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Current prognostic scores in multiple myeloma (MM) currently rely on disease burden and a limited set of genomic alterations.
Some studies have suggested gene expression panels may predict clinical outcomes, but none are presently utilized in clinical
practice. The tyrosine kinase WEE1 is a critical cell cycle regulator during the S-phase and G2M checkpoint. Abnormal WEE1
expression has been implicated in multiple cancers including breast, ovarian, and gastric cancers, but its prognostic signal in MM
has not been thoroughly reported. We, therefore, analyzed the MMRF CoMMpass dataset (N= 659) and identified a high-risk group
(top tertile) and a low-risk group (bottom tertile) based on WEE1 expression sorted in descending order. PFS was significantly
different (p < 1e-9) between the groups, which was validated in two independent microarray gene expression profiling (GEP)
datasets from the Total Therapy 2 (N= 341) and 3 (N= 214) trials. Our results show thatWEE1 expression is prognostic independent
of known biomarkers, differentiates outcomes associated with known markers, is upregulated independently of its interacting
neighbors, and is associated with dysregulated P53 pathways. This suggests that WEE1 expression levels may have clinical utility in
prognosticating outcomes in newly diagnosed MM and may support the application of WEE1 inhibitors to MM preclinical models.
Determining the causes of abnormal WEE1 expression may uncover novel therapeutic pathways.

Blood Cancer Journal           (2025) 15:22 ; https://doi.org/10.1038/s41408-025-01230-y

INTRODUCTION
Multiple myeloma (MM) is a hematologic malignancy associated
with a malignant proliferation of plasma cells [1]. Although the
disease is usually responsive to upfront therapies, MM remains
incurable even in patients who achieve undetectable levels of
disease, with relapse considered largely inevitable [2]. The
genomic makeup of MM is highly heterogeneous, and different
studies have identified multiple subtypes associated with varying
prognostic outcomes using different data modalities [1, 3–5].
Standard methods to prognosticate the length of progression-free
survival (PFS) include the International Staging System (ISS) [6],
Revised ISS (R-ISS) [7], and the Second Revision of the ISS (R2-ISS)
[8]. These tools rely on surrogates for disease burden and
identification of specific tumor cytogenetic abnormalities. These
scoring systems each have a PFS concordance index (c-index)
below 60%, leaving room for improvement [9, 10].
In addition to providing genomic information, scoring systems

informed by gene expression have been proposed for prognostica-
tion, including GEP70 and SKY92 [11, 12]. These expression-based
signatures have shown potentially complementary information to ISS
staging [11]. In [5], we conducted a large unsupervised genomic
network study where we applied a novel measure of network
connectivity, Ollivier-Ricci curvature, to RNA-sequencing (RNA-seq)
and copy number alteration (CNA) data from newly diagnosed MM
(NDMM) patients. We examined patterns of gene-gene interactions in
MM and identified novel pathways and genes associated with poor

prognosis. By examining the impact of gene expression via a network,
we identified a novel eight-gene signature: BUB1, MCM6, NOSTRIN,
PAM, RNF115, SNCAIP, SPRR2A, andWEE1. Of these eight genes,WEE1
was the only gene that was included in a previously published gene
signature, GEP70 [13]. Furthermore, WEE1 was the most prognostic
for PFS, suggesting it might play a role in MM. However, the role of
theWEE1 in MM has not been thoroughly studied, andmuch remains
unknown about its prognostic significance with respect to known
biomarkers of MM.
WEE1 is a tyrosine kinase involved in multiple aspects of the cell

cycle process, including the G1-S checkpoint, S phase, and G2-M
checkpoint [14, 15], but believed to exert its most significant clinical
impact in the G2-M checkpoint. For non-cancerous cells, DNA
damage is often repaired at the G1-S checkpoint. In cancerous cells,
the G1-S checkpoint may be deficient, and therefore, cancerous
cells rely on the G2-M checkpoint for DNA damage repair [16]. In the
G2-M checkpoint,WEE1 regulates cyclin-dependent kinase 1 (CDK1)
[17–19], with high WEE1 expression suppressing CDK1 expression
and maintaining the cell in a DNA repair state [20, 21]. Conversely,
low WEE1 expression correlates with a rise in CDK1 expression,
which allows the cell to enter mitosis [17].
WEE1 inhibition has been shown to dysregulate the cellular

machinery associated with the first stage of mitosis in the G1-S
transition [22] and can induce apoptosis by forcing mitotic entry [23].
For a cell to successfully complete the cell cycle,WEE1 expression levels
must rise and fall in relation to each stage of the cycle. High WEE1
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expression has recently been shown to be associated with disease
aggressiveness in some solid tumors including breast cancer [24],
ovarian cancer [25], andmelanoma [26–29]. SeveralWEE1 inhibitors are
currently in phase 2 clinical trials; these trials are evaluating the
therapeutic efficacy of WEE1 inhibition [30, 31]. WEE1 inhibitors have
also shown promise in other cancer types including sarcomas [32] and
breast cancers [33], as well as hematological malignancies [34].
In MM, preclinical studies have shown promising results when

