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Diffuse large B-cell lymphoma (DLBCL) presents considerable clinical challenges due to its aggressive nature and diverse clinical
progression. New molecular biomarkers are urgently needed for outcome prediction. We analyzed blood samples from DLBCL
patients and healthy individuals using short, non-coding RNA sequencing. A classifier based on six tsSRNAs was developed through
random forest and primary component analysis. This classifier, established using Cox proportional hazards modeling with repeated
10-fold cross-validation on an internal cohort of 100 samples analyzed using RT-qPCR, effectively identified high-risk patients with
significantly lower overall survival compared to low-risk patients (Hazard ratio: 6.657, 95%Cl 2.827-15.68, P = 0.0006). Validation in
an external cohort of 160 samples using RT-qPCR confirmed the classifier's robust performance. High-risk status was strongly
associated with disease histological subtype, stage, and International Prognostic Index scores. Integration of the classifier into the
IPI model enhanced the precision and consistency of prognostic predictions. A dynamic study revealed that patients experiencing a
1.06-fold decrease after one therapy cycle (early molecular response) exhibited better treatment outcomes and prognosis.
Furthermore, the 6-tsRNA signature accurately differentiated healthy individuals from DLBCL (AUC 0.882, 95%Cl 0.826-0.939). These
findings underscore the potential of the identified 6-tsRNA profile as a biomarker for monitoring treatment effectiveness and

predicting DLBCL outcomes.
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INTRODUCTION
Diffuse large B cell lymphoma (DLBCL) is a highly aggressive and
heterogeneous non-Hodgkin lymphoma [1], constituting up to
40% incurable with hypermutations of oncogenes in all cases
globally [2, 3]. Due to its notable clinical heterogeneity and
evolving tumor microenvironment, 30-40% of patients are
unresponsive or relapse, thereafter making prognostication and
therapeutic decisions challenging consequently [4-6]. To address
the heterogeneity using gene expression profiling of cell-of-origin
(COO0), DLBCL is distinguished into germinal center B cell-like
(GCB), activated B cell-like (ABC), and unclassified subtypes [7].
Recently, significant progress has been made in enhancing
comprehension of the molecular characteristics of DLBCL, leading
to the successful classification of the original 3 subtypes into more
refined categories [8, 9]. Upon such refined classification, DLBCL
patients with specific subgroups benefited from combined
rituximab and chemotherapy and achieved higher response rates

[10]. However, 30-40% of patients would develop resistance, and
the responses are short-lived with a widely recognized standard
regimen, R-CHOP (rituximab plus cyclophosphamide, doxorubicin,
vincristine, and prednisone) [11-14]. Moreover, not only
treatment-driven molecular features-based diagnostics require a
series of spatiotemporal tumor biopsy analyses, but also the
invasive procedures presented only a snapshot of DLBCL
heterogeneity, which was inconvenient and unfeasible during
long-term follow-up to determine subclonal evolution [15],
particularly for high-grade B-cell lymphoma with translocations
involving MYC and BCL2 or BCL6, usually referred to as double-hit
lymphoma (DHL) [16]., non-invasive biomarkers are urgently
required to develop and monitor DLBCL treatment response and
disease progression.

Liquid biopsy is an effective and non-invasive procedure that
detects molecular characteristics of tumors in peripheral blood,
including circulating tumor DNA [cell-free fragments of DNA
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(cfDNA)] or circulating-free coding and non-coding RNA [17-19].
Emerging evidence has shown that circulating-free coding and
non-coding RNA, including messenger RNA (mRNA), microRNA
(miRNA) [20], long non-coding RNA (IncRNA), tRNA-related RNA
fragments (tRFs) (AS-tDR-008946, AS-tDR-013492) [21], circular
RNA (circRNA), RNA encapsulated in extracellular vesicles, extra-
cellular circulating small non-coding RNA (sncRNA), function as
promising biomarkers for DLBCL [22]. The tRNA-derived small non-
coding RNA (tsRNA) is a class of newly identified small non-coding
RNA (sncRNA), usually ~30 nucleotides (nt) in length, and can be
divided into four major distinct categories: 5'tsRNA, inner'tsRNA, 3’
tsRNA, and 3'CCA tsRNA, which are derived from 5/, internal, 3/,
and 3/CCA of precursor tRNA or mature tRNA, respectively [23].
tsRNAs involved in cell proliferation, mRNA silencing, translation
regulation, apoptosis inhibition, cell-cell communication, epige-
netic regulation, and tumor metastasis via regulating ribosome
biogenesis [24, 25], protein synthesis [26, 27], miRNA-like gene
regulation [28-30], and epigenetic regulation [31, 32]. tsRNA is
highly enriched in vertebrate serum, and serum tsRNAs manifest
as diagnostic biomarkers for human diseases that occur upon
starvation, oxidative stress, hypoxia, and other adverse conditions
[33-36]. Dysregulation of circulating tsRNA and the specific
signatures could serve as prognostic biomarkers and therapeutic
targets in multiple cancers [37-40]. We recently found that non-
classical sncRNAs, including rsRNA (62.86%), ysRNA (14.97%), and
tsRNA (4.22%), dominated among serum sncRNAs and showed
alteration patterns closely associated with acute myeloid leukemia
(AML) prognosis [39]. However, the expression features and
diagnostic values of serum tsRNA for DLBCL are still ambiguous
and intriguing.

Here, by employing sncRNA sequencing and RT-qPCR on the
serum of DLBCL patients, we presented the landscape of tsRNA
profiles in patients, identified significantly dysregulated tsRNA,
and developed a 6-tsRNA-based classifier for early detection, drug
response, and prognosis of DLBCL.

