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Genomic and immunogenomic profiling of extramedullary
acute myeloid leukemia reveals actionable clonal branching

and frequent immune editing
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Dear Editor:

Acute myeloid leukemia (AML) originates in the bone marrow (BM),
but in some patients, leukemic cells infiltrate peripheral tissues such as
the skin (leukemia cutis) or other organs (myeloid sarcoma), a
phenomenon known as extramedullary AML (eAML). eAML can
present at initial diagnosis, during relapse after chemotherapy or
allogeneic hematopoietic cell transplantation (allo-HCT), either in
isolation or concurrently with BM involvement [1]. While symptomatic
eAML is reported in approximately 2% of de novo AML cases, recent
imaging-based studies suggest its true prevalence may exceed 20% [2].

Despite its clinical relevance, the prognostic significance of eAML
remains unclear, with retrospective studies reporting conflicting
outcomes [1]. A key limitation in interpreting these data is the
common assumption that extramedullary lesions are biologically and
genetically similar to BM disease. Reflecting this notion, the 2022
European Leukemia Network (ELN) guidelines offer no specific
recommendations for the diagnosis or management of eAML [3]. As
a result, molecular profiling of eAML is rarely performed when BM
disease is also present, and routine screening at AML diagnosis is
lacking—contributing to the underdiagnosis of clinically silent extra-
medullary disease.

Interestingly, eAML incidence is higher after allo-HCT [4, 5],
often as a solitary site of relapse, raising the possibility that
immune evasion contributes to its development. In the post-
transplant setting, AML relapse is often driven by downregulation
[6, 7] or genomic loss [8] of human leukocyte antigen (HLA),
allowing leukemic cells to escape graft-versus-leukemia surveil-
lance. This parallel raises the question of whether similar immune
escape mechanisms might also underlie extramedullary dissemi-
nation outside of the transplant context. Currently, no study has
systematically explored this possibility.

Furthermore, few genomic studies have analyzed paired BM
and eAML specimens to determine whether leukemia cells at
extramedullary sites follow distinct evolutionary trajectories. The
existing studies have relied on heterogeneous, limited gene
panels that excluded immune-related loci, like HLA and killer-cell
immunoglobulin-like receptor (KIR) genes [9-12].

To address these limitations, we analyzed paired BM and eAML
samples from 26 patients retrospectively identified from two institu-
tions (Nancy University Hospital and Washington University in St. Louis)
between 2004 and 2023 (Study Overview). All cases had available
formalin-fixed paraffin-embedded (FFPE) extramedullary tissue and 20
also had matched cryopreserved BM DNA. Patient characteristics
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(Table S1), and sample configurations are detailed in the Supplemen-
tary Materials (Fig. STA, B and Table S2). Control cohorts included 97
healthy individuals from the 1000 Genomes Project [13] and an AML
cohort from the Beat AML [14] dataset that excluded cases with
documented extramedullary disease. Whole-exome sequencing (WES)
was performed with an average coverage of 246x. Sequencing reads
were aligned to the reference GRCh38, and variants, including single
nucleotide variants (SNVs) and structural variants (SVs) such as indels,
inversions, and copy number variation (CNVs), were identified using the
DRAGEN pipeline and annotated with ANNOVAR (version 2020-06-08),
Variant Effect Predictor (version112, May 2024) and AnnotSV (version
34.1, 2024). Variants were filtered based on sequencing depth and
allele frequency threshold and visually validated in Integrative Genomic
Viewer. Germline variants were excluded based on public databases
and matched clinical sequencing. Clonal evolution was assessed using
normalized variant allele frequencies (nVAF), scaled within each sample
to correct for tumor purity. HLA and KIR genotyping were performed
using the NovoHLA pipeline, which enables allele-level resolution
across classical and nonclassical loci and was developed and validated
in our previous work [8]. Allelic loss and loss of heterozygosity (LOH)
events were inferred from allelic imbalance and supported by exon-
level read depth comparisons. Statistical analyses included the
Wilcoxon matched pairs signed rank test at 95% ClI for comparisons
of continuous variables, Fisher's exact test for categorical comparisons
between independent groups, and ANOVA for multiple groups
comparison. Multiple testing correction was performed using the
Benjamini-Hochberg procedure. Analyses were performed in Graph-
Pad Prism and R (v4.2.0), using standard packages (Supplementary
methods).