inhibiting WEE1 in cell lines and mouse models in conjunction with
other factors [35–39].WEE1 inhibitors, in combination with bortezomib,
can induce apoptosis in MM cell lines more efficiently than bortezomib
alone [35, 36]. further, in [37], the authors show that bortezomib in
combination with a DNA damage response (DDR) inhibitor targeting
ATM/ATR/WEE1 triggers apoptosis. In [38], the authors examine the
relationship betweenWEE1 and CHK1 in MM and report that targeting
both kinases induces apoptosis in MM cell lines. In [39], the authors
suggest targeting CTPS1 in conjunctionwith either CHEK1, ATR, orWEE1
inhibition can induce apoptosis in MM cell lines.
In this study, we show that highWEE1 expression defines a high-risk

subtype of MM, independent of both known markers of MM and
treatment types.WEE1 expression has comparable prognostic value as
compared to the traditional MMISS. Additionally, highWEE1 expression
is not reflected by corresponding changes in expression throughout
the transcriptome. The high WEE1 expression subtype is characterized
by dysregulation of the P53 pathway. Together, this work suggests that
in a subpopulation ofMMpatients,WEE1may play an outsized role and
should be studied as a potential therapeutic target.

METHODS
In this study, we applied a variety of bioinformatic and machine learning-
based methods to MM datasets to examine the role of WEE1 in MM.

CoMMpass data
The RNA-seq and CNA data used is from the Multiple Myeloma Research
Foundation’s CoMMpass dataset, release version 19. Further information on the
data collection and curationmethods has previously been published [40, 41]. The
details of the patients selected for this study along with the preprocessing and
feature computations are described in detail in [5]. Briefly, for inclusion in this
study, subjects must have RNA-Seq and CNA data extracted from the bone
marrow plasma cells before the start of treatment and both demographic and
survival information available (N= 659). Gene inclusion was based on overlap
with the Human Protein Reference Database [42].

Gene expression profiling (GEP) data
The GEP data used is from the University of Arkansas’s Total Therapy 2 (TT2,
N= 341) and Total Therapy 3 (TT3, N= 214) trials. The details of these trials
are described in [43, 44]. Briefly, the plasma cells were collected via a bone
marrow biopsy of NDMM patients before treatment and gene expression
profiling data were collected. TT2 and TT3 were different treatment
regimens. Note that for this dataset, event-free survival was reported.

High-risk group membership
For each data modality—RNA-seq and GEP—patients’ WEE1 expression
values were sorted in descending order and the top tertile was labeled as
WEE1-high and the bottom tertile was labeled as WEE1-low. The center
third was not considered in this study. The same process was
independently repeated for CNA values.

Prognosis and confounder analysis
The prognosis was modeled using Kaplan–Meier (KM) survival curves for PFS.
To determine the effect ofWEE1 relative to known biomarkers of MM, we used
a multivariate Cox proportional hazards model [45] with the RNA-Seq data to
predict PFS. In it, we modeled nine markers: hyper APOBEC, chromothripsis,
hyperdiploidy, MAF translocation, MYC translocation, t(4;14), t(11;14), TP53
mutation, and gain 1q21. As outlined in [5], hyperdiploidy was defined bymore
than 2 gains involving >60% of the chromosome affecting chromosomes 3, 5,
7, 9, 11, 15, 19, or 21. Mutational signatures were assessed usingmmsig (https://
github.com/UM-Myeloma-Genomics/mmsig), a fitting algorithm designed for
MM to estimate the contribution of each mutational signature in each sample

[46]. APOBEC-mutational activity was calculated by combining SBS2 and SBS13,
with the top 10% being defined as hyper APOBEC [47, 48]. The complex
structural variant chromothripsis was defined by manual curation according to
previously published criteria [49]. High-risk and low-risk groups were analyzed
separately to see which factors differed between the groups. To show the
prognostic effect of WEE1, irrespective of known biomarkers, KM survival
curves for PFS stratified by each factor were plotted.

Machine learning analysis
We used random survival forests [50] to determine the prognostic value of
WEE1, its gene network neighbors, and ISS. Briefly, random survival forests offer
the advantages of random forests with the addition of incorporating survival
information including event duration and censorship information. WEE1
neighbors were extracted from the STRING database [51]. WEE1 neighbors
were defined as genes which have a known interaction with WEE1 with a
probability greater than 0.7. The neighboring genes were considered to see if
changes in WEE1 expression were reflected by changes in the expression of
known interacting genes. ISS staging was provided by the CoMMpass dataset.
We used the concordance index (c-index) as the evaluation metric. WEE1
expression was predicted using random forest regression models to see if
neighboring genes contained signals relevant to the abnormal increase in
WEE1 expression. Feature importances were computed using the permutation
importance method in sci-kit-learn and the 15 most importances are reported
[52]. The full parameter details of the models used are available on GitHub
(www.github.com/aksimhal/WEE1-in-MM). Models were evaluated using five-
fold cross-validation repeated ten times.