MATERIALS AND METHODS

Study design and sample collection

In this retrospective cohort study, three cohorts were incorporated. Serum
samples were prospectively collected at newly diagnosed and after
therapy if possible, namely (1) the discovery cohort: 15 serum samples in
total, including 5 healthy individuals and 10 newly diagnosed DLBCL
patients enrolled in the hematology medical center of Xingiao Hospital
from February 2020 to December 2021; (2) the internal validation cohort:
135 serum samples in total, including 35 healthy individuals and 100 newly
diagnosed DLBCL patients enrolled in the hematology medical center of
Xingiao Hospital from February 2020 to December 2021. Among the 100
newly diagnosed patients and 77 patients’ serum samples were collected
at cycle 2, day 1; (3) the external validation cohort: 160 serum samples in
total, and all samples are newly diagnosed DLBCL patients enrolled at four
centers across China between October 2020 and August 2022. For all three
cohorts’ demographic details, please see Supplemental Table 1.

All consecutive DLBCL patients who were deemed appropriate for this
study during the study period were included without selection.
Histological diagnoses were established independently by at least two
experienced senior pathologists according to the WHO classification of
Tumors of Hematopoietic and Lymphoid tissue criteria. Upon diagnosis, all
patients underwent baseline staging using laboratory, radiographic, and
bone marrow examinations. Eastern Cooperative Oncology Group (ECOG)
performance status was also assessed. The stage was evaluated following
the Ann Arbor staging system. The International Prognostic Index (IPl) was
calculated based on serum lactate dehydrogenase, stage, extranodal
status, and performance status. Patient characteristics and treatment
regimens of each therapy cycle were collected. Healthy individuals were
recruited as control participants for small non-coding RNA sequencing and
RT-qPCR. After the initial stage assessment, all DLBCL patients were given
6-8 cycles of RCHOP regimens (750 mg/m? cyclophosphamide, 50 mg/m?
doxorubicin, and 4 mg of vincristine (all day 1), and 60 mg/m2 prednisone
on days 1-5, with 375 mg/m? rituximab on day 0) as the previous report
[37]. Patients were reviewed routinely by a combination of clinical
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assessment and CT or fluorodeoxyglucose-PET (FDG-PET) before the
administration of chemotherapy. FDG-PET was planned as an interim scan.

Peripheral blood serum isolation

Serum isolation of peripheral blood samples was performed as previously
described [39]. Peripheral blood samples were collected using 5ml non-
anticoagulative vacuum blood collection tubes (Cat#ZL 5mL,
20132411377, lJinXing, China). To promote clotting, peripheral blood
samples were placed at room temperature for 30 min. After peripheral
blood coagulation, the serum was separated by centrifuging at 3500xg at
4°C for 15 min, and then isolated serum was transferred into new tubes.
Subsequently, to thoroughly remove cell debris contamination, isolated
serums were centrifuged again at 12,000xg for 10 min, and then isolated
serums were transferred into new tubes. Lastly, all the samples were stored
at —80 °C for further RNA extraction.

Serum RNA extraction

Serum RNA was extracted using TRIzol LS reagent (Cat#10296028,
Invitrogen, USA) according to the manufacturer’s protocol and performed
as previously described [39]. Briefly, 0.25 ml serum was added to a 1.5 ml
tube mixed with 0.75 ml TRIzol LS reagent and swirled. The mixtures were
incubated on ice for 2 h with occasional vortexing to ensure the serum was
completely cracked. Then, 0.2 ml chloroform was added to the mixtures,
vortexed, and incubated at room temperature for 10 min. The samples
were centrifuged at 12,000xg for 15 min at 4 °C. Next, the aqueous phase
was collected into a tube filled with an equal volume of isopropanol. Then,
the mixtures were gently mixed with 1.5 pl glycogen (Cat#10901393001,
Roche, Switzerland) and refrigerated at —80°C for at least 30 min to
precipitate RNA. The mixture was centrifuged at 12,000xg for 30 min at
4°C, and the pellet was washed with 75% cold ethanol twice. Finally, the
RNA pellet was dissolved in 10 pl of RNase-free water after being dried and
stored at —80 °C for RT-qPCR.

Reverse transcription and quantitative real-time PCR
(RT-qPCR)

To measure tsRNA expression levels in each sample, reverse transcription
for validation was performed as previously described [41]. Firstly, the tsRNA
was reverse-transcribed. Briefly, total serum RNA from each object was
polyadenylated using E. coli Poly (A) polymerase (Cat#0276L, NEB, USA)
and then converted to ¢cDNA in M-MuLV reverse transcriptase reaction
system (Cat#MO0253L, NEB, USA) with a unique adaptor (3’universal primer,
supplemental Table 2). Then, tsRNAs were amplified from c¢DNA using
specific tsRNA primers (5’ primer for tsRNA, Supplemental Table 2) in
combination with the universal adaptor in a 10pul reaction system
containing 5l of TB Green® Premix Mix (Cat#RR820A, Takara, Japan),
1 ul (700 ng) of cDNA template, 0.25 pl (10 uM) of each primer, and 3.5 pl of
distilled water. The cycling conditions were conducted following GoTaq®
Green Master Mix instructions: step1, 95 °C for 5 min; step2, 95 °C for 30's;
step3, 60 °C for 30's; step3, Melt Curve Stage; step2 to step3 for 40 cycles),
and analyzed by a CFX Connect Real-Time PCR Detection System (Bio-Rad,
Hercules, CA, USA). In addition, U6 was used as an internal control for
normalization between samples (5’ and 3’ primer for U6, Supplemental
Table 2).

