Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of EVI1 gene quantification in AML patients with 11q23/MLL rearrangement after allogeneic hematopoietic stem cell transplantation

Abstract

It remains unclear about the role of the EVI1 gene in AML patients with 11q23/MLL rearrangement (MLL-r AML) undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). We analyzed the clinical value of EVI1 gene quantification in 96 MLL-r AML patients. High EVI1 expression was found in 73% (70/96) of MLL-r AML patients, and EVI1-high MLL-r AML patients were characterized by high WBC counts (P = 0.046) and low platelet counts (P < 0.001) and commonly had t(6;11) (P = 0.032). In addition, a significant difference was observed in the SETD2 gene mutation between the EVI1 high and low groups (0% vs. 50%, P < 0.001). EVI1-high MLL-r AML patients had worse 2-year OS (49.8% vs. 79.7%, P = 0.01) and 2-year PFS (40.2% vs. 68.1%, P = 0.014) than EVI1-low patients. In 57 MLL-r AML patients undergoing allo-HSCT, poorer 2-year PFS (48.6% vs. 72.4%, P = 0.039) and higher CIR (33.2% vs. 11.1%, P = 0.035) were observed in the EVI1-high patients. Multivariate analysis revealed that pre-EVI1+ was the sole independent factor of high CIR (P = 0.035, HR = 4.97, 95% CI: 1.12–22.04). EVI1+ at 100 days post allo-HSCT was associated with a significantly higher 2-year CIR (P = 0.017). The quantification of the EVI1 gene could be used as an additional marker for early predicting relapse in allo-HSCT MLL-r AML patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mutations in 32 EVI1-high patients and in 12 EVI1-low patients detected by next-generation sequencing.
Fig. 2: Survival outcome for 96 MLL-r AML patients.
Fig. 3: Survival outcome for 57 MLL-r AML patients undergoing allo-HSCT according to EVI1 levels.
Fig. 4: Survival outcome for 57 MLL-r AML patients undergoing allo-HSCT according to pre-EVI1 status.
Fig. 5: EVI1+ at day 100 was associated with a significantly higher 2-year CIR.

Similar content being viewed by others

References

  1. Bloomfield CD, Archer KJ, Mrozek K, Lillington DM, Kaneko Y, Head DR, et al. 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer. 2002;33:362–78. https://doi.org/10.1002/gcc.10046.

    Article  PubMed  Google Scholar 

  2. BH J, Gill Super NR, McCabe MJ, Thirman R, Larson MM, Le Beau, et al. Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase I1. Blood. 1993;82:3705–11.

    Article  Google Scholar 

  3. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116:354–65. https://doi.org/10.1182/blood-2009-11-254441.

    Article  CAS  PubMed  Google Scholar 

  4. Gole B, Wiesmuller L. Leukemogenic rearrangements at the mixed lineage leukemia gene (MLL)-multiple rather than a single mechanism. Front Cell Dev Biol. 2015;3:41. https://doi.org/10.3389/fcell.2015.00041.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47. https://doi.org/10.1182/blood-2016-08-733196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goyama S, Yamamoto G, Shimabe M, Sato T, Ichikawa M, Ogawa S, et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell. 2008;3:207–20. https://doi.org/10.1016/j.stem.2008.06.002.

    Article  CAS  PubMed  Google Scholar 

  7. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, Valk PJ, van der Poel-van de Luytgaarde S, Hack R, et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2003;101:837–45. https://doi.org/10.1182/blood-2002-05-1459.

    Article  CAS  PubMed  Google Scholar 

  8. Haas K, Kundi M, Sperr WR, Esterbauer H, Ludwig WD, Ratei R, et al. Expression and prognostic significance of different mRNA 5’-end variants of the oncogene EVI1 in 266 patients with de novo AML: EVI1 and MDS1/EVI1 overexpression both predict short remission duration. Genes Chromosomes Cancer. 2008;47:288–98. https://doi.org/10.1002/gcc.20532.