Differential gene expression analysis
To see differences in patterns of gene expression between the WEE1-high
and WEE1-low cohorts, we computed the differential gene expression using
DESeq2 [53]. The p-values from this analysis were corrected for multiple
hypothesis testing using the BH-FDRmethod. Genes with a corrected p value
less than 0.05 and an absolute log2 fold change greater than two were
considered significant. To see which pathways become dysregulated in
WEE1-high, we used the Gene Set Enrichment Analysis tool to evaluate the
selected genes [54, 55]. The utilized pathways are from the hallmark gene set
collection from the human molecular signatures database [56].

Ethics statement
This project was performed in accordance with the Declaration of Helsinki
and the Belmont Report. All data referenced have been previously published
and made publicly accessible. MMRF CoMMpass data was anonymized prior
to access. Patient enrollment and data safety were managed by the MMRF
per their organization guidelines. At no point did any investigator have
access to protected health information for any included patients.
Anonymized GEP datasets were accessed through the National Institutes
of Health’s Gene Expression Omnibus public-facing website.

RESULTS
Data overview
Genomic and clinical characterization of MM outcomes were
stratified by WEE1 expression using the CoMMpass dataset
(N= 659). The mean age was 62.5 ± 10.7 years and 60% were
male; ISS distribution was 35/35/30%, and 53% received an
autologous stem cell transplant (ASCT). An overview of the
differences between the WEE1-high and WEE1-low groups is
provided in Table 1. While some of the known markers of MM are
significant between the two groups, including age, hyperdiploidy,
t(11;14), MAF and MYC translocations, chromothripsis, hyper
APOBEC, gain 1q21, and TP53 mutational status, ISS is not. In
the WEE1-high cohort, 25% were R-ISS I, 62% were R-ISS II, and
13% were R-ISS III. In the WEE1-low cohort, 29% were R-ISS I, 64%
were R-ISS II, and 7% were R-ISS III. For the validation datasets, TT2
and TT3, baseline clinical data and gene expression data were
available. For TT2, the mean age was 56.3 ± 9.8 years and 57%
male; for TT3, the mean age was 58.6 ± 8.8 years and 67% male.

WEE1 is prognostic for outcomes in RNA-seq and GEP datasets
In the RNA-seq data from the CoMMpass dataset, differences in
PFS between WEE1-high and WEE1-low cohorts are statistically
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significant (p < 1e-9), as shown in Fig. 1A. These results are
validated in the TT2 and TT3 datasets (Fig. 1B, C). Note, when
stratifying subjects by the top tertile and bottom tertile of CNA
data from the CoMMpass dataset, the effect is not observed.

Multivariate modeling shows that WEE1 is an independent
prognostic factor in MM
Multivariate Cox proportional hazards modeling shows that the
prognostic effect of WEE1 is independent of known MM
markers, including those shown to be significant in Table 1.
The prognostic effect is independent of hyperdiploidy, t(4;14),
t(11,14), TP53 status, as well as emerging risk factors, the

complex structural variant chromothripsis and APOBEC-
mutational activity, shown in Fig. 2A and Supplementary Table
1A. When examining only the WEE1-high cohort, none of the
markers significantly predicted PFS (Fig. 2C, Supplementary
Table 1B). Similarly, in the WEE1-low, none of the markers
significantly predicted PFS (Fig. 2B, Supplementary Table 1C).

WEE1 is prognostic for outcomes independent of known
biomarkers
The WEE1-high and WEE1-low cohorts have statistically signifi-
cantly different PFS outcomes when stratifying for each known
MM marker. KM plots show significant separation when looking at

Fig. 1 Prognostic value of WEE1 expression from RNA-seq and GEP data. A Progression-free survival (PFS) based on CoMMpass RNA-seq
data showing the 2-year difference in median PFS with a p value of less than 1e-9. B, C Event-free survival of the Total Therapy 2 and Total
Therapy 3 cohorts gene expression profiling (GEP) data, respectively, showing diverging outcomes with a P < 0.05.

Table 1. Difference in CoMMpass data patient characteristics between WEE1-high and WEE1-low cohorts.

Age WEE1-low (N= 218) WEE1-high (N= 224) FDR p value

63.4 61.1 3.31E-02

Sex M: 114; F: 104 M: 139; F: 85 5.22E-02

ISS (I): 75; (II): 88; (III): 48 (1): 79; (2): 73; (3): 69 8.77E-02

Treatment combined BTZ/IMiDs-based: 124; BTZ-based: 38;
combined IMiDs/CFZ-based: 21; IMiDs-based: 14;
CFZ-based: 11; combined BTZ/IMiDs/CFZ-based: 9;
combined BTZ/CFZ-based: 1

combined BTZ/IMiDs-based: 89; combined IMiDs/
CFZ-based: 50; BTZ-based: 45; CFZ-based: 20; IMiDs-
based: 11; combined BTZ/IMiDs/CFZ-based: 9