Small RNA library construction, sequencing, and small RNA-
seq analysis

Small RNA library construction and sequencing were performed by BGI
(Shenzhen, Guangdong, China) according to the NEB Small RNA Sample
Pre Kit (NEB). Firstly, total RNA was extracted from the serum using TRIzol
LS reagent (Invitrogen, Carlsbad, CA, USA), and then Agilent 2100
Bioanalyzer (Agilent, Santa Clara, USA) was used to test sample integrity
and concentration, and NanoDrop (NanoDrop, Madison, DC, USA) to
Inorganic ions or polycarbonate contamination. Subsequently, total RNA
(200 ng-1 pg) was separated by 15% urea denaturing polyacrylamide gel
electrophoresis (PAGE), and small RNA regions corresponding to the 15-50
nt bands in the marker lane were excised and recovered. Then, the small
RNAs were firstly ligated to adenylated 3’ adapters (NEB Small RNA Sample
Pre Kit); (Reaction condition: 70 °C for 2 min; 25 °C for 1 h), secondly add RT-
Primer, (Reaction condition: 75°C for 5 min; 37 °C for 15 min; 15°C for
25 min) and thirdly add 5’adaptor mix system (Reaction condition: 70 °C for
2min; 25°C for 1 h); The adapter-ligated small RNAs were subsequently
transcribed into cDNA by Superscript Il Reverse Transcriptase (Invitrogen,
Carlsbad, CA, USA) (Reaction condition: 70 °C for 2 min; 50 °C for 1h) and
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then several rounds of PCR amplification with PCR Primer Cocktail and PCR
Mix were performed to enrich the cDNA fragments (Reaction condition:
94°C for 30s; 11-13 cycles of (94°C for 155, 62 °C for 305, 70 °C for 15s);
70°C for 5 min; 4 °C hold). Then, the PCR products were purified with PAGE
gel. Dissolve the recycled products in EB solution. The library was
qualitative and quantitative in two ways: the size distribution of the
fragments was verified using the Agilent 2100 bioanalyzer, and the library
was quantified by real-time quantitative PCR (QPCR) (TagMan Probe). The
final ligation PCR products were sequenced using the lllumina-HiSeq 2500
platform.

Raw sequencing reads were processed using the software SPORTS
(version 1.1) [42]. Firstly, the data was cleaned by removing 5’ and 3’
adapters and discarding low-quality reads; only 15 nt-45 nt insertions
were kept for further analysis. Then, clean reads were further aligned to
the human reference genome (GRCH38/hg38, UCSC, https://
genome.ucsc.edu) and small non-coding RNA relative databases, which
include miRNA datasets (miRbase, version 21, source: http:/
www.mirbase.org/index.shtml), rRNA and YRNA datasets (NCBI nucleotide
and gene database, source: https://www.ncbi.nlm.nih.gov/nuccore) (Hizir
et al, 2017), genomic tRNA datasets (GtRNAdb, version 71, source: http://
gtrnadb.ucsc.edu/), mitochondrial tRNA datasets (mitotRNAdDb, version 72,
source: http://mttrna.bioinf.uni-leipzig.de/mtDataOutput/), piRNA datasets
(piRBase, version 29, source: http://www.regulatoryrna.org/database/
piRNA/; piRNABank, version 30, source: http://pirnabank.ibab.ac.in/
index.shtml), non-coding RNA datasets (Ensembl, release 89, source:
http://www.ensembl.org/index.html; Rfam, version 12.3, source: http://
rfam.xfam.org/).

Subsequently, tsRNAs were divided into four major distinct categories:
5tsRNA, inner'tsRNA, 3’tsRNA, and 3/CCA tsRNA, which are derived from 5/,
internal, 3/, and 3'CCA of precursor tRNA or mature tRNA, respectively.
Finally, the sncRNA expression level was normalized to the total count of
the reads that matched the genome of each sample separately (RPM:
Reads of exon model per Million mapped reads). Note that there is no
consensus or uniform standard for the reference gene in RT-gPCR analysis
of serum tsRNAs. U6 and cel-mir-39 are the most commonly used control
genes in RT-qPCR assays of serum small RNA. Additionally, we tested the
feasibility of using cel-mir-39 in some of the DLBCL samples, and the
results were consistent.

6-tsRNA-based prognosis prediction

The 6-tsRNA selection was performed based on the following pipeline.
Firstly, based on the tRNA reference we used, 37 differentially expressed
tsRNA were kept for further analysis (the absolute value of Log2FC > 1
and p<0.05). Subsequently, the top 10 tsRNAs that contribute
significantly to the accuracy of classification were kept (based on the
importance of features by employing random forest and PCA). Finally,
we accounted for the following: (1) certain tsRNA sequences exhibit high
homology and can be considered as a single tsRNA; (2) primer efficiency
is crucial for accurate tsRNA detection via RT-qPCR, so tsRNAs that
produced non-specific bands have been excluded from the analysis. As a
result, six tsRNA, including tsRNA-Leu-CAG, tsRNA-Pro-CGG, tsRNA-GIn-
CTG, tsRNA-Cys-GCA, tsRNA-Leu-AAG, and tsRNA-Lys-CTT, were selected
for further analysis (the mapping information on the single-base
resolution of their precursor tRNAs was presented in supplemental Fig.
1 and Supplemental Table 2).