    Article  CAS  PubMed  Google Scholar 

  9. Groschel S, Lugthart S, Schlenk RF, Valk PJ, Eiwen K, Goudswaard C, et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol. 2010;28:2101–7. https://doi.org/10.1200/JCO.2009.26.0646.

    Article  CAS  PubMed  Google Scholar 

  10. Groschel S, Schlenk RF, Engelmann J, Rockova V, Teleanu V, Kuhn MW, et al. Deregulated expression of EVI1 defines a poor prognostic subset of MLL-rearranged acute myeloid leukemias: a study of the German-Austrian Acute Myeloid Leukemia Study Group and the Dutch-Belgian-Swiss HOVON/SAKK Cooperative Group. J Clin Oncol. 2013;31:95–103. https://doi.org/10.1200/JCO.2011.41.5505.

    Article  PubMed  Google Scholar 

  11. Matsuo H, Kajihara M, Tomizawa D, Watanabe T, Saito AM, Fujimoto J, et al. EVI1 overexpression is a poor prognostic factor in pediatric patients with mixed lineage leukemia-AF9 rearranged acute myeloid leukemia. Haematologica. 2014;99:e225–7. https://doi.org/10.3324/haematol.2014.107128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gordon MY, Blackett NM. Reconstruction of the hematopoietic system after stem cell transplantation. Cell Transplant. 1998;7:339–44.

    Article  CAS  PubMed  Google Scholar 

  13. BB D, Cheson PA, Cassileth DR, Head CA, Schiffer JM, Bennett CD, et al. Report of the National Cancer Institute-Sponsored Workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol. 1990;8:813–9.

    Article  Google Scholar 

  14. Flowers MED, Kansu E, Sullivan KM. Pathophysiology and treatment of graft versus host disease. Hematol Oncol Clin North Am. 1999;13:1091–112.

    Article  CAS  PubMed  Google Scholar 

  15. He X, Wang Q, Cen J, Qiu H, Sun A, Chen S. et al. Predictive value of high EVI1 expression in AML patients undergoing myeloablative allogeneic hematopoietic stem cell transplantation in first CR. Bone Marrow Transplant. 2016;51:921–7. https://doi.org/10.1038/bmt.2016.71.

    Article  CAS  PubMed  Google Scholar 

  16. Goemans BF, Zwaan CM, Miller M, Zimmermann M, Harlow A, Meshinchi S, et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia. 2005;19:1536–42. https://doi.org/10.1038/sj.leu.2403870.

    Article  CAS  PubMed  Google Scholar 

  17. Lavallee VP, Baccelli I, Krosl J, Wilhelm B, Barabe F, Gendron P, et al. The transcriptomic landscape and directed chemical interrogation of MLL-rearranged acute myeloid leukemias. Nat Genet. 2015;47:1030–7. https://doi.org/10.1038/ng.3371.

    Article  CAS  PubMed  Google Scholar 

  18. Grossmann V, Schnittger S, Poetzinger F, Kohlmann A, Stiel A, Eder C, et al. High incidence of RAS signalling pathway mutations in MLL-rearranged acute myeloid leukemia. Leukemia. 2013;27:1933–6. https://doi.org/10.1038/leu.2013.90.

    Article  CAS  PubMed  Google Scholar 

  19. Pigneux A, Labopin M, Maertens J, Cordonnier C, Volin L, Socie G, et al. Outcome of allogeneic hematopoietic stem-cell transplantation for adult patients with AML and 11q23/MLL rearrangement (MLL-r AML). Leukemia. 2015;29:2375–81. https://doi.org/10.1038/leu.2015.143.

    Article  CAS  PubMed  Google Scholar 

  20. Chen L, Chen W, Mysliwski M, Serio J, Ropa J, Abulwerdi FA, et al. Mutated Ptpn11 alters leukemic stem cell frequency and reduces the sensitivity of acute myeloid leukemia cells to Mcl1 inhibition. Leukemia. 2015;29:1290–300. https://doi.org/10.1038/leu.2015.18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Libura M, Asnafi V, Tu A, Delabesse E, Tigaud I, Cymbalista F, et al. FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. Blood. 2003;102:2198–204. https://doi.org/10.1182/blood-2003-01-0162.