–

Hyperdiploidy 151/189 58/170 9.53E-18

t(4;14) 22/204 20/181 1.00E+00

t(11;14) 11/204 69/181 4.30E-15

MAF translocation 4/204 22/181 1.48E-04

MYC translocation 39/204 19/181 3.31E-02

Chromothripsis 42/204 56/181 2.57E-02

Hyper APOBEC 6/204 25/179 2.04E-04

Gain 1q21 (0): 141; (1): 47; (2): 1 (0): 105; (1): 46; (2): 19 1.39E-04

TP53 aberration (0): 157; (1): 15; (2): 0 (0): 114; (1): 22; (2): 13 1.48E-04

The majority of MM markers differ significantly between the two groups; however, ISS does not. Key: for gain 1q21, 0= diploid, 1= gain (3 copies),
2= amplification (4 or more copies). MAF translocation includes any MAF translocations. For TP53 aberration, 0= diploid, 1= either deletion or mutation,
2= biallelic loss. Certain markers not available for all subjects.
BTZ Bortezomib, CFZ Carfilzomib.
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groups defined by the presence of hyperdiploidy, t(11;14), MAF
and MYC translocations, chromothripsis, and TP53 deletion (Fig. 3,
Supplementary Fig. 1). KM plots were also significant when
looking at the groups defined by the lack of a known MM marker
(Fig. 3, Supplementary Fig. 2). WEE1 cohort membership
differentiates PFS outcomes by an average of 1.98 years in
cohorts with a marker, and 2.18 years in cohorts without the
marker (Table 2).

WEE1 is prognostic for outcomes independent of
treatment type
The WEE1-high and WEE1-low cohorts have statistically signifi-
cantly different PFS outcomes when stratifying the treatment
options listed in the CoMMpass dataset. ASCT, bortezomib/
immunomodulatory agents (IMIDs), bortezomib, and carfilzomib/
IMIDs cohorts were all significantly different when stratified by
WEE1-high and WEE1-low (Fig. 4). The mean difference in PFS is
1.91 years.

WEE1 expression has comparable prognostic value as ISS
RNA-seq-based WEE1 expression has a comparable prognostic
value (c-index: 0.58 ± 0.04) as ISS (c-index: 0.61 ± 0.03). Combining
WEE1 and ISS has a c-index of 0.63 ± 0.03.

WEE1-high cohort is 3.2× less predictable than the WEE1-
low cohort
As WEE1 expression increases, the relationship between WEE1
and genes known to interact with WEE1 becomes dysregulated.
When modeling WEE1 expression with known interacting genes,
the prediction error increases by 3.2 times between the WEE1-
high and WEE1-low cohorts. In the WEE1-low cohort, the known
interacting genes that contribute more than 5% to the
prediction are CDK1, CHEK1, CDT1, AURKB, and PLK1 (Fig. 5A).
In the WEE1-high cohort, the genes are CDC25B, HSP90AA1,
CDK6, PLK1, CDR2, SKP2, and CDK2 (Fig. 5B).

P53 pathway-related genes are differentially expressed
between WEE1-high and WEE1-low cohorts
A differential gene expression analysis between the WEE1-high
andWEE1-low groups identified 146 overexpressed genes and five
underexpressed genes. Overexpressed genes are part of three
pathways: P53, downregulated UV response, and mitotic spindle.
Only five genes were underexpressed: FPR1, IFNA5, LRP2, POU2F3,
and RAB11FIP1. The full list of differentially expressed genes is in
Supplementary Table 2 and illustrated in Supplementary Fig. 3.

DISCUSSION
Prognostic markers in MM rely on either assessment of tumor
burden or specific cytogenetic abnormalities; transcriptional
characteristics of myeloma are not currently considered in this
setting. Here, we have identified that high WEE1 expression
represents an independent biomarker prognostic of poor out-
comes in NDMM, and that this effect is independent of known
cytogenetic risk factors and treatment strategies (Figs. 1–3). This
includes the common metric of staging—ISS. Even in cohorts
defined by a MM risk factor, WEE1 expression contains an
additional prognostic signal that further differentiates outcomes.
Random survival forest modeling showed that WEE1 expression
alone has as much prognostic power as ISS staging. These findings
were seen both retrospectively using the CoMMpass dataset and
independently validated in two additional MM datasets. Differ-
ential gene expression analysis showed that the P53 pathway is
the most significantly affected pathway in the WEE1-high cohort.
Furthermore, the outcomes stratification effect described here is
only observed when stratifying by gene expression, not by gene
CNA.
Random forest modeling of the local WEE1 genomic network

showed that the overexpression of WEE1 is not correlated with an
increase or decrease in any genes locally connected with WEE1.
Increased WEE1 expression was not reflected in a rise in the