The 6-tsRNA-based prognosis prediction model was performed on the
internal validation cohort (newly diagnosed DLBCL patients (n = 100) were
included in the following analyses, and 1000-times repeated 10-fold cross-
validation was performed. Briefly, with each iteration of the Cox
proportional hazards model, one set of samples (n=10) was randomly
sampled and left out first. The remaining samples (n = 90) were used as a
training dataset for tsSRNA modeling. Subsequently, the left-out samples
were used as an independent testing dataset to evaluate the prediction
accuracy of tsRNA models. In particular, 1000 LOO iterations were set and
performed in the Cox proportional hazards model, and the averaged
coefficient was used. The tsRNA feature section was performed using
random forest (randomForest, version 4.7-1.1) and PCA (factoextra, version
1.0.7; FactoMineR, version 2.9) methods. 6-tsRNA-based prognosis predic-
tion and the accuracy of tsRNA models were calculated by the
concordance index (c-index) (survival, version 3.5-7; rms, version 6.7-1).

Statistical analysis
Statistical analysis was conducted using SPSS software (Version 18.0, LEAD
Corp). Descriptive statistics were used to analyze the characteristics of
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clinical, demographic, and genetic test results. The correlation of tsRNA
levels and clinicopathologic features of patients was conducted using the
Pearson x2 tests. The overall survival (OS) is measured as time from
initiation of induction treatment to death resulting from any cause. The
progression-free survival (PFS) was defined as the time duration from
diagnosis until relapse or progression, unplanned re-treatment of
lymphoma after initial immunochemotherapy, or death as a result of any
cause. Survival estimates were obtained using the Kaplan-Meier method,
and comparisons were made using a log-rank test. Unpaired Student’s t-
test for two groups was used in this study. The prediction potential of the
risk model was used in the timeROC package in R, and the AUC (area under
the curve) value measures the overall performance of a binary classification
model and provides an intuitive way to compare different models. COX
proportional regression model was used to calculate the survival hazard
ratio (HR). Statistical differences were considered significant if the P value
was less than 0.05.

Ethics approval and consent to participate
All experiments were performed in accordance with the principles outlined
in the World Medical Association Declaration of Helsinki. This study was
approved by the Institutional Ethics Committees of Xingiao Hospital, and
informed consent was signed by each participant.

Data sharing statement

The sncRNA sequencing dataset generated during the current study
(including serum samples of 10 DLBCL patients and five healthy
individuals) has been deposited into Genome Sequence Archive for
Human (GSA-Human, https://bigd.big.ac.cn/gsa-human/) with accession
number HRA002579.

RESULTS

Clinical characteristics of DLBCL patients in all cohorts

To further delve into the tsRNA profiles, patient selection was
consecutive and unbiased, with diagnoses established by
experienced pathologists based on WHO classification criteria. In
the whole cohort, the median age at the first blood draw in the
validation cohort was 53 years (range, 18-81 years), and 160
patients were men. Based on the classification system, 128
patients were classified as GCB subtypes and 132 as Non-GCB
subtypes. According to the Ann Arbor staging criteria, 42 patients
were identified as stage |, 77 as stage I, 74 as stage lll, and 67 as
stage IV. The median follow-up duration of the validation cohort
was 243.5 days (range, 48-801 days) (Table 1).

6-tsRNA signatures serve as promising biomarkers for
prognosis prediction

By scanning the small non-coding RNA sequencing in the discovery
cohort, we found that the expression pattern of sncRNA was
distinct between healthy individuals and DLBCL patients, in which
tsRNA has changed significantly, suggesting that tsRNA might be
more sensitive biomarkers for lymphoma detection (Fig. 1A, B).
Specifically, compared with healthy individuals, the overall expres-
sion level of tsRNA was significantly decreased in DLBCL patients,
and 37 tsRNAs were differentially expressed on iso-acceptor level
(Fig. 1C). By employing random forest and principal component
analysis for feature selection in 37 differentially expressed tsRNA
datasets, six tsRNAs were selected for further analyses, namely,
tsRNA-Leu-CAG, tsRNA-Pro-CGG, tsRNA-GIn-CTG, tsRNA-Cys-GCA,
tsRNA-Leu-AAG, and tsRNA-Lys-CTT (the mapping information on
the single-base resolution of their precursor tRNAs was presented
in supplemental Fig. 1A-F and Supplemental Table 3). Subse-
quently, the expression level of 6 tsRNAs was assessed by RT-qPCR
analyses and was applied to an internal validation cohort, which
included 100 DLBCL patients. The overall survival data was used for
the Cox proportional hazards modeling with a 1000-times repeated
10-fold cross-validation strategy (Fig. 1D). As a result, a risk score
(RS) was obtained to assess the risk levels of DLBCL patients based
on the weighted coefficients as follows (EXP indicated the
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Table 1. Demographic and clinical characteristics of DLBCL patients.
Healthy DLBCL patient
individuals
Prognostic No. No. Discovery cohort Internal validation cohort External validation cohort
variables (n=10,%) (n =100, %) (n =160, %)
Gender
Male 21 165 5.00 63.00 60.63
Female 14 105 5.00 37.00 39.38
Age (Years)
<53 16 119 7.00 47.00 40.63
253 19 151 3.00 53.00 59.38
Histological Subgroup
GCB 132 5.00 37.00 56.25
Non-GCB 138 5.00 63.00 43.75
Clinical stage
| 45 3.00 15.00 16.88
Il 77 0.00 18.00 36.88
1] 77 3.00 28.00 28.75
IV 71 4.00 39.00 17.50
Final recurrence
status
with 32 1.00 13.00 11.25
without 238 9.00 87.00 88.75
B symptoms
with 47 2.00 19.00 16.25
without 223 8.00 81.00 83.75
IPI Scores
0 24 1.00 21.00 1.25
1 42 4.00 24.00 8.75
2 82 3.00 14.00 40.63
3 73 2.00 27.00 27.50
4 49 0.00 14.00 21.88

expression level of tsRNA):
RS = —0.5042x EXP(Leu™C) + 0.1995 x EXP(Pro“*°)
+0.0279x EXP(GIn“"®) + (—13.17) x EXP(Cys°*)
+0.4851 x EXP(Leu™®) + 0.2397 x EXP(LysT")

The optimal cut-off of RS was —0.8826 by X-tile plots. Notably,
the c-index of 6-tsRNAs models for OS prediction was 0.86. The
correlation between RS and the characteristics of patients was
summarized in Fig. 1E. We observed that RS was significantly
correlated with patients’ histological subtypes and stages
(Fig. 1F, G). According to the International prognostic index
system (IPIl), patients were categorized into low, intermedium, and
high-risk groups. Our results also demonstrated that patients with
low risk have a lower RS score than the other two groups (Fig. TH)
in both cohorts, suggesting that the 6-tsRNA classifier might be an
optimal risk prediction biomarker for DLBCL.

