Ke W, Wang Y, Huang S, Liu S, Zhu H, Xie X, et al. Paeoniflorin alleviates inflammatory response in IBS-D mouse model via downregulation of the NLRP3 inflammasome pathway with involvement of miR-29a. Heliyon. 2022;8:e12312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jin X, Hu Y, Lin T, Gao F, Xu Z, Hou X, et al. Selenium-enriched bifidobacterium longum DD98 relieves irritable bowel syndrome induced by chronic unpredictable mild stress in mice. Food Funct. 2023;14:5355–74.

    Article  PubMed  CAS  Google Scholar 

  35. Hayeeawaema F, Wichienchot S, Khuituan P. Amelioration of gut dysbiosis and gastrointestinal motility by konjac oligo-glucomannan on loperamide-induced constipation in mice. Nutrition. 2020;73:110715.

    Article  PubMed  CAS  Google Scholar 

  36. Laird JMA, Martinez-Caro L, Garcia-Nicas E, Cervero F. A new model of visceral pain and referred hyperalgesia in the mouse. Pain. 2001;92:335–42.

    Article  PubMed  CAS  Google Scholar 

  37. Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 2017;12:1295–309.

    Article  PubMed  CAS  Google Scholar 

  38. Teramoto H, Hirashima N, Tanaka M. A simple method for purified primary culture of enteric glial cells from mouse small intestine. Biol Pharm Bull. 2022;45:547–51.

    Article  PubMed  CAS  Google Scholar 

  39. Wang Z, Ocadiz-Ruiz R, Sundaresan S, Ding L, Hayes M, Sahoo N, et al. Isolation of enteric glial cells from the submucosa and lamina propria of the adult mouse. J Vis Exp. 2018;138:57629.

    Google Scholar 

  40. Jiang T, Harder B, Rojo de la Vega M, Wong PK, Chapman E, Zhang DD. p62 links autophagy and Nrf2 signaling. Free Radic Biol Med. 2015;88:199–204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Barone FC, Barton ME, White RF, Legos JJ, Kikkawa H, Shimamura M, et al. Inhibition of phosphodiesterase type 4 decreases stress-induced defecation in rats and mice. Pharmacology. 2008;81:11–17.

    Article  PubMed  CAS  Google Scholar 

  42. Yuan F, Ren H, Tan W, Wang Y, Luo H. Effect of phosphodiesterase‐4 inhibitor rolipram on colonic hypermotility in water avoidance stress rat model. Neurogastroenterol Motil. 2022;34:e14317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bianchi L, Del Duca E, Romanelli M, Saraceno R, Chimenti S, Chiricozzi A. Pharmacodynamic assessment of apremilast for the treatment of moderate-to-severe plaque psoriasis. Expert Opin Drug Metab Toxicol. 2016;12:1121–8.

    Article  PubMed  CAS  Google Scholar 

  44. Holland AM, Bon-Frauches AC, Keszthelyi D, Melotte V, Boesmans W. The enteric nervous system in gastrointestinal disease etiology. Cell Mol Life Sci. 2021;78:4713–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Neunlist M, Rolli-Derkinderen M, Latorre R, Van Landeghem L, Coron E, Derkinderen P, et al. Enteric glial cells: recent developments and future directions. Gastroenterology. 2014;147:1230–7.

    Article  PubMed  CAS  Google Scholar 

  46. Wang P, Du C, Chen FX, Li CQ, Yu YB, Han T, et al. BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit. Sci Rep. 2016;6:20320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sun Y, Liu X, Wang L, Li L, Quan X, Shi H, et al. Losartan attenuates acetic acid enema-induced visceral hypersensitivity by inhibiting the ACE1/Ang II/AT1 receptor axis in enteric glial cells. Eur J Pharmacol. 2023;946:175650.

    Article  PubMed  CAS  Google Scholar 

  48. Lu X, Zhang S. How tongxie-yaofang regulates intestinal synaptic plasticity by activating enteric glial cells and NGF/TrkA pathway in diarrhea-predominant irritable bowel syndrome rats. Drug Des Devel Ther. 2023;17:2969–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Xu S, Qin B, Shi A, Zhao J, Guo X, Dong L. Oxytocin inhibited stress induced visceral hypersensitivity, enteric glial cells activation, and release of proinflammatory cytokines in maternal separated rats. Eur J Pharmacol. 2018;818:578–84.

    Article  PubMed  CAS  Google Scholar 

  50. Hanani M, Reichenbach A. Morphology of horseradish peroxidase (HRP)-injected glial cells in the myenteric plexus of the guinea-pig. Cell Tissue Res. 1994;278:153–60.

    Article  PubMed  CAS  Google Scholar 

  51. Boesmans W, Lasrado R, Vanden Berghe P, Pachnis V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia. 2015;63:229–41.

    Article  PubMed  Google Scholar 

  52. Boesmans W, Nash A, Tasnády KR, Yang W, Stamp LA, Hao MM. Development, diversity, and neurogenic capacity of enteric glia. Front Cell Dev Biol. 2021;9:775102.

    Article  PubMed  Google Scholar 

  53. Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol. 2021;18:571–87.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Coelho A, Oliveira R, Antunes-Lopes T, Cruz CD. Partners in crime: NGF and BDNF in visceral dysfunction. Curr Neuropharmacol. 2019;17:1021–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gross KJ, Pothoulakis C. Role of neuropeptides in inflammatory bowel disease. Inflamm Bowel Dis. 2007;13:918–32.

    Article  PubMed  Google Scholar 

  56. Xu XJ, Zhang YL, Liu L, Pan L, Yao SK. Increased expression of nerve growth factor correlates with visceral hypersensitivity and impaired gut barrier function in diarrhoea-predominant irritable bowel syndrome: a preliminary explorative study. Aliment Pharmacol Ther. 2017;45:100–14.

    Article  PubMed  CAS  Google Scholar 

  57. Liu C, Yang J. Enteric glial cells in immunological disorders of the gut. Front Cell Neurosci. 2022;16:895871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Diaz de Barboza G, Guizzardi S, Moine L, Tolosa de Talamoni N. Oxidative stress, antioxidants and intestinal calcium absorption. World J Gastroenterol. 2017;23:2841–53.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Buendia I, Michalska P, Navarro E, Gameiro I, Egea J, León R. Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther. 2016;157:84–104.

    Article  PubMed  CAS  Google Scholar 

  60. Geertsema S, Bourgonje AR, Fagundes RR, Gacesa R, Weersma RK, van Goor H, et al. The NRF2/Keap1 pathway as a therapeutic target in inflammatory bowel disease. Trends Mol Med. 2023;29:830–42.

    Article  PubMed  Google Scholar 

  61. He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21:4744.

    Article  Google Scholar 

Download references

Acknowledgements

This work was granted by National Natural Science Foundation of China (82173822) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDB1060000). We thank that Prof Hai-yan Zhang for her kind assistance to this study.

Author information

Authors and Affiliations

Authors

Contributions

YHL, SYL, TY, and WT designed project and contributed to the conception. YHL, SYL, YSX, HLW, and CLF performed research. YHL, SYL, and TY analyzed data. YHL, SYL, and WT wrote the paper. All authors contributed to the collection and interpretation of data and approved the final draft.

Corresponding author

Correspondence to Wei Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Yh., Lei, Sy., Yang, T. et al. PDE4 inhibitor apremilast ameliorates TNBS-induced irritable bowel syndrome in mice by activating the Nrf-2 signaling pathway in enteric glial cells. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01649-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01649-w

Keywords

Search

Quick links