Fig. 2 Cox proportional hazards (CPH) modeling of MM markers and WEE1 expression. A Coefficients of the multivariate CPH model show
WEE1 to be the most significant prognosticator. B, C Within the WEE1-high and WEE1-low cohorts, none of the markers are significant for PFS
after FDR-BH correction. TP53 aberration status—0= diploid, 1= either deletion or mutation, 2= biallelic loss. Certain markers not available
for all subjects.
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expression of any other cell cycle kinases, such as PLK1 or CDK1.
Random forest modeling of the low-risk group showed an
association with CDK1, which follows known biology. However,
in our defined high-risk group, CDK1 was not in the top 15 genes
most associated with the high-risk WEE1 signal. This further
suggests that WEE1 expression represents an independent
prognostic marker that is likely not merely reporting on another
known cytogenetic risk factor.
WEE1 is a key player during the cell cycle, and its specific roles in

the S phase and the G2-M checkpoint are well documented. WEE1
acts as a tumor suppressor gene in certain types of breast cancer.
However, for the majority of solid and blood cancers, such as
ovarian cancer and acute lymphoblastic leukemia, WEE1 acts as an
oncogene. Further work is needed to understand the role of

increases in WEE1 expression in MM as these findings can enable
new WEE1-directed treatments in MM patients with MM and other
malignancies.
Of note, differences in PFS among patients with TP53 deletions

when stratifying by WEE1 expression were remarkably large.
Patients with TP53 deletions often have the poorest clinical
outcomes with MM treatment across multiple published datasets.
Additionally, differential gene expression analysis between the
high-risk and low-risk groups showed that genes associated with
the hallmark P53 pathway were differentially expressed. TP53
regulates DNA damage in the G1-S checkpoint. Faulty P53
function may lead to a larger reliance on WEE1 activity to
maintain genomic integrity. If both TP53 and WEE1 are abnormal,
it is possible that DNA repair becomes dysfunctional.

Fig. 3 Kaplan–Meier curves stratified by MM markers show the prognostic signal in WEE1 expression. WEE1 expression defines prognosis
regardless of marker type. The top row represents the cohort with a given feature, and the bottom row represents the cohort without the
given feature. In both cases, WEE1 defined low-risk and high-risk groups as separate outcomes with a median PFS difference of 2 years.
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Fig. 4 Kaplan–Meier curves show the effect of WEE1 expression on treatment type. The top row is the cohort that received a treatment
type, and the bottom row is the cohort that did not receive the treatment type.

Table 2. The difference in median progression-free survival (PFS) is based on a given biomarker.

Feature name WEE1-high PFS (years) WEE1-low PFS (years)

Hyperdiploidy 1.838 2.685

t(4;14) 1.115 2.436

t(11;14) ND 1.956

MAF translocation ND 1.921

MYC translocation 2.121 2.436

Chromothripsis 2.427 2.427

Hyper APOBEC 2.378 1.942

TP53 deletion ND 1.608

“Positive” indicates the cohortwhich has the listed feature. “Negative” indicates the cohortwhich does not have the listed feature. The difference is calculated as themedian
PFS of theWEE1-low groupminus themedian PFS of theWEE1-high group. ND is defined as “no data” and indicates that the LR group did not reach themedian PFSmark.
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We have demonstrated that stratification of MM patients with
TP53 deletions by MM cell WEE1 expression may represent an
alternative method of risk-stratifying patients. Additionally, our
data suggests that WEE1 inhibition may be especially effective in
patients with altered P53 pathways, though further investigation is
needed to identify if the observed association is causal. There are
currently five WEE1 inhibitors in clinical trials [57] for other cancer
types which will advance our understanding of the efficacy of
WEE1 inhibition, the exact mechanism of its actions, as well as a
possible new treatment option for MM patients.
Our results show that WEE1 expression is prognostic indepen-

dent of known biomarkers, differentiates outcomes associated
with known markers, is upregulated independently of its
interacting neighbors, and is associated with dysregulated P53
pathways. This suggests that WEE1 expression levels may have
clinical utility in prognosticating outcomes in NDMM and may
support the application of WEE1 inhibitors to MM preclinical
models. Determining the causes of abnormal WEE1 expression
may uncover novel therapeutic pathways.

DATA AND CODE AVAILABILITY
The code and instructions for how to use them are available for download at
www.github.com/aksimhal/WEE1-myeloma. The Multiple Myeloma Research Founda-
tion’s CoMMpass data are available for download at www.research.mmrf.org. TT2 and
TT3 are available at GSE24080.

REFERENCES
1. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, et al. The molecular

classification of multiple myeloma. Blood. 2006;108:2020–8.
2. Ravi P, Kumar SK, Cerhan JR, Maurer MJ, Dingli D, Ansell SM, et al. Defining cure in

multiple myeloma: a comparative study of outcomes of young individuals with
myeloma and curable hematologic malignancies. Blood Cancer J. 2018;8:26.

3. Gutiérrez NC, Sarasquete ME, Misiewicz-Krzeminska I, Delgado M, De Las Rivas J,
Ticona FV, et al. Deregulation of microRNA expression in the different genetic
subtypes of multiple myeloma and correlation with gene expression profiling.
Leukemia. 2010;24:629–37.

