Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nobiletin and polydatin synergistically alleviate triple-negative breast cancer liver metastasis via suppressing ECM1a-mediated fatty acid biosynthesis

Abstract

Breast cancer liver metastasis (BCLM) is characterized by high incidence and poor prognosis, lacking effective therapeutic strategies. Recent evidence suggests that lipid metabolic reprogramming plays an important role in the initiation and development of BC metastasis. In clinical practice of traditional Chinese medicine, Citri Reticulatae Pericarpium-Reynoutria japonica Houtt. (CR) herb pair is used for the treatment of BCLM. In this study, we explored the active ingredients of CR herb pair and underlying mechanisms against BCLM. By RNA sequencing analysis, we showed that extracellular matrix protein 1 isoform a (ECM1a), a secreted multifunctional glycoprotein, was a vital link between liver-metastatic potential and fatty acid (FA)-biosynthesis program in triple-negative breast cancer (TNBC) cells. Through integrative screening approaches, nobiletin and polydatin were identified as the core active ingredients of the CR herb pair. As an ECM1a inhibitor, nobiletin+polydatin combination exerted superior synergistic inhibitory effects on TNBC cells and liver-metastatic xenograft models. We further revealed that nobiletin+polydatin combination impaired ECM1a-mediated tumor FA-biosynthesis program by downregulating PI3K/AKT/mTOR/SREBPs signaling. These results support nobiletin+polydatin combination as a novel and promising therapeutic option for BCLM and highlight the role of ECM1a as the targetable master regulator of lipid metabolism in BCLM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ECM1a is a potential driver of FA synthesis in TNBC liver metastasis.
Fig. 2: Identification of the absorbed prototype compounds of CR herb pair in mouse plasma.
Fig. 3: Screening of core active ingredients targeting ECM1 in CR herb pair.
Fig. 4: Nob + PD combination synergistically inhibits proliferation, migration, invasion and EMT properties in TNBC cells.
Fig. 5: Nob + PD combination synergistically alleviates liver metastasis in TNBC mice.
Fig. 6: Nob + PD combination synergistically suppresses FA biosynthesis in vitro and in vivo.
Fig. 7: Nob + PD combination synergistically reverses FA-induced TNBC liver metastasis in vitro and in vivo.
Fig. 8: Nob + PD combination synergistically downregulates FA synthesis in TNBC cells via suppressing ECM1a/PI3K/AKT/mTOR pathway.

Similar content being viewed by others

References

  1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.

    PubMed  Google Scholar 

  2. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69:363–85.

    PubMed  Google Scholar 

  3. Gong Y, Liu YR, Ji P, Hu X, Shao ZM. Impact of molecular subtypes on metastatic breast cancer patients: a SEER population-based study. Sci Rep. 2017;7:45411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Diamond JR, Finlayson CA, Borges VF. Hepatic complications of breast cancer. Lancet Oncol. 2009;10:615–21.

    Article  PubMed  Google Scholar 

  5. Ibragimova MK, Tsyganov MM, Kravtsova EA, Tsydenova IA, Litviakov NV. Organ-specificity of breast cancer metastasis. Int J Mol Sci. 2023;24:15625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luo X, Cheng C, Tan Z, Li N, Tang M, Yang L, et al. Emerging roles of lipid metabolism in cancer metastasis. Mol Cancer. 2017;16:76.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zipinotti Dos Santos D, de Souza JC, Pimenta TM, da Silva Martins B, Junior RSR, Butzene SMS, et al. The impact of lipid metabolism on breast cancer: a review about its role in tumorigenesis and immune escape. Cell Commun Signal. 2023;21:161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang W, Xing XL, Zhang C, Yi L, Xu W, Ou J, et al. MET and FASN as prognostic biomarkers of triple negative breast cancer: a systematic evidence landscape of clinical study. Front Oncol. 2021;11:604801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jung SH, Lee HC, Hwang HJ, Park HA, Moon YA, Kim BC, et al. Acyl-CoA thioesterase 7 is involved in cell cycle progression via regulation of PKCζ-p53-p21 signaling pathway. Cell Death Dis. 2017;8:e2793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sammarco A, Guerra G, Eyme KM, Kennewick K, Qiao Y, El Hokayem J, et al. Targeting SCD triggers lipotoxicity of cancer cells and enhances anti-tumor immunity in breast cancer brain metastasis mouse models. Commun Biol. 2025;8:562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ackermann T, Shokry E, Deshmukh R, Anand J, Galbraith LCA, Mitchell L, et al. Breast cancer secretes anti-ferroptotic MUFAs and depends on selenoprotein synthesis for metastasis. EMBO Mol Med. 2024;16:2749–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pan J, Fan Z, Wang Z, Dai Q, Xiang Z, Yuan F, et al. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β-catenin pathway. J Exp Clin Cancer Res. 2019;38:52.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xiao J, Cao S, Wang J, Li P, Cheng Q, Zhou X, et al. Leptin-mediated suppression of lipoprotein lipase cleavage enhances lipid uptake and facilitates lymph node metastasis in gastric cancer. Cancer Commun. 2024;44:855–78.