In the internal validation cohort, the Kaplan-Meier analysis
showed that patients with higher RS had significantly shorter
overall survival (OS) (HR 6.657, 95% Cl 2.827-15.68, P = 0.0004) (Fig.
2A, B) and progression-free survival (PFS) (HR 4.916, 95% Cl
2.273-10.63, P=0.001) (Supplemental Fig. 2A), and the 2-year OS
was 91.52% in the lower RS group vs. 52.93% in the higher RS group,
the 2-year PFS was 87.04% in the lower RS group vs. 43.29% in the
higher RS group. Subgroup analysis also showed that the six tsSRNAs
classifier had prognosis prediction values in patients with GCB and
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non-GCB groups (Fig. 2C, D and Supplemental Fig. 2B, Q). In the
external validation cohort, shorter OS (HR 5.947, 95% Cl 2.004-17.66,
P =0.0004) and PFS (HR 4.010, 95% Cl 2.062-7.798, P =0.0002) in
high-risk patients were verified (Fig. 2E, F and Supplemental Fig. 2D),
as well as in the patients with GCB and Non-GCB (Fig. 2G, H and
Supplemental Fig. 2E, F). In addition, shorter OS (HR 5.374, 95% Cl
3.099-9.316, P<0.0001) and PFS (HR 4.247, 95% Cl| 2.453-7.354,
P <0.0001) in high-risk patients was also apparent in the entire
cohort of 260 patients (Fig. 21, J and Supplemental Fig. 2G).
Moreover, regarding the IPI scoring system, the Kaplan-Meier
analysis showed that the intermediate-risk group had inferior OS
than the low-risk group in the internal validation cohort, external
validation cohort, and whole cohort, but there was no difference
between the intermediate- and high-risk groups (Fig. 3A-C) and
PFS (Supplemental Fig. 3A-C). When integrating RS into IPI
(Supplemental Table 4), we found that the novel model could
discriminate the intermediate-risk group from the low-risk and
high-risk groups of different cohorts in OS (Fig. 3D-F). Regarding
the discriminate ability in PFS, similar results could also be found
in the external validation cohort and the whole cohort but failed in
the internal validation cohort (Supplemental Fig. 3D-F). To further
evaluate the risk stratification power of IPI+RS in patients, time-
dependent ROC curves were plotted, and corresponding AUC was
calculated to compare the predictive accuracy of IPI+ RS with IPI
and RS. The AUCs of OS for IPI+RS were more significant than
those of the other prognostic models (Fig. 3G-I and Supplemental
Table 5). Multivariable analysis showed that the stage and RS were
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Fig. 1 Identification of tsRNA signatures in serum of DLBCL patients. A The relative proportion of eight major sncRNA categories in DLBCL
patients and healthy controls. B The relative expression level of tsRNA between DLBCL patients and healthy individuals, the expression level
was presented as means + SEM. C The heat map indicates the differences in tsRNA expression profiling between DLBCL patients and healthy
individuals, and six tsRNA samples selected in (D) were highlighted. D Schematic overview of tsRNA feature selection. E The association
between the clinical characteristics of DLBCL patients and individual tsRNAs, 6-tsRNA classifiers, and risk scores (RS) in the internal validation
cohort (n=100), with each column representing a sample. F Comparison of the distribution of risk scores between DLBCL histological
subtypes in the internal validation cohort (n = 100) and external validation cohort (n = 160). G Comparison of RS in disease stages of DLBCL
patients. H Comparison of the distribution of RS in risk group-based IPI scoring systems in DLBCL patients.

solely prognostic factors of the overall survival (Supplemental of immune-chemotherapy administration, and increasing evi-
Table 6). Collectively, the results demonstrated that six tsRNAs dence has shown that interim PET/CT results were a prognostic
were a novel promising biomarker for DLBCL malignancy and factor for DLBCL patients. To figure out the disease monitoring
prognosis prediction. value of the 6-tsRNA classifier, we collected 77 paired serum

samples (in total 154 samples) at baseline (pre-treatment) and the
Dynamics of 6-tsRNA during therapy effectively evaluate the beginning of the second chemotherapy cycle (cycle 2, day 1) to
curative effect detect the expression of 6 tsRNAs. As expected, the expression
In clinical practice, interim PET/CT assessment was usually level of the six tsRNAs of day 1 of cycle 2 was significantly higher
conducted to evaluate the treatment response after four cycles than that of pre-treatment. (Fig. 4A-F). Combining interim PET/CT
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Fig. 2 Risk scores of overall survival based on the 6-tsRNA classifiers in DLBCL patients. A Risk score and patient survival status are
classified by the 6-tsRNA classifiers in the internal validation cohort (n = 100). B Kaplan—Meier estimated the overall survival (OS) of different
risk groups based on 6-tsRNA classifiers' risk scores in the internal validation cohort (n = 100). C, D Kaplan-Meier estimated the overall survival
of different risk groups based on RS in GCB and non-GCB subgroups of the internal validation cohort (n =100). E The 6-tsRNA classifiers
classified the risk score and DLBCL patient survival status in the external validation cohort (n = 160). F In the external validation cohort
(n=160), Kaplan-Meier estimated the overall survival of different risk groups based on 6-tsRNA classifier risk scores. G, H Kaplan-Meier
estimated the overall survival of different risk groups based on RS in GCB and non-GCB subgroups of the external validation cohort (n = 160).
I The risk score and patient survival status were classified by the 6-tsRNA classifiers in the whole cohort (internal + external validation cohort,
n = 260). J Kaplan-Meier estimated the overall survival of different risk groups based on 6-tsRNA classifier risk scores across the whole cohort