4. Bustoros M, Anand S, Sklavenitis-Pistofidis R, Redd R, Boyle EM, Zhitomirsky B, et al.
Genetic subtypes of smoldering multiple myeloma are associated with distinct
pathogenic phenotypes and clinical outcomes. Nat Commun. 2022;13:3449.

5. Simhal AK, Maclachlan KH, Elkin R, Zhu J, Norton L, Deasy JO, et al. Gene inter-
action network analysis in multiple myeloma detects complex immune dysre-
gulation associated with shorter survival. Blood Cancer J. 2023;13:175.

6. Greipp PR, Miguel JS, Durie BGM, Crowley JJ, Barlogie B, Bladé J, et al. Interna-
tional Staging System for multiple myeloma. J Clin Oncol. 2005;23:3412–20.

7. Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L, et al.
Revised International Staging System for multiple myeloma: a report from
International Myeloma Working Group. J Clin Oncol. 2015;33:2863–9.

8. D’Agostino M, Cairns DA, Lahuerta JJ, Wester R, Bertsch U, Waage A, et al. Second
Revision of the International Staging System (R2-ISS) for overall survival in

multiple myeloma: a European Myeloma Network (EMN) report within the
HARMONY project. J Clin Oncol. 2022;40:3406–18.

9. Maura F, Rajanna AR, Ziccheddu B, Poos AM, Derkach A, Maclachlan K. Genomic
classification and individualized prognosis in multiple myeloma. J Clin Oncol.
2024;42:1229–40.

10. Mohyuddin GR, Rubinstein SM, Kumar S, Rajkumar SV, Fonseca R, Abdallah NH,
et al. Performance of newer myeloma staging systems in a contemporary, large
patient cohort. Blood Cancer J. 2024;14:95.

11. van Beers EH, van Vliet MH, Kuiper R, de Best L, Anderson KC, Chari A, et al. Prog-
nostic validation of SKY92 and its combination with ISS in an independent cohort of
patients with multiple myeloma. Clin Lymphoma Myeloma Leuk. 2017;17:555–62.

12. Weinhold N, Heuck CJ, Rosenthal A, Thanendrarajan S, Stein CK, Van Rhee F, et al.
Clinical value of molecular subtyping multiple myeloma using gene expression
profiling. Leukemia. 2016;30:423–30.

13. Shaughnessy JD Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I, et al. A
validated gene expression model of high-risk multiple myeloma is defined by
deregulated expression of genes mapping to chromosome 1. Blood.
2007;109:2276–84.

14. Kellogg DR. WEE1-dependent mechanisms required for coordination of cell
growth and cell division. J Cell Sci. 2003;116:4883–90.

15. Mahajan K, Mahajan NP. WEE1 tyrosine kinase, a novel epigenetic modifier.
Trends Genet. 2013;29:394–402.

16. Kim H-Y, Cho Y, Kang H, Yim Y-S, Kim S-J, Song J, et al. Targeting the WEE1 kinase
as a molecular targeted therapy for gastric cancer. Oncotarget. 2016;7:49902–16.

17. Harvey SL, Charlet A, Haas W, Gygi SP, Kellogg DR. Cdk1-dependent regulation of
the mitotic inhibitor WEE1. Cell. 2005;122:407–20.

18. Tominaga Y, Li C, Wang R-H, Deng C-X. Murine WEE1 plays a critical role in cell
cycle regulation and pre-implantation stages of embryonic development. Int J
Biol Sci. 2006;2:161–70.

19. Koh S-B. The expanding role of WEE1. Cell Signal. 2022;94:110310.
20. Harvey SL, Kellogg DR. Conservation of mechanisms controlling entry into

mitosis: budding yeast WEE1 delays entry into mitosis and is required for cell size
control. Curr Biol. 2003;13:264–75.

21. Elbæk CR, Petrosius V, Sørensen CS.WEE1 kinase limits CDK activities to safeguard
DNA replication and mitotic entry. Mutat Res. 2020;819–820:111694.

22. Heijink AM, Blomen VA, Bisteau X, Degener F, Matsushita FY, Kaldis P, et al. A
haploid genetic screen identifies the G1/S regulatory machinery as a determinant
of WEE1 inhibitor sensitivity. Proc Natl Acad Sci USA. 2015;112:15160–5.

23. Aarts M, Sharpe R, Garcia-Murillas I, Gevensleben H, Hurd MS, Shumway SD, et al.
Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhi-
bition of WEE1. Cancer Discov. 2012;2:524–39.

24. Iorns E, Lord CJ, Grigoriadis A, McDonald S, Fenwick K, Mackay A, et al. Integrated
functional, gene expression and genomic analysis for the identification of cancer
targets. PLoS ONE. 2009;4:e5120.

25. Slipicevic A, Holth A, Hellesylt E, Tropé CG, Davidson B, Flørenes VA. WEE1 is a
novel independent prognostic marker of poor survival in post-chemotherapy
ovarian carcinoma effusions. Gynecol Oncol. 2014;135:118–24.

