Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zinc pyrithione functions as a small-molecule STING agonist to exert antitumor immunotherapy effects

Abstract

The stimulator of interferon genes (STING) is a crucial pattern recognition receptor that activates innate immunity, particularly in response to pathogen infection and various stimuli. Notably, activation of STING exhibits remarkable potential in enhancing anti-tumor immunity, underscoring the significance of discovering STING small molecule agonists. Recently, zinc pyrithione (ZPT), a marketed antifungal small molecule, has been reported to possess anti-tumor activity through various mechanisms. Our preliminary screening of STING agonists revealed that ZPT could significantly induce STING activation. In this study, we investigated whether ZPT exerted anticancer effects as a small molecule activator of STING. We showed that ZPT bound to the STING protein in vitro with KD value of 2.72 μM, and ZPT (1–16 μM) dose-dependently activated the STING-TBK1-IRF3 signaling axis in THP-1 cells. In MC38 tumor-bearing wild-type C57BL/6 mice with normal immune systems, administration of ZPT (5, 10, or 20 mg/kg, i.p., every two days for 14 days) dose-dependently inhibited the tumor growth, activated CD45+, CD3+, and CD8+ T cells in both tumors and spleens, and significantly elevated IL-6 secretion in the peripheral blood. These results highlight the potential of ZPT as an immunotherapeutic agent targeting STING.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ZPT is a novel non-nucleotide STING agonist.
Fig. 2: Differences in gene expression and enrichment of signaling pathway induced by ZPT.
Fig. 3: ZPT activates STING-TBK-IRF3 axis relying on STING and induces STING oligomerization.
Fig. 4: ZPT activates STING pathway in the form of pyridine-thione complex.
Fig. 5: ZPT reduces tumor burden in mice by activating the immune system.
Fig. 6: ZPT is a promising agent for tumor immunotherapy.
Fig. 7: ZPT increases infiltration of Treg cells in tumor tissues.

References

  1. Xiang W, Lv H, Xing F, Sun X, Ma Y, Wu L, et al. Inhibition of ACLY overcomes cancer immunotherapy resistance via polyunsaturated fatty acids peroxidation and cGAS-STING activation. Sci Adv. 2023;9:eadi2465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tian H, Li W, Wang G, Tian Y, Yan J, Yu X, et al. Metal-phenolic nanomaterial with organelle-level precision primes antitumor immunity via mtDNA-dependent cGAS-STING activation. Angew Chem Int Ed Engl. 2024;63:e202411498.

    Article  CAS  PubMed  Google Scholar 

  3. Li Y, Liu B, Zheng Y, Hu M, Liu LY, Li CR, et al. Photoinduction of ferroptosis and cGAS-STING activation by a H2S-responsive iridium(III) complex for cancer-specific therapy. J Med Chem. 2024;67:16235–47.

    Article  CAS  PubMed  Google Scholar 

  4. Li W, Lu L, Lu J, Wang X, Yang C, Jin J, et al. cGAS-STING-mediated DNA sensing maintains CD8+ T cell stemness and promotes antitumor T cell therapy. Sci Transl Med. 2020;12:eaay9013.

    Article  CAS  PubMed  Google Scholar 

  5. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.

    Article  CAS  Google Scholar 

  6. Hajishengallis G, Li X, Mitroulis I, Chavakis T. Trained innate immunity and its implications for mucosal immunity and inflammation. Adv Exp Med Biol. 2019;1197:11–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen K, Lai C, Su Y, Bao WD, Yang LN, Xu PP, et al. cGAS-STING-mediated IFN-I response in host defense and neuroinflammatory diseases. Curr Neuropharmacol. 2022;20:362–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity. 2008;29:538–50.

    Article  CAS  PubMed  Google Scholar 

  9. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455:674–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17:1142–9.

    Article  CAS  PubMed  Google Scholar 

  11. Erttmann SF, Swacha P, Aung KM, Brindefalk B, Jiang H, Hartlova A, et al. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. Immunity. 2022;55:847–861 e10.

    Article  CAS  PubMed  Google Scholar 

  12. Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y, Kacen A, et al. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature. 2019;574:691–5.

    Article  CAS  PubMed  Google Scholar 

  13. Li F, Wen Z, Wu C, Yang Z, Wang Z, Diao W, et al. Simultaneous activation of immunogenic cell death and cGAS-STING pathway by liver- and mitochondria-targeted Gold(I) complexes for chemoimmunotherapy of hepatocellular carcinoma. J Med Chem. 2024;67:1982–2003.

    Article  CAS  PubMed  Google Scholar 

  14. Jneid B, Bochnakian A, Hoffmann C, Delisle F, Djacoto E, Sirven P, et al. Selective STING stimulation in dendritic cells primes antitumor T cell responses. Sci Immunol. 2023;8:eabn6612.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng W, Liu A, Xia N, Chen N, Meurens F, Zhu J. How the innate immune DNA sensing cGAS-STING pathway is involved in apoptosis. Int J Mol Sci. 2023;24:3029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang X, Hu R, Song Z, Zhao H, Pan Z, Feng Y, et al. Sorafenib combined with STAT3 knockdown triggers ER stress-induced HCC apoptosis and cGAS-STING-mediated anti-tumor immunity. Cancer Lett. 2022;547:215880.