    Article  CAS  PubMed  Google Scholar 

  22. Frohling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K, et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood. 2002;100:4372–80. https://doi.org/10.1182/blood-2002-05-1440.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang X, Bugno J, Hu C, Yang Y, Herold T, Q J. et al. Eradication of acute myeloid leukemia with FLT3 ligand-targeted miR-150 nanoparticles. Cancer Res. 2016;76:4470–80. https://doi.org/10.1158/0008-5472.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhu X, He F, Zeng H, Ling S, Chen A, Wang Y, et al. Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nat Genet. 2014;46:287–93. https://doi.org/10.1038/ng.2894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Q, Cheng T. Evidences for mutations in the histone modifying gene SETD2 as critical drivers in leukemia development. Sci China Life Sci. 2014;57:944–6. https://doi.org/10.1007/s11427-014-4702-6.

    Article  PubMed  Google Scholar 

  26. Arai S, Yoshimi A, Shimabe M, Ichikawa M, Nakagawa M, Imai Y, et al. Evi-1 is a transcriptional target of mixed-lineage leukemia oncoproteins in hematopoietic stem cells. Blood. 2011;117:6304–14. https://doi.org/10.1182/blood-2009-07-234310.

    Article  CAS  PubMed  Google Scholar 

  27. Hidemasa Matsuo KY, Nakatani Kana, Kamikubo Yasuhiko, Tomizawa Daisuke, Taga Takashi, Nobutaka Kiyokawa. et al. Coexistence and prognostic significance of EVI1 expression and driver mutations in KMT2A-rearranged acute myeloid leukemia. Blood. 2019;134(Supplement_1):1409. https://doi.org/10.1182/blood-2019-124652.

    Article  Google Scholar 

  28. Gupta V, Tallman MS, He W, Logan BR, Copelan E, Gale RP, et al. Comparable survival after HLA-well-matched unrelated or matched sibling donor transplantation for acute myeloid leukemia in first remission with unfavorable cytogenetics at diagnosis. Blood. 2010;116:1839–48. https://doi.org/10.1182/blood-2010-04-278317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schuurhuis GJ, Heuser M, Freeman S, E M-CB, Buccisano F, Cloos J. et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131:1275–91. https://doi.org/10.1182/blood-2017-09-801498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meyer C, Schneider B, Jakob S, Strehl S, Attarbaschi A, Schnittger S, et al. The MLL recombinome of acute leukemias. Leukemia. 2006;20:777–84. https://doi.org/10.1038/sj.leu.2404150.

    Article  CAS  PubMed  Google Scholar 

  31. Burmeister T, Marschalek R, Schneider B, Meyer C, Gokbuget N, Schwartz S, et al. Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia. 2006;20:451–7. https://doi.org/10.1038/sj.leu.2404082.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from the National Natural Science Foundation of China (81730003, 81870120), the Natural Science Foundation of Jiangsu Province (BK20171205), the Social Development Project of Jiangsu Province (BE2019655), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the National Key Research and Development Program (2017ZX09304021, 2017YFA0104500, 2019YFC0840604). All the samples were from Jiangsu Biobank of Clinical Resources.

Author information

Authors and Affiliations

Contributions

DW and YX contributed to the conception of the study and paper revision. SJ, YFan, and YFang contributed to collecting and performing the data analysis and preparing the paper. CH and JChen helped collect and perform data analysis and prepare the paper. JCen, HQ, and SC contributed to the data analysis and paper revision.

Corresponding authors

Correspondence to Yang Xu or Depei Wu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Fan, Y., Fang, Y. et al. The role of EVI1 gene quantification in AML patients with 11q23/MLL rearrangement after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 56, 470–480 (2021). https://doi.org/10.1038/s41409-020-01048-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41409-020-01048-1

This article is cited by

Search

Quick links