26. Magnussen GI, Holm R, Emilsen E, Rosnes AKR, Slipicevic A, Flørenes VA. High
expression of WEE1 is associated with poor disease-free survival in malignant
melanoma: potential for targeted therapy. PLoS ONE. 2012;7:e38254.

27. Do K, Doroshow JH, Kummar S. WEE1 kinase as a target for cancer therapy. Cell
Cycle. 2013;12:3159–64.

28. Matheson CJ, Backos DS, Reigan P. Targeting WEE1 kinase in cancer. Trends
Pharmacol Sci. 2016;37:872–81.

Fig. 5 Random forest feature importance plots. RF modeling of WEE1 expression in the WEE1-high cohort is 3.2× more inaccurate than WEE1
expression modeling in the WEE1-low cohort. A Feature importance plot showing the informative features for predicting WEE1 RNA-seq in the
WEE1-low group. B Feature importance plot showing the informative features for predicting WEE1 RNA-seq in the WEE1-high group.

A.K. Simhal et al.

7

Blood Cancer Journal           (2025) 15:22 

http://www.github.com/aksimhal/WEE1-myeloma
http://www.research.mmrf.org


29. Ghelli Luserna di Rorà A, Cerchione C, Martinelli G, Simonetti G. A WEE1 family
business: regulation of mitosis, cancer progression, and therapeutic target. J
Hematol Oncol. 2020;13:126.

30. Kong A, Mehanna H. WEE1 inhibitor: clinical development. Curr Oncol Rep.
2021;23:107.

31. Zhang C, Peng K, Liu Q, Huang Q, Liu T. Adavosertib and beyond: biomarkers,
drug combination and toxicity of WEE1 inhibitors. Crit Rev Oncol Hematol.
2024;193:104233.

32. Kreahling JM, Foroutan P, Reed D, Martinez G, Razabdouski T, Bui MM, et al. WEE1
inhibition by MK-1775 leads to tumor inhibition and enhances efficacy of gem-
citabine in human sarcomas. PLoS ONE. 2013;8:e57523.

33. Jin M-H, Nam A-R, Bang J-H, Oh K-S, Seo H-R, Kim J-M, et al.WEE1 inhibition reverses
trastuzumab resistance in HER2-positive cancers. Gastric Cancer. 2021;24:1003–20.

34. Vakili-Samiani S, Turki Jalil A, Abdelbasset WK, Yumashev AV, Karpisheh V, Jalali P,
et al. Targeting WEE1 kinase as a therapeutic approach in Hematological Malig-
nancies. DNA Repair. 2021;107:103203.

35. Barbosa RSS, Dantonio PM, Guimarães T, de Oliveira MB, Fook Alves VL, Sandes
AF, et al. Sequential combination of bortezomib and WEE1 inhibitor, MK-1775,
induced apoptosis in multiple myeloma cell lines. Biochem Biophys Res Com-
mun. 2019;519:597–604.

36. Liang L, He Y, Wang H, Zhou H, Xiao L, Ye M, et al. The WEE1 kinase inhibitor
MK1775 suppresses cell growth, attenuates stemness and synergises with bor-
tezomib in multiple myeloma. Br J Haematol. 2020;191:62–76.

37. Xing L, Lin L, Yu T, Li Y, Cho S-F, Liu J, et al. A novel BCMA PBD-ADC with ATM/
ATR/WEE1 inhibitors or bortezomib induce synergistic lethality in multiple mye-
loma. Leukemia. 2020;34:2150–62.

38. Bruyer A, Dutrieux L, de Boussac H, Martin T, Chemlal D, Robert N, et al. Com-
bined inhibition ofWEE1 and Chk1 as a therapeutic strategy in multiple myeloma.
Front Oncol. 2023;13:1271847.

39. Pfeiffer C, Grandits AM, Asnagli H, Schneller A, Huber J, Zojer N, et al. CTPS1 is a
novel therapeutic target in multiple myeloma which synergizes with inhibition of
CHEK1, ATR or WEE1. Leukemia. 2024;38:181–92.

40. Skerget S, Penaherrera D, Chari A, Jagannath S, Siegel DS, Vij R, et al. Genomic
basis of multiple myeloma subtypes from the MMRF CoMMpass Study. bioRxiv.
medRxiv; 2021. https://doi.org/10.1101/2021.08.02.21261211.

41. Skerget S, Penaherrera D, Chari A, Jagannath S, Siegel DS, Vij R. et al. Compre-
hensive molecular profiling of multiple myeloma identifies refined copy number
and expression subtypes. Nat Genet. 2024;56:1878–89.

42. Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B,
et al. Human Protein Reference Database as a discovery resource for proteomics.
Nucleic Acids Res. 2004;32:D497–501.

43. Barlogie B, Tricot G, Rasmussen E, Anaissie E, van Rhee F, Zangari M, et al. Total
Therapy 2 without thalidomide in comparison with total therapy 1: role of intensified
induction and posttransplantation consolidation therapies. Blood. 2006;107:2633–8.

