Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of FLT3-ITD allele ratio and ITD length on therapeutic outcome in cytogenetically normal AML patients without NPM1 mutation

Abstract

Mutations of internal tandem duplication in FMS-like tyrosine kinase 3 (FLT3-ITD) contribute to poor prognosis in cytogenetically normal acute myeloid leukemia (CN-AML). Chemotherapy has limited effect, while allogeneic hematopoietic stem cell transplantation (allo-HSCT) plus sorafenib maintenance is a promising protocol to improve their therapeutic outcome. However, the prognostic significance of FLT3-ITD mutant status remains controversial. To investigate this, we detected FLT3-ITD mutant ratio (high and low) and length (long and short) in enrolled 184 CN-AML patients without NPM1 mutation, and evaluated their impact on complete remission (CR), overall survival (OS), relapse-free survival (RFS) and relapse risk (RR) after chemotherapy or allo-HSCT plus sorafenib maintenance. Our studies showed that FLT3-ITD mutation had negative impact on chemotherapeutic response, OS and RFS in CN-AML patients. There was no significant difference in CR rate between high and low ratio, or long and short length. Increasing ITD mutant ratio and length were associated with decreasing OS, and long length had shorter RFS and higher RR than the short after chemotherapy. Allo-HSCT plus sorafenib maintenance was an effective strategy to improve RFS and decrease relapse probability in FLT3-ITD AML patients, and benefited to these regardless of mutant ratio, and those with long length instead of the short.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood .2002;100:59–66.

    PubMed  CAS  Google Scholar 

  2. Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115:453–74.

    Google Scholar 

  3. Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001;97:89–94.

    PubMed  CAS  Google Scholar 

  4. Al-Mawali A, Gillis D, Lewis I. Characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplication in the FLT3 gene. Oman Med J. 2013;28:432–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377:454–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Alvarado Y, Kantarjian HM, Luthra R, Ravandi F, Borthakur G, Garcia-Manero G, et al. Treatment with FLT3 inhibitor in patients with FLT3-mutated acute myeloid leukemia is associated with development of secondary FLT3-tyrosine kinase domain mutations. Cancer. 2014;120:2142–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Oran B, Cortes J, Beitinjaneh A, Chen HC, de Lima M, Patel K, et al. Allogeneic transplantation in first remission improves outcomes irrespective of FLT3-ITD allelic ratio in FLT3-ITD-positive acute myelogenous leukemia. Biol Blood Marrow Transplant. 2016;22:1218–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Xuan L, Wang Y, Huang F, Jiang E, Deng L, Wu B, et al. Effect of sorafenib on the outcomes of patients with FLT3-ITD acute myeloid leukemia undergoing allogeneic hematopoietic stem cell transplantation. Cancer. 2018;124:1954–63.

    PubMed  CAS  Google Scholar 

  9. Deol A, Sengsayadeth S, Ahn KW, Wang HL, Aljurf M, Antin JH, et al. Does FLT3 mutation impact survival after hematopoietic stem cell transplantation for acute myeloid leukemia? A Center for International Blood and Marrow Transplant Research (CIBMTR) analysis. Cancer. 2016;122:3005–14.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Gale RE, Hills R, Kottaridis PD, Srirangan S, Wheatley K, Burnett AK, et al. No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients, excluding acute promyelocytic leukemia, from the UK MRC AML10 and 12 trials. Blood. 2005;106:3658–65.

    PubMed  CAS  Google Scholar 

  11. Brunner AM, Li S, Fathi AT, Wadleigh M, Ho VT, Collier K, et al. Haematopoietic cell transplantation with and without sorafenib maintenance for patients with FLT3-ITD acute myeloid leukaemia in first complete remission. Br J Haematol. 2016;175:496–504.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Koszarska M, Meggyesi N, Bors A, Batai A, Csacsovszki O, Lehoczky E, et al. Medium-sized FLT3 internal tandem duplications confer worse prognosis than short and long duplications in a non-elderly acute myeloid leukemia cohort. Leuk Lymphoma. 2014;55:1510–7.