    Article  Google Scholar 

  14. Shen CJ, Chang KY, Lin BW, Lin WT, Su CM, Tsai JP, et al. Oleic acid-induced NOX4 is dependent on ANGPTL4 expression to promote human colorectal cancer metastasis. Theranostics. 2020;10:7083–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xie X, Chen C, Feng S, Zuo S, Zhao X, Li H. Acyl-CoA thioesterase 7 is transcriptionally activated by krüppel-like factor 13 and promotes the progression of hepatocellular carcinoma. J Hepatocell Carcinoma. 2021;8:1623–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang T, Wang K, Zhu X, Chen N. ARNTL2 upregulation of ACOT7 promotes NSCLC cell proliferation through inhibition of apoptosis and ferroptosis. BMC Mol Cell Biol. 2023;24:14.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gan L, Meng J, Xu M, Liu M, Qi Y, Tan C, et al. Extracellular matrix protein 1 promotes cell metastasis and glucose metabolism by inducing integrin β4/FAK/SOX2/HIF-1α signaling pathway in gastric cancer. Oncogene. 2018;37:744–55.

    Article  CAS  PubMed  Google Scholar 

  18. Lal G, Hashimi S, Smith BJ, Lynch CF, Zhang L, Robinson RA, et al. Extracellular matrix 1 (ECM1) expression is a novel prognostic marker for poor long-term survival in breast cancer: a hospital-based cohort study in Iowa. Ann Surg Oncol. 2009;16:2280–7.

    Article  PubMed  Google Scholar 

  19. Yu Y, Lyu C, Li X, Yang L, Wang J, Li H, et al. Remodeling of tumor microenvironment by extracellular matrix protein 1a differentially regulates ovarian cancer metastasis. Cancer Lett. 2024;596:217022.

    Article  CAS  PubMed  Google Scholar 

  20. Yin H, Wang J, Li H, Yu Y, Wang X, Lu L, et al. Extracellular matrix protein-1 secretory isoform promotes ovarian cancer through increasing alternative mRNA splicing and stemness. Nat Commun. 2021;12:4230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Chen Y, Luo Z, Huang Q, Zhang Y, Ning H, et al. Citri Reticulatae Pericarpium-Reynoutria japonica Houtt. herb pair suppresses breast cancer liver metastasis by targeting ECM1-mediated cholesterol biosynthesis pathway. Phytomedicine. 2023;116:154896.

    Article  CAS  PubMed  Google Scholar 

  22. Yuan J, Liu Y, Zhang T, Zheng C, Ding X, Zhu C, et al. Traditional Chinese medicine for breast cancer treatment: a bibliometric and visualization analysis. Pharm Biol. 2024;62:499–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim BR, Ha J, Lee S, Park J, Cho S. Anti-cancer effects of ethanol extract of Reynoutria japonica Houtt. radix in human hepatocellular carcinoma cells via inhibition of MAPK and PI3K/Akt signaling pathways. J Ethnopharmacol. 2019;245:112179.

    Article  CAS  PubMed  Google Scholar 

  24. Song L, Xiong P, Zhang W, Hu H, Tang S, Jia B, et al. Mechanism of Citri Reticulatae Pericarpium as an anticancer agent from the perspective of flavonoids: a review. Molecules. 2022;27:5622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sp N, Kang DY, Joung YH, Park JH, Kim WS, Lee HK, et al. Nobiletin inhibits angiogenesis by regulating Src/FAK/STAT3-mediated signaling through PXN in ER⁺ breast cancer cells. Int J Mol Sci. 2017;18:935.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim E, Kim YJ, Ji Z, Kang JM, Wirianto M, Paudel KR, et al. ROR activation by nobiletin enhances antitumor efficacy via suppression of IκB/NF-κB signaling in triple-negative breast cancer. Cell Death Dis. 2022;13:374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang T, Zhu X, Wu H, Jiang K, Zhao G, Shaukat A, et al. Targeting the ROS/PI3K/AKT/HIF-1α/HK2 axis of breast cancer cells: combined administration of polydatin and 2-Deoxy-d-glucose. J Cell Mol Med. 2019;23:3711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen S, Tao J, Zhong F, Jiao Y, Xu J, Shen Q, et al. Polydatin down-regulates the phosphorylation level of Creb and induces apoptosis in human breast cancer cell. PLoS One. 2017;12:e0176501.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.