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Li S, Wang M, Wang X, Chen S, Sun Z, et al. STING licensing of type I dendritic cells potentiates antitumor immunity. Sci Immunol. 2024;9:eadj3945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu J, Zhang Y, Yang B, Jia Y, Liu RT, Ding L, et al. Synergistic glutathione depletion and STING activation to potentiate dendritic cell maturation and cancer vaccine efficacy. Angew Chem Int Ed Engl. 2024;63:e202318530.

    Article  CAS  PubMed  Google Scholar 

  19. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41:830–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nicolai CJ, Wolf N, Chang IC, Kirn G, Marcus A, Ndubaku CO, et al. NK cells mediate clearance of CD8+ T cell-resistant tumors in response to STING agonists. Sci Immunol. 2020;5:eaaz2738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klarquist J, Hennies CM, Lehn MA, Reboulet RA, Feau S, Janssen EM. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J Immunol. 2014;193:6124–34.

    Article  CAS  PubMed  Google Scholar 

  22. Conlon J, Burdette DL, Sharma S, Bhat N, Thompson M, Jiang Z, et al. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J Immunol. 2013;190:5216–25.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao M, Fan W, Wang Y, Qiang P, Zheng Z, Shan H, et al. M335, a novel small-molecule STING agonist activates the immune response and exerts antitumor effects. Eur J Med Chem. 2024;264:116018.

    Article  CAS  PubMed  Google Scholar 

  24. Ramanjulu JM, Pesiridis GS, Yang J, Concha N, Singhaus R, Zhang SY, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature. 2018;564:439–43.

    Article  CAS  PubMed  Google Scholar 

  25. Pan BS, Perera SA, Piesvaux JA, Presland JP, Schroeder GK, Cumming JN, et al. An orally available non-nucleotide STING agonist with antitumor activity. Science. 2020;369:eaax5164.

    Article  Google Scholar 

  26. Chin EN, Yu C, Vartabedian VF, Jia Y, Kumar M, Gamo AM, et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science. 2020;369:993–9.

    Article  CAS  PubMed  Google Scholar 

  27. Turley PA, Fenn RJ, Ritter JC, Callow ME. Pyrithiones as antifoulants: environmental fate and loss of toxicity. Biofouling. 2005;21:31–40.

    Article  CAS  PubMed  Google Scholar 

  28. Chandler CJ, Segel IH. Mechanism of the antimicrobial action of pyrithione: effects on membrane transport, ATP levels, and protein synthesis. Antimicrob Agents Chemother. 1978;14:60–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Van Cutsem J, Van Gerven F, Fransen J, Schrooten P, Janssen PA. The in vitro antifungal activity of ketoconazole, zinc pyrithione, and selenium sulfide against Pityrosporum and their efficacy as a shampoo in the treatment of experimental pityrosporosis in guinea pigs. J Am Acad Dermatol. 1990;22:993–8.

    Article  PubMed  Google Scholar 

  30. Mills KJ, Hu P, Henry J, Tamura M, Tiesman JP, Xu J. Dandruff/seborrhoeic dermatitis is characterized by an inflammatory genomic signature and possible immune dysfunction: transcriptional analysis of the condition and treatment effects of zinc pyrithione. Br J Dermatol. 2012;166(Suppl 2):33–40.

    Article  CAS  PubMed  Google Scholar 

  31. Bailey P, Arrowsmith C, Darling K, Dexter J, Eklund J, Lane A, et al. A double-blind randomized vehicle-controlled clinical trial investigating the effect of ZnPTO dose on the scalp vs. antidandruff efficacy and antimycotic activity. Int J Cosmet Sci. 2003;25:183–8.

    Article  CAS  PubMed  Google Scholar 

  32. Dinning AJ, Al-Adham IS, Eastwood IM, Austin P, Collier PJ. Pyrithione biocides as inhibitors of bacterial ATP synthesis. J Appl Microbiol. 1998;85:141–6.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao C, Chen X, Yang C, Zang D, Lan X, Liao S, et al. Repurposing an antidandruff agent to treating cancer: zinc pyrithione inhibits tumor growth via targeting proteasome-associated deubiquitinases. Oncotarget. 2017;8:13942–56.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tailler M, Senovilla L, Lainey E, Thepot S, Metivier D, Sebert M, et al. Antineoplastic activity of ouabain and pyrithione zinc in acute myeloid leukemia. Oncogene. 2012;31:3536–46.

    Article  CAS  PubMed  Google Scholar 

  35. Srivastava G, Matta A, Fu G, Somasundaram RT, Datti A, Walfish PG, et al. Anticancer activity of pyrithione zinc in oral cancer cells identified in small molecule screens and xenograft model: Implications for oral cancer therapy. Mol Oncol. 2015;9:1720–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao Y, Wang H, Duah PA, Retyunskiy V, Liu Y, Chen G. Zinc pyrithione (ZPT)-induced embryonic toxicogenomic responses reveal involvement of oxidative damage, apoptosis, endoplasmic reticulum (ER) stress and autophagy. Aquat Toxicol. 2022;248:106195.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou X, Meng F, Xu B, Ma R, Cheng Y, Wu J, et al. STING promotes invasion and migration of uveal melanoma through p38‑MAPK signaling. Oncol Rep. 2024;51:23.