    PubMed  CAS  Google Scholar 

  13. Blau O, Berenstein R, Sindram A, Blau IW. Molecular analysis of different FLT3-ITD mutations in acute myeloid leukemia. Leuk Lymphoma. 2013;54:145–52.

    PubMed  CAS  Google Scholar 

  14. Linch DC, Hills RK, Burnett AK, Khwaja A, Gale RE. Impact of FLT3ITD mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood. 2014;124:273–6.

    PubMed  CAS  Google Scholar 

  15. Stirewalt DL, Kopecky KJ, Meshinchi S, Engel JH, Pogosova-Agadjanyan EL, Linsley J, et al. Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood. 2006;107:3724–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Kim Y, Lee GD, Park J, Yoon JH, Kim HJ, Min WS, et al. Quantitative fragment analysis of FLT3-ITD efficiently identifying poor prognostic group with high mutant allele burden or long ITD length. Blood Cancer J. 2015;5:e336.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111:2776–84.

    PubMed  CAS  Google Scholar 

  18. Cazzola M. Introduction to a review series: the 2016 revision of the WHO classification of tumors of hematopoietic and lymphoid tissues. Blood. 2016;127:2361–4.

    PubMed  CAS  Google Scholar 

  19. Xuan L, Huang F, Fan Z, Zhou H, Zhang X, Yu G, et al. Effects of intensified conditioning on Epstein-Barr virus and cytomegalovirus infections in allogeneic hematopoietic stem cell transplantation for hematological malignancies. J Hematol Oncol. 2012;5:46.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Zwaan CM, Meshinchi S, Radich JP, Veerman AJ, Huismans DR, Munske L, et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood. 2003;102:2387–94.

    PubMed  CAS  Google Scholar 

  21. Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;21:4642–9.

    PubMed  Google Scholar 

  22. Schlenk RF, Kayser S, Bullinger L, Kobbe G, Casper J, Ringhoffer M, et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood 2014;124:3441–9.

    PubMed  CAS  Google Scholar 

  23. Fröhling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K, et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood. 2002;100:4372–80.

    PubMed  Google Scholar 

  24. Patnaik MM. The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk Lymphoma. 2018;59:2273–86.

    PubMed  CAS  Google Scholar 

  25. Yunus NM, Johan MF, Ali Nagi Al-Jamal H, Husin A, Hussein AR, Hassan R. Characterisation and clinical significance of FLT3-ITD and non-ITD in acute myeloid leukaemia patients in Kelantan, Northeast Peninsular Malaysia. Asian Pac J Cancer Prev. 2015;16:4869–72.

    PubMed  Google Scholar 

  26. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532–42.

    PubMed  CAS  Google Scholar 

  27. Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell. 2004;13:169–78.

    PubMed  CAS  Google Scholar 

  28. Damdinsuren A, Matsushita H, Ito M, Tanaka M, Jin G, Tsukamoto H, et al. FLT3-ITD drives Ara-C resistance in leukemic cells via the induction of RUNX3. Leuk Res. 2015;39:1405–13.

    PubMed  CAS  Google Scholar 

  29. Lagunas-Rangel FA, Chávez-Valencia V. FLT3-ITD and its current role in acute myeloid leukaemia. Med Oncol. 2017;34:114.

    PubMed  Google Scholar 

  30. Serve H, Krug U, Wagner R, Sauerland MC, Heinecke A, Brunnberg U, et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo-controlled trial. J Clin Oncol. 2013;31:3110–8.

    PubMed  CAS  Google Scholar 

  31. Hospital MA, Green AS, Maciel TT, Moura IC, Leung AY, Bouscary D, et al. FLT3 inhibitors: clinical potential in acute myeloid leukemia. Onco Targets Ther. 2017;10:607–15.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Daver N, Cortes J, Ravandi F, Patel KP, Burger JA, Konopleva M, et al. Secondary mutations as mediators of resistance to targeted therapy in leukemia. Blood. 2015;125:3236–45.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Li L, Osdal T, Ho Y, Chun S, McDonald T, Agarwal P, et al. SIRT1 activation by a c-MYC oncogenic network promotes the maintenance and drug resistance of human FLT3-ITD acute myeloid leukemia stem cells. Cell Stem Cell. 2014;15:431–46.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Liu SB, Dong HJ, Bao XB, Qiu QC, Li HZ, Shen HJ, et al. Impact of FLT3-ITD length on prognosis of acute myeloid leukemia. Haematologica. 2019;104:e9–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Labouré G, Dulucq S, Labopin M, Tabrizi R, Guérin E, Pigneux A, et al. Potent graft-versus-leukemia effect after reduced-intensity allogeneic SCT for intermediate-risk AML with FLT3-ITD or wild-type NPM1 and CEBPA without FLT3-ITD. Biol Blood Marrow Transplant. 2012;18:1845–50.