(internal 4 external validation cohort, n = 260).

results and the RS decline between the two time points, ROC
curves determined the cut-off, and we set the value of 1.06-fold
change as a critical threshold to evaluate effective response in our
cohort (based on the results of X-tiles). Specifically, the RS drop
>1.06-fold was defined as an early molecular response (EMR);
otherwise, it was defined as a non-early molecular response (No-
EMR). Notably, we found that the complete remission (CR) fraction
was higher in patients with EMR at interim PET/CT assessment
compared with patients with No-EMR (CR: 74.29% vs. 54.76%), and
the overall response fraction was also higher in patients with EMR
(CR+ PR: 97.15% vs. 80.95%) (Fig. 4G). Moreover, the Kaplan-Meier
analysis showed that patients who achieved EMR had significantly
longer survival (HR 6.10, 95% Cl: 2.054-18.12, P = 0.007) (Fig. 4H
and Supplemental Fig. 4A).

Taken together, these results suggest that dynamic RS
assessment could reflect the disease status and predict therapy
response in advance. Patients failing to show EMR after the first
cycle might be unsuitable for traditional therapy, and a more
intensive strategy was needed in the early treatment process.

Dysregulation of 6-tsRNA signatures in the serum of DLBCL
patients

We also compared the expression level of 6 tsRNA classifiers
among healthy individuals and DLBCL patients. As the results
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showed, the expression of tsRNA-Leu-AAG, tsRNA-GIn-CTG, tsRNA-
Pro-CGG, tsRNA-Leu-CAG, tsRNA-Lys-CTT, tsRNA-Cys-GCA in
healthy individuals was significantly higher than that of DLBCL
patients (Fig. 5A-F). Interestingly, we also found that the RS of
healthy control was lower than that of patients (Fig. 5G); then, we
evaluated the effects of the classifiers on disease diagnosis. ROC
curve analysis demonstrated that the six tsSRNAs have higher AUC,
and the RS has more diagnostic value with AUC 0.882 (95% Cl:
0.826-0.939) (Fig. 5H).

Collectively, these data revealed that 6-tsRNAs classifiers might
be potential diagnostic biomarkers for DLBCL. (Note that in our
study above, we first validated the dysregulation of 6-tsRNA
signatures in the serum in the training set (including 100 patients
and 35 healthy individuals, as the internal validation set) and then
the left-out samples (as the external validation set) were used in
the testing set—at this stage, we only used the 100 DLBCL
patients) to evaluate the prediction accuracy of tsRNA models)
(Refer to Methods for details).

DISCUSSION

In this study, we systemically identified and displayed a footprint
of sncRNA expression profiles of DLBCL for the first time and
selected a 6-tsRNA signature as a novel promising biomarker for
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Fig. 3 Kaplan-Meier estimated the overall survival of traditional IPI classification and IPI + RS in different cohorts. A-C Kaplan-Meier
estimated the overall survival of traditional IPI classification in the internal validation cohort (n = 100), the external validation cohort (n = 160),
and the whole cohort (internal + external validation cohort, n = 260). D-F Kaplan-Meier estimated the overall survival of IPI + RS classification
in the internal validation cohort (n = 100), the external validation cohort (n = 160), and the whole cohort (the internal + external validation
cohort, n =260). G-1 ROC curve of IPI, IPI + RS in the internal validation cohort (n = 100), the external validation cohort (n = 160) and the

whole cohort (internal + external validation cohort, n = 260).

monitoring DLBCL treatment and prognosis prediction. The
6-tsRNA signatures were significantly correlated with the tumor
stage, the predictive risk scores, and the disease categories and
had a promising prognosis prediction value applied in clinical
treatment responses. Moreover, our work demonstrated that
patients who failed to achieve EMR had a lower CR fraction and
poor clinical outcomes; thus, such patients might need intensify-
ing therapy in the early stage. Nevertheless, our research identifies
novel diagnostic, treatment response, and therapeutic tsRNA
targets for DLBCL, supported by relevant literature and data from
other cancer types, including solid tumors and treatment-driven
biomarkers.

Immunochemotherapy employing rituximab, cyclophospha-
mide, doxorubicin, vincristine, and prednisone (R-CHOP) is the
standard therapeutic regimen for patients with CD20 (+) DLBCL
(diffuse large B-cell lymphoma). Nonetheless, a considerable
proportion, approximately 30-40%, of patients continue to
manifest relapsed or refractory disease and show a poor response
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rate to salvage therapy [43]. Current treatment response criteria as
end-of-treatment for non-Hodgkin lymphoma patients treated
with R-CHOP rely on CT scans or F-fluoro-2-deoxy-d-glucose
positron emission tomography (FDG-PET) [44]. Still, the imaging
method only provides macro overviews of tumor volume and
location, which can’t monitor dynamic tumor response to
treatment on spatiotemporal single-cell clonal evolution [45] and
dominant clonal switching [15]. Such a gap exists in knowledge.