EAML LESIONS ARE ENRICHED IN FLT3 MUTATIONS AT
RELAPSE AND FREQUENTLY EXHIBIT CLONAL DIVERGENCE
FROM PAIRED BONE MARROW SAMPLES

Mutational analysis of recurrently mutated genes in AML (Fig. S2A
and Table S3) identified pathogenic variants in 92% of samples,
including BM specimens with no morphologic blasts. FLT3 and
NPM1 were the most common eAML mutations (27% and 31%,
respectively), whereas paired BM samples more frequently
harbored IDH2, SRSF2, PTPN11, ASXL1, and NRAS (Fig. 1A). FLT3
mutations were significantly enriched in eAML versus paired BM
(25% vs. 10%, Fisher's exact p = 0.0032), with an odds ratio of 3.3.
Importantly, five FLT3 mutations (including ITD, TKD, and D600del)
were detected exclusively in eAML, absent from paired BM and
diagnostic BM samples. In contrast, five cases showed FLT3
mutations at diagnosis that were subsequently lost in both eAML
and BM at relapse (Table S4 and Fig. S2B). All eAML FLT3 mutations
were observed in eAML lesions detected at relapse, whereas only
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one was present in a relapsed BM (Fisher's exact p = 0.0064,
Fig. 1B). The overall SV burden was comparable between BM and
eAML (Fig. S3A, B). eAML exhibited a higher frequency of small
(<150 bp) inversions, while large deletions (>500 kb) were more

common in BM samples (Fig. S3C). Genes recurrently impacted by
SVs in eAML included CSF3R, NPM1, NRAS, and PTPN11 (Fig. S3D).

Clonal evolution analysis, using nVAF and visualized via fishplots
[15], showed discordant mutational profiles in 65% of paired BM/

SPRINGER NATURE Blood Cancer Journal (2025)15:136



Correspondence

Fig. 1 Clonal divergence and distinct mutational profiles of extramedullary AML compared to paired bone marrow disease.
A Comparative mutation frequency analysis of eAML and concurrent bone marrow samples. Bar plot illustrating the frequency of gene mutations in
extramedullary AML samples (eAML, blue) compared to paired, concomitant bone marrow samples (BMc, orange), FLT3 mutations are
enriched in eAML cases compared to paired BM samples (Fisher's exact p = 0.0032). B FLT3 mutation frequency and distribution between eAML
and bone marrow samples. Stacked bar chart comparing the number and types of FLT3 mutations between eAML and BM (all samples). FLT3
mutations, including internal tandem duplications (ITD) and tyrosine kinase domain (TKD) mutations, were more prevalent at relapse and
significantly enriched in eAML sites compared to BM samples (Fisher's exact p =0.0064). C Site-specific clonal evolutionary trajectories.
Categorization of the 20 paired eAML and BM samples, showing: concordant mutational status (n = 7): cases in which BM and eAML shared
highly similar mutational profiles, suggesting a common clonal origin with minimal divergence. Nearly all exhibited equivalent variant allele
frequencies (nVAFs) for key mutations in both compartments, indicating parallel evolution of dominant clones (Patient IDs: 6, 12, 15, 19, 28,
29). One case (Patient ID: 7) showed differences in nVAFs between BM and eAML. Discordant mutational status (n = 14): cases in which BM and
eAML displayed distinct mutational landscapes, suggesting independent clonal evolution. These are further classified as:* Concomitant BM
involvement (n = 7; Patient IDs: 2, 9, 10, 13, 17, 21, 22): leukemia was detected in both BM and extramedullary sites. « Isolated eAML (n = 6;
Patient IDs: 1, 4, 8, 18, 24, 27): the paired BM lacked morphologic evidence of leukemia but harbored genetic alterations. D-J Fish plots
illustrating distinct patterns of clonal evolution in eAML versus BM sites. Mutations are color-coded according to the legend. D-F show cases of
concomitant BM and eAML with discordant mutational profiles. These cases indicate divergent evolutionary trajectories and potential site-
specific selective pressures driving leukemic progression. G illustrates an isolated myeloid sarcoma relapse with no detectable BM
involvement at relapse, demonstrating spatially restricted clonal evolution. H-1 Represent cases of concordant mutational profiles in BM and
eAML, with similar clonal expansion patterns (H), or different clonal expansion (I). J presents progressive eAML lesions containing subclones

derived from both BM and the initial eAML site at diagnosis, highlighting intercompartmental clonal exchange.