    PubMed  Google Scholar 

  36. Brunet S, Labopin M, Esteve J, Cornelissen J, Socié G, Iori AP, et al. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. J Clin Oncol. 2012;30:735–41.

    PubMed  Google Scholar 

  37. Ma Y, Wu Y, Shen Z, Zhang X, Zeng D, Kong P. Is allogeneic transplantation really the best treatment for FLT3/ITD-positive acute myeloid leukemia? A systematic review. Clin Transplant. 2015;29:149–60.

    PubMed  Google Scholar 

  38. Song Y, Magenau J, Li Y, Braun T, Chang L, Bixby D, et al. FLT3 mutational status is an independent risk factor for adverse outcomes after allogeneic transplantation in AML. Bone Marrow Transpl. 2016;51:511–20.

    CAS  Google Scholar 

  39. Mathew NR, Baumgartner F, Braun L, O’Sullivan D, Thomas S, Waterhouse M, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018;24:282–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Taylor E, Morris K, Ellis M, Marlton P, Baveshi K, Clarey J, et al. FLT3-ITD positive acute myeloid leukemia: a retrospective analysis of the role of allogeneic transplant and allelic ratio in patient management. Asia Pac J Clin Oncol. 2018;14:426–30.

    PubMed  Google Scholar 

  41. Battipaglia G, Ruggeri A, Massoud R, El Cheikh J, Jestin M, Antar A, et al. Efficacy and feasibility of sorafenib as a maintenance agent after allogeneic hematopoietic stem cell transplantation for Fms-like tyrosine kinase 3-mutated acute myeloid leukemia. Cancer. 2017;123:2867–74.

    PubMed  CAS  Google Scholar 

  42. Chen YB, Li S, Lane AA, Connolly C, Del Rio C, Valles B, et al. Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for FLT3-ITD AML. Biol Blood Marrow Transplant. 2014;20:2042–8.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81570152); Clinical Research Startup Program of Southern Medical University by High-level University Construction Funding of Guangdong Provincial Department of Education (LC2016YM005); and Science and Technology Planning Project of Guangdong (2014A020212185).

Author information

Authors and Affiliations

Authors

Contributions

FC: Development of methodology, acquisition of data, analysis and interpretation of data, writing the manuscript and technical support. JS: Development of methodology, acquisition of data, analysis and interpretation of data. CY: Development of methodology, acquisition of data, technical and material support. JN: Acquisition of data, analysis and interpretation of data. JC: Acquisition of data. LJ: Analysis and interpretation of data and editing the manuscript. GY: Analysis and interpretation of data, writing the manuscript. JS: Editing the manuscript and administrative support. YW and BZC: Editing the manuscript, administrative support, and study supervision. XJ: Conception and design, development of methodology, analysis and interpretation of data, writing the manuscript, administrative and technical support, and study supervision. FC, JS, CY, and JC contributed equally to this work.

Corresponding author

Correspondence to Xuejie Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was conducted in accordance with the Declaration of Helsinki, and the protocols approved by the ethics committee at Nanfang Hospital, Guangzhou China

Informed consents

Informed consents were obtained from the patients in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Sun, J., Yin, C. et al. Impact of FLT3-ITD allele ratio and ITD length on therapeutic outcome in cytogenetically normal AML patients without NPM1 mutation. Bone Marrow Transplant 55, 740–748 (2020). https://doi.org/10.1038/s41409-019-0721-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41409-019-0721-z

This article is cited by

Search

Quick links