Liquid biopsy is an effective and non-invasive method that
detects the molecular characteristics of tumors in peripheral blood
and other fluids, such as ascites, effusions, and cerebrospinal fluid,
which is much more convenient than tissue biopsy for assessing
the heterogeneity and real-time monitoring of the lymphoma.
Recently, research of cell-free DNA/circulating tumor DNA (cfDNA/
ctDNA), circulating tumor cells (CTCs), extracellular vesicles,
proteins, and cell-free ribonucleic acids have made significant
progress. Among the various components in a liquid sample,
ctDNA can be distinguished from normal cfDNA fragments based
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Fig. 4 Dynamics of individual tsRNAs and RS during therapy. A-F The relative expression of tsRNA-Leu-AAG, tsRNA-GIn-CTG, tsRNA-Pro-
CGG, tsRNA-Leu-CAG, tsRNA-Lys-CTT, and tsRNA-Cys-GCA at pre-treatment and cycle 2, day 1. G Comparison of interim response assessment
in DLBCL patients with the early molecular response (EMR) and non-early molecular response (No-EMR) at cycle 2, day 1. H Kaplan-Meier
estimated the overall survival of different groups based on EMR in the internal validation cohort.

on primary tumor-specific genetic or epigenetic alterations. Due to
this distinct characteristic, ctDNA has been the most widely
investigated marker for cancer detection, treatment monitoring,
and identifying residual disease or potential relapse risk. Our
previous work, along with other studies [46-48] has demonstrated
the feasibility of ctDNA assessment in hematological malignancies.
However, ctDNA-based strategies have certain limitations, which
our selected 6-tsRNA signature may overcome. Thus, our signature
offers a novel and promising biomarker for monitoring DLBCL
treatment and predicting prognosis.

First, the detection capability required improvement for early-
stage cancer, indolent lymphoma, or low tumor burden is often
beyond current techniques. Second, ctDNA assessment can be
confounded by clonal hematopoiesis of indeterminate potential,
especially in elderly patients. In addition, Cancer Personalized
Profiling by Deep Sequencing (CAPP-seq) is a widely utilized
sequencing method of ctDNA, which requires detailed knowledge
of the underlying genetic landscape of the tumor, and the
sequencing panel from different centers varied greatly. If this issue
could be solved quickly, the utility of such methods in lymphoma
would guide the design of the personal treatment strategy. The
tsRNA is another important novel component of the “Liquid
biopsy” biomarker. Recently, evidence has shown that tsRNAs are
not randomly degraded fragments of tRNA but are a cluster of
conserved RNA with stable structures [49, 50] that exert functional
regulatory factors in physiological processes and cellular metabo-
lisms [38, 51]. tsRNA species could interact with proteins or mRNA,
regulate gene expression, control the cell cycle, and regulate
chromatin and epigenetic modifications-related signal transduc-
tion pathways [52].

Third, serum detection alone may not provide detailed
molecular and cellular context to understand the tumor
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environment. In contrast, tissue analysis, such as that obtained
from lymph node biopsies, provides a more comprehensive
understanding of the tumor itself. By directly assessing the
expression of tsRNA in the microenvironment of malignant B cells,
tissue samples provide valuable information about the biological
processes occurring within the tumor. Similar to histology and
immunohistochemistry (IHC) in the diagnosis of DLBCL, this
method can uncover significant molecular interactions and
genetic abnormalities that are essential for a precise diagnosis
as well as individualized treatment plans. Integrating serum and
tissue evaluations reflects the complementary role each plays in
the treatment-response tracking of DLBCL.

In our study, we proposed a non-invasive, cost-effective
approach for diagnosing and predicting the prognosis of DLBCL,
a type of liquid cancer. We plan to focus on tsRNA modulation in
solid tumor tissue to explore the mechanisms behind tsRNA
deregulation and potential strategies to reverse it. A relevant
approach surfaced in colorectal cancer. tRF/miR-1280, a 17-bp
fragment derived from tRNA-Leu in colorectal cancer and pre-
miRNA, could directly target Notch ligand JAG2 with the
functional consequence of inactivation of Notch signaling
suppressed CSC phenotypes by direct transcriptional repression
of the Gata1/3 and miR-200b genes constantly elevated levels of
JAG2, Gatal, Gata3, Zeb1, and Suz12 [53]. 5/-tRF-Glu-CTC inhibits
cell proliferation in high-grade serous ovarian cancer (HGSOC) by
targeting the BCAR3 3’-UTR. tRF5-Glu binds directly to a site in the
3'UTR of the breast cancer anti-estrogen resistance 3 (BCAR3)
mRNA, downregulating its expression and inhibiting ovarian
cancer cell proliferation [54].

Fourth, functionally, the 5-tRF derived from tRNA-Gly (tRF-
03357) downregulates the levels of HMBOX1, thereby promoting
cell proliferation, migration, and invasion in HGSOC in vitro [55]. In

Blood Cancer Journal (2025)15:79
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versus healthy individuals.

addition, a novel family of tRFs formed from tRNA(Glu), tRNA(Asp),
tRNA(Gly), and tRNA(Tyr) displace the RNA-binding protein YBX1
from several carcinogenic transcripts in breast cancer cells [29].
These fragments have a pattern that matches the YBX1
recognition sequence, making the post-transcriptional silencing
sequence specific. These studies highlight the crucial role tsRNA
plays in carcinogenesis and cancer progression, making their
results particularly relevant to our investigation and strengthening
the case for tsRNA as a possible cancer biomarker.