44. Usmani SZ, Sexton R, Hoering A, Heuck CJ, Nair B, Waheed S, et al. Second malig-
nancies in total Therapy 2 and 3 for newly diagnosed multiple myeloma: influence
of thalidomide and lenalidomide during maintenance. Blood. 2012;120:1597–600.

45. Royston P, Parmar MKB. Flexible parametric proportional-hazards and
proportional-odds models for censored survival data, with application to prog-
nostic modelling and estimation of treatment effects. Stat Med. 2002;21:2175–97.

46. Rustad EH, Nadeu F, Angelopoulos N, Ziccheddu B, Bolli N, Puente XS, et al.
mmsig: a fitting approach to accurately identify somatic mutational signatures in
hematological malignancies. Commun Biol. 2021;4:424.

47. Walker BA, Wardell CP, Murison A, Boyle EM, Begum DB, Dahir NM, et al. APOBEC
family mutational signatures are associated with poor prognosis translocations in
multiple myeloma. Nat Commun. 2015;6:6997.

48. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. COSMIC:
somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45:D777–83.

49. Rustad EH, Yellapantula VD, Glodzik D, Maclachlan KH, Diamond B, Boyle EM,
et al. Revealing the impact of structural variants in multiple myeloma. Blood
Cancer Discov. 2020;1:258–73.

50. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann
Appl Stat. 2008;2. https://doi.org/10.1214/08-aoas169

51. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database
of predicted functional associations between proteins. Nucleic Acids Res.
2003;31:258–61.

52. Breiman L. Random Forests. Machine Learning. 2001;45:5–32.
53. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion

for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
54. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al.

Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

55. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al.
PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordi-
nately downregulated in human diabetes. Nat Genet. 2003;34:267–73.

56. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The
Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst.
2015;1:417–25.

57. Wang Z, Li W, Li F, Xiao R. An update of predictive biomarkers related to WEE1
inhibition in cancer therapy. J Cancer Res Clin Oncol. 2024;150:13.

ACKNOWLEDGEMENTS
The authors wish to thank and acknowledge Allen R. Tannenbaum [1953-2023] for his
invaluable leadership and guidance that supported this study. This study was
supported in part by an MSK Cancer Center Support grant (P30 CA008748), The
Simons Foundation, and a Breast Cancer Research Foundation grant (BCRF-17-193).
RSF is supported by ASCO YIA and the International Myeloma Society.

AUTHOR CONTRIBUTIONS
AKS: conceptualization, methodology, investigation, formal analysis, data curation,
visualization, writing—original draft, writing—review and editing. RSF: methodology,
formal analysis, investigation, writing—original draft, writing—review and editing.
JHO: formal analysis, methodology, investigation, writing—original draft, writing—
review and editing. VA: methodology, investigation, formal analysis, writing—review
and editing. LN: conceptualization, supervision, writing—review and editing. MH:
conceptualization, investigation, writing—review and editing. SZU: conceptualization,
investigation, supervision, writing—review and editing. KHM: supervision, investiga-
tion, writing—original draft, writing—review and editing. JOD: conceptualization,
methodology, investigation, formal analysis, supervision, writing—review and
editing, funding acquisition.

COMPETING INTERESTS
SZU: research funding: Amgen, BMS/Celgene, GSK, Janssen, Merck, Pharmacyclics,
Sanofi, Seattle Genetics, Takeda. Consulting/Advisory Board: AbbVie, Amgen, BMS,
Celgene, Genentech, Gilead, GSK, Janssen, Sanofi, Seattle Genetics, SecuraBio,
SkylineDX, Takeda, TeneoBio.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41408-025-01230-y.

Correspondence and requests for materials should be addressed to Anish K. Simhal.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,

which permits any non-commercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if youmodified
the licensed material. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other third partymaterial in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

A.K. Simhal et al.

8

Blood Cancer Journal           (2025) 15:22 

https://doi.org/10.1101/2021.08.02.21261211
https://doi.org/10.1214/08-aoas169
https://doi.org/10.1038/s41408-025-01230-y
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	High WEE1 expression is independently linked to poor survival in multiple myeloma
	Introduction
	Methods
	CoMMpass data
	Gene expression profiling (GEP) data
	High-risk group membership
	Prognosis and confounder analysis
	Machine learning analysis
	Differential gene expression analysis
	Ethics statement

	Results
	Data overview
	WEE1 is prognostic for outcomes in RNA-seq and GEP datasets
	Multivariate modeling shows that WEE1 is an independent prognostic factor in MM
	WEE1 is prognostic for outcomes independent of known biomarkers
	WEE1 is prognostic for outcomes independent of treatment type
	WEE1 expression has comparable prognostic value as ISS
	WEE1-high cohort is 3.2&#x000D7; less predictable than the WEE1-low cohort
	P53 pathway-related genes are differentially expressed between WEE1-high and WEE1-low cohorts

	Discussion
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