eAML samples (Fig. 1C). These included eAML-specific subclones
absent from BM (Fig. 1D, E), or ancestral clones acquiring
cooperating mutations exclusively in eAML, as observed in post-
transplant  relapses, where BM often harbored clonal
hematopoiesis-associated mutations, while eAML lesions showed
clear leukemic evolution (Fig. 1F, G). In 35% of cases, BM and
eAML shared concordant profiles (Fig. 1H), though some showed
differential clonal expansion (Fig. 11). Notably, progressive eAML
lesions sometimes derived from both BM and initial eAML clones
(Fig. 1)), emphasizing the complexity of clonal dynamics. Across
these cases, actionable mutations in FLT3, IDH2 genes, and
potentially actionable mutations in RAS genes were frequently
observed in eAML but not in BM. Despite this divergence,
mutational signature analysis using SigProfiler [16] revealed that
both BM and eAML samples were dominated by SBS1 and SBS5
(endogenous aging processes), and no organ-specific mutational
signature was identified (Fig. S4).

RAS PATHWAY MUTATIONS AND HLA ALTERATIONS AS
BIOMARKERS OF EAML RISK

To identify features associated with risk of eAML development,
we compared BM samples from our eAML cohort to 483 de novo
AML cases in the BeatAML dataset (excluding cases with
documented eAML). RAS/MYC pathway mutations (PTPNTT,
NRAS, KRAS, MYC) were significantly enriched in the eAML
cohort (p =0.0017, Fig. 2A), with the strongest associations for
PTPN11 (p = 0.0045) and MYC (p = 0.024, Fig. 2B). RAS mutations
were also enriched in BM samples paired to eAML manifestation
(Fig. S5A, B). We also observed a corresponding enrichment of
M5 (monocytic) AML (p=0.018) and a depletion of M1 cases
(AML without maturation) (p =0.038, Fig. S5C), consistent with
the established association between RAS pathway mutations
and monocytic differentiation [17].

We next investigated whether immunogenetic factors may
predispose to eAML dissemination, by comparing HLA and KIR
genotypes with an indipendent healthy control cohort (sup-
plementary methods). While no significant associations were
observed between classical HLA alleles and eAML incidence
(Fig. S6A, B), specific activating and inhibitory KIR alleles, as
well as MICA and MICB variants, were significantly over-
represented in eAML patients compared to controls. (Fig. 2C
and Tables S5, S6).

We further investigated the potential role of immunogenetic
escape mechanisms underlying eAML pathogenesis. Indeed,
somatic alterations in HLA class | and Il genes were frequent in
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eAML samples. Of 78 total events, 63 were deletions and 15 LOH
(Fig. S6C). HLA losses were significantly more common in eAML
compared to BM collected at initial diagnosis, before eAML
development, from the same patients (Fisher's exact p =0.0216,
Fig. 2D). The strongest enrichment was observed in eAML samples
obtained at leukemia diagnosis or at relapse allo-HCT (Fig. S7A).
HLA alterations were no longer enriched when eAML was
compared to concurrent BM samples, suggesting that HLA loss
likely originates in the BM and it is retained during dissemination.
Class Il losses predominated over class | (74% vs. 22%, p < 0.0001)
and were significantly more common in eAML vs. BM samples
without extramedullary involvement (70% vs. 20%, p = 0.008,
Fig. 2E).