    Article  CAS  PubMed  Google Scholar 

  38. Lin W, Szabo C, Liu T, Tao H, Wu X, Wu J. STING trafficking activates MAPK-CREB signaling to trigger regulatory T cell differentiation. Proc Natl Acad Sci USA. 2024;121:e2320709121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cai D, Liu H, Wang J, Hou Y, Pang T, Lin H, et al. Balasubramide derivative 3C attenuates atherosclerosis in apolipoprotein E-deficient mice: role of AMPK-STAT1-STING signaling pathway. Aging (Albany NY). 2021;13:12160–78.

    Article  CAS  PubMed  Google Scholar 

  40. Liu X, Huang X, Luo J, Gao SN, Bai C, Xie D, et al. Low-dose radiation promotes high-fat diet-induced atherosclerosis by activating cGAS signal pathway. Biochim Biophys Acta Mol Basis Dis. 2024;1870:167443.

    Article  CAS  PubMed  Google Scholar 

  41. Pimkova Polidarova M, Brehova P, Dejmek M, Birkus G, Brazdova A. STING agonist-mediated cytokine secretion is accompanied by monocyte apoptosis. ACS Infect Dis. 2022;8:463–71.

    Article  CAS  PubMed  Google Scholar 

  42. Willemsen J, Neuhoff MT, Hoyler T, Noir E, Tessier C, Sarret S, et al. TNF leads to mtDNA release and cGAS/STING-dependent interferon responses that support inflammatory arthritis. Cell Rep. 2021;37:109977.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang L, Wei X, Wang Z, Liu P, Hou Y, Xu Y, et al. NF-kappaB activation enhances STING signaling by altering microtubule-mediated STING trafficking. Cell Rep. 2023;42:112185.

    Article  CAS  PubMed  Google Scholar 

  44. McCoy CE, Carpenter S, Palsson-McDermott EM, Gearing LJ, O’Neill LA. Glucocorticoids inhibit IRF3 phosphorylation in response to Toll-like receptor-3 and -4 by targeting TBK1 activation. J Biol Chem. 2008;283:14277–85.

    Article  CAS  PubMed  Google Scholar 

  45. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458:514–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chau TL, Goktuna SI, Rammal A, Casanova T, Duong HQ, Gatot JS, et al. A role for APPL1 in TLR3/4-dependent TBK1 and IKKepsilon activation in macrophages. J Immunol. 2015;194:3970–83.

    Article  CAS  PubMed  Google Scholar 

  47. Wu B, Li D, Bai H, Mo R, Li H, Xie J, et al. Mammalian reovirus micro1 protein attenuates RIG-I and MDA5-mediated signaling transduction by blocking IRF3 phosphorylation and nuclear translocation. Mol Immunol. 2024;170:131–43.

    Article  CAS  PubMed  Google Scholar 

  48. Lui WY, Bharti A, Wong NM, Jangra S, Botelho MG, Yuen KS, et al. Suppression of cGAS- and RIG-I-mediated innate immune signaling by Epstein-Barr virus deubiquitinase BPLF1. PLoS Pathog. 2023;19:e1011186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell SL, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature. 2019;569:718–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xuan C, Hu R. Chemical biology perspectives on STING agonists as tumor immunotherapy. ChemMedChem. 2023;18:e202300405.

    Article  CAS  PubMed  Google Scholar 

  51. Vornholz L, Isay SE, Kurgyis Z, Strobl DC, Loll P, Mosa MH, et al. Synthetic enforcement of STING signaling in cancer cells appropriates the immune microenvironment for checkpoint inhibitor therapy. Sci Adv. 2023;9:eadd8564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mondal I, Das O, Sun R, Gao J, Yu B, Diaz A, et al. PP2Ac deficiency enhances tumor immunogenicity by activating STING-type I interferon signaling in glioblastoma. Cancer Res. 2023;83:2527–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32470793, 22271317), Guangdong Basic and Applied Basic Research Foundation (2025A1515011707), and the Shenzhen Medical Research Fund (SMRF) D2403008.

Author information

Authors and Affiliations

Authors

Contributions

MZ, WZF, LH, and ML designed the research; MZ, ZYJ, and WZF performed the experiments; MZ and WZF analyzed the data; WZF and PFQ curated the data; ZYJ and PFQ developed the methodology; ZHZ, LH, and ML contributed to the conceptualization; MZ, ZYJ, WZF, PFQ, ZHZ, and ML wrote the paper; GFL, LH, and ML supervised the research; GFL, LH, and ML acquired the funding.

Corresponding authors

Correspondence to Guo-feng Li, Liang Hong or Min Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Jin, Zy., Fan, Wz. et al. Zinc pyrithione functions as a small-molecule STING agonist to exert antitumor immunotherapy effects. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-025-01674-9

Search

Quick links