Fifth, Dysregulated expression of tsRNA has been reported in
some studies of solid tumor tissues. In a study of gastric cancer,
the expression levels of tiRNA-5034-GIUTTC-2 in paired gastric
cancer tissues and adjacent normal tissues, plasmas from
patients with gastric cancer, and healthy people were compared.
They found that tiRNA-5034-GIuTTC-2 was down-regulated in
tumor tissue and plasmas, and these patients with the lower
expression exhibited poor outcomes [56]. Another study from
chronic lymphocytic leukemia and lung cancer showed that ts-
3676, ts-4521, ts-46, ts-47, ts-49, ts-53, and ts-101 were down-
regulated and mutated, which can form complexes by interact-
ing with Piwi-like protein 2 (PIWIL2) [57]. Apart from these,
several tsRNAs were found to be dysregulated in breast cancer
[58].,, lung cancer [59, 60], Burkitt lymphoma [61], hepatocellular
carcinoma [62], papillary thyroid cancer [63], pancreatic cancer
[64], and ovarian cancer [65]. All these studies suggested that
tsRNAs could act oncogenic or tumor-suppressor function in
cancer. In our study, we found that tsRNAs were lowly expressed
in DLBCL patients compared with healthy individuals, which
might be caused by tissue specificity, and a further mechanism
was needed to figure it out. Furthermore, we created a 6-tsRNA
signature in DLBCL patients and found that the novel classifier
was correlated with tumor burden, prognosis, and treatment
response, suggesting that the assessment of tsRNA in DLBCL was
feasible. Thus, combined with the convenience of detection
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methods, we can conclude that the evaluation of tsRNA might be
optimal for individual prognosis prediction and treatment
decision-making.

Sixth, early identification of non-responders to initial treatment
was necessary for the improvement of the patient’s outcome,
which could provide an opportunity for early intervention with
appropriate treatment regimens, such as new targeted therapies,
autologous bone marrow transplantation, or chimeric antigen
receptor T cells [66, 67] Limited to low specificity and sensitivity of
interim PET-CT, alternative methods are urgently needed. Some
studies showed that molecular response (significant molecular
response (MMR): 2.5-log drop in ctDNA after one cycle; early
molecular response (EMR): 2-log drop after two cycles) was an
independent response predictive biomarker for the DLBCL
patients treated with front-line therapy or salvage therapy [46].
Li et al. also found that the dynamics of ctDNA after two cycles
effectively predicted response and survival in a Chinese DLBCL
cohort (Clinical implications of circulating tumor DNA in predicting
the outcome of diffuse large B cell lymphoma patients receiving
first-line therapy). Our present study found that pre-treatment 6-
tsRNA scores and score dynamics as early as 21 days in therapy
were prognostic for a therapeutic window [68]. The tsRNA
expression was upregulated during the therapy, and optimal
thresholds for the change in 6-tsRNA scores were 1.06 drops (EMR:
early molecular response). Patients who achieved the early
response have a higher interim CR/PR fraction [the fraction of
complete response (CR) and partial responses (PR)] and better
outcomes, suggesting that molecular response defined by the
6-tsRNA classifier is potentially applicable in patients with DLBCL.
In our study, the patients who did not achieve their favorite EMR
scores showed poor therapy response, and such patients might
need intensifying therapy; however, to expand the clinically
applicable value, future trials should include more patients and
long-term follow-up.
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Lastly, our present study created a 6-tsRNA signature in DLBCL
patients using the deep learning model (1000 times repeated 10-
fold cross-validation). As the formula displayed, we found DLBCL
[1] patients at diagnosis have lower tsRNA expression, and [2]
patients who get CR upon treatment usually show an increase in
the expression of the 6 tsRNAs, and [3] bringing these EXP(tsRNA)
into the RS equation usually gets a negative RS score [4] lower RS
tsRNA score represents high tsRNA levels and implies restoration to
healthy levels [5]. we found that the weighted power of tsRNA-Cys-
CAG was extremely high. Then, prognosis prediction significance
was also checked utilizing the same model, revealing that the
expression of tsRNA-Cys-CAG could predict the prognosis sig-
nificantly. Still, the C-index for OS prediction was 0.73. Generally, all
the above suggested that tsRNA-Cys-CAG might play a crucial role
in lymphomagenesis and treatment response. Still, the efficacy of
prognosis prediction was not as precise as the 6-tsRNA classifier. In
addition, we also tested the prognosis prediction value of other
combinations, finding that the 6-tsRNA classifiers have more
prognosis prediction precision power than other combinations
(specifically as follows, when abandoning tsRNA-Leu-CAG, the
C-index of the remaining five-tsRNA models was 0.663; when
abandoning tsRNA-Pro-CGG, the C-index was 0.662; when aban-
doning tsRNA-GIn-CTG, the C-index was 0.673; when abandoning
tsRNA- Leu-AAG, the C-index was 0.661; and when abandoning
tsRNA-Cys-CAG, the C-index was 0.724.). Thus, future experiments
with multiple biomarkers could gravitate toward subclone-specific
therapeutic targeting and suppressing subclonal evolutionary
changes that evolve disease stages and treatment options [15].

In conclusion, we discovered a 6-tsRNA-based signature as a
biomarker for DLBCL therapy monitoring (treatment response)
and prognosis. These 6-tsRNA fingerprints strongly correlated with
tumor stage, prognostic risk scores, and disease categories and
might predict clinical outcomes. Our data also showed that
patients who did not reach complete remission (CR) had lower CR
rates and worse clinical outcomes, indicating an early increased
therapy. Currently, we are working on a large-scale cohort study
that includes additional health controls and patients with long-
term follow-ups. We hope that our ongoing research will further
elucidate the diagnostic potential.
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