Exon-level analysis demonstrated that most HLA class Il
deletions occurred in exon 2, encoding the antigen-binding
region, and also impacted CD4/CD8 coreceptor contact sites and
leader sequences essential for protein expression (Fig. 2F).
Notably, eAML cases with NPM1- or FLT3-mutations, which are
often associated with HLA class Il downregulation, tended to retain
intact HLA loci, suggesting that mutation-driven HLA down-
regulation mechanisms may substitute for genetic loss (Fig. S7B).
When integrating all genetic immune escape events (i.e,
deletions/LOH and mutations associated with HLA class Il down-
regulation), HLA deregulation was observed in 89% of cases
(Fig. S7C), implicating immune escape as a central feature of
extramedullary dissemination.

This study demonstrates that eAML frequently exhibit clonal
divergence from concomitant BM disease, indicating distinct
selective pressures at extramedullary sites. In some cases,
eAML may evolve independently from pre-leukemic clones, as
seen in a post-transplant relapse restricted to extramedullary
sites with no driver mutations in the BM. We commonly
observed actionable and potentially actionable mutations in
eAML, including FLT3, NPM1, and IDH2, even when eAML was
detected at diagnosis and before any treatment, underscoring
the need for lesion-specific sequencing. Mutations in the RAS
pathway were significantly more frequent in both the BM and
eAML lesions of patients with extramedullary disease, consis-
tent with their known role in promoting monocytic differentia-
tion and tissue infiltration. Similarly, widespread HLA class Il
losses, (particularly involving exon 2, and additional alterations
affecting CD4/CD8 T cell contact sites)were observed in both
the BM and extramedullary compartments. These findings
support a model in which immune escape originates in the BM
and is retained or selected for during dissemination to
extramedullary sites. Together, these data suggest that RAS
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mutations and HLA alterations may serve as predictive
biomarkers of eAML risk and guide early surveillance and
therapeutic decision-making.

Based on our findings we advocate for active screening for
extramedullary involvement at AML diagnosis, as eAML frequently
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harbors actionable mutations that may be missed without lesion-
specific profiling. Incorporating eAML into MRD monitoring
also warranted, particularly given its association
with immune escape mechanisms and relapse. Finally, systematic
assessment of RAS pathway mutations and HLA losses in the BM

frameworks is
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Fig. 2 RAS pathway mutations and HLA alterations as biomarkers of eAML Risk. A Stacked bar plot illustrating the frequency of mutations
across key functional categories in BM samples from eAML (n = 26) and BeatAML (n = 483). Categories include DNA methylation, chromatin
modifiers, NPM1, myeloid transcription factors (TFs), spliccosome components, DNA damage response, cohesin, JAK/STAT signaling, receptor
tyrosine kinases (RTKs), and the RAS/MYC pathway. Mutations in the RAS/MYC pathway are significantly enriched in the BM of cases with eAML
(**p =0.0017). B Stacked bar plot comparing the prevalence of mutations in RAS pathway genes (NRAS, PTPN11, KRAS, NF1, CBL, BRAF, and MY()
between bone marrow samples from eAML (n =26) and BeatAML (n = 483). Significant differences are indicated: *p = 0.024; **p = 0.0045.
C Enrichment analysis of immune alleles in eAML versus healthy controls. The —log;o(FDR) values for various alleles are shown, highlighting
statistically significant overrepresentation in eAML, particularly within activating KIR alleles (KIR2DS2, KIR2DS1, KIR2DS5), inhibitory KIR alleles
(KIR2DL3), and MICA/MICB alleles. Points above the dashed lines are significant. D Comparison of HLA losses between BM and eAML samples. Bar
plots display the frequency of HLA losses in class | and class Il genes across patient subgroups. Pie charts below each plot indicate the
proportion of samples harboring at least one HLA loss. E Proportion of HLA loss events across class I, class Il, and non-classical HLA genes. The pie
chart illustrates the relative distribution of HLA losses among class |, class Il, and nonclassical HLA genes. Below, bar plots show the frequency
of samples with at least one loss, stratified by disease compartment and HLA gene class. F HLA loss distribution across exons. Heatmap showing
the frequency of deletions and LOH events across exons of different HLA genes. Exon 2 of HLA class Il genes exhibited the highest density of

genetic losses.

may help identify patients at increased risk of developing
extramedullary disease and should guide future risk-adapted
treatment strategies.
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