    Article  CAS  PubMed  Google Scholar 

  30. Guo Z, Bergeron KF, Mounier C. Oleate promotes triple-negative breast cancer cell migration by enhancing filopodia formation through a PLD/Cdc42-dependent pathway. Int J Mol Sci. 2024;25:34.

    Google Scholar 

  31. Lingrand M, Lalonde S, Jutras-Carignan A, Bergeron KF, Rassart E, Mounier C. SCD1 activity promotes cell migration via a PLD-mTOR pathway in the MDA-MB-231 triple-negative breast cancer cell line. Breast Cancer. 2020;27:594–606.

    Article  PubMed  Google Scholar 

  32. Madison BB. Srebp2: A master regulator of sterol and fatty acid synthesis. J Lipid Res. 2016;57:333–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 2020;117:31189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rashid NS, Grible JM, Clevenger CV, Harrell JC. Breast cancer liver metastasis: current and future treatment approaches. Clin Exp Metastasis. 2021;38:263–77.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tian C, Liu S, Wang Y, Song X. Prognosis and genomic landscape of liver metastasis in patients with breast cancer. Front Oncol. 2021;11:588136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Turdo A, Glaviano A, Pepe G, Calapà F, Raimondo S, Fiori ME, et al. Nobiletin and xanthohumol sensitize colorectal cancer stem cells to standard chemotherapy. Cancers. 2021;13:588136.

    Article  Google Scholar 

  37. Serafino A, Krasnowska EK, Romanò S, De Gregorio A, Colone M, Dupuis ML, et al. The synergistic combination of curcumin and polydatin improves temozolomide efficacy on glioblastoma cells. Int J Mol Sci. 2024;25:10572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li J, Zhang J, Zhu Y, Afolabi LO, Chen L, Feng X. Natural compounds, optimal combination of brusatol and polydatin promote anti-tumor effect in breast cancer by targeting Nrf2 signaling pathway. Int J Mol Sci. 2023;24:8265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC, Martin-Sandoval MS, et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature. 2020;585:113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang H, Zhu K, Zhang R, Guo Y, Wang J, Liu C, et al. Oleic acid-PPARγ-FABP4 loop fuels cholangiocarcinoma colonization in lymph node metastases microenvironment. Hepatology. 2024;80:69–86.

    Article  PubMed  Google Scholar 

  41. Hillis AL, Martin TD, Manchester HE, Högström J, Zhang N, Lecky E, et al. Targeting cholesterol biosynthesis with statins synergizes with AKT inhibitors in triple-negative breast cancer. Cancer Res. 2024;84:3250–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li YQ, Sun FZ, Li CX, Mo HN, Zhou YT, Lv D, et al. RARRES2 regulates lipid metabolic reprogramming to mediate the development of brain metastasis in triple-negative breast cancer. Mil Med Res. 2023;10:34.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ganesan K, Xu C, Wu J, Du B, Liu Q, Sui Y, et al. Ononin inhibits triple-negative breast cancer lung metastasis by targeting the EGFR-mediated PI3K/Akt/mTOR pathway. Sci China Life Sci. 2024;67:1849–66.

    Article  CAS  PubMed  Google Scholar 

  44. Long S, Wang J, Weng F, Pei Z, Zhou S, Sun G, et al. ECM1 regulates the resistance of colorectal cancer to 5-FU treatment by modulating apoptotic cell death and epithelial-mesenchymal transition induction. Front Pharmacol. 2022;13:1005915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Long S, Wang J, Weng F, Xiang D, Sun G. Extracellular matrix protein 1 regulates colorectal cancer cell proliferative, migratory, invasive and epithelial-mesenchymal transition activities through the PI3K/AKT/GSK3β/Snail signaling axis. Front Oncol. 2022;12:889159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou Q, You Y, Zhao Y, Xiao S, Song Z, Huang C, et al. TRPV4 drives the progression of leiomyosarcoma by promoting ECM1 generation and co-activating the FAK/PI3K/AKT/GSK3β pathway. Cell Oncol. 2025;48:455–70.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant numbers: 82574635 and 82174016).

Author information

Authors and Affiliations

Authors

Contributions

JW conducted the main experiments and data analysis. WWL contributed to the data interpretation and figure preparation. HJN and QLH carried out the experiments in molecular biology. JYW and XHH designed this research and wrote the manuscript. All authors approved the final manuscript.

Corresponding authors

Correspondence to Jian-yi Wang or Xiang-hui Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, Ww., Huang, Ql. et al. Nobiletin and polydatin synergistically alleviate triple-negative breast cancer liver metastasis via suppressing ECM1a-mediated fatty acid biosynthesis. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01669-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01669-6

Keywords

Search

Quick links