Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of conditioning intensity and regimen on transplant outcomes in patients with adult T-cell leukemia-lymphoma

Abstract

In allogeneic hematopoietic cell transplantation (allo-HCT) for adult T-cell leukemia-lymphoma (ATL), the optimal conditioning regimens have not yet been determined. We conducted a Japanese nationwide, retrospective study to investigate this issue. This study included 914 ATL patients who underwent allo-HCT between 1995 and 2015. In patients aged 55 years or younger, there was no statistically significant difference between reduced-intensity conditioning (RIC) regimens and myeloablative conditioning (MAC) regimens regarding risk of relapse (vs. RIC group: MAC group, hazard ratio (HR) 0.76, P = 0.071), non-relapse mortality (vs. RIC group: MAC group, HR 1.38, P = 0.115), or overall mortality (vs. RIC group: MAC group, HR 1.17, P = 0.255). Among RIC regimens, fludarabine plus melphalan-based (Flu/Mel) regimens were associated with a lower risk of relapse (Flu/Mel140 group, HR 0.59, P < 0.001; Flu/Mel80 group, HR 0.79, P = 0.021) than the Flu plus busulfan-based regimen (Flu/Bu2 group). Meanwhile, Flu/Mel140 group had a significantly higher risk of non-relapse mortality (vs. Flu/Bu2 group: HR 1.53, P = 0.025). In conclusion, it is acceptable to select a RIC regimen for younger patients. Moreover, it might be beneficial to select a Flu/Mel-based regimen for patients at high risk of relapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of MAC and RIC in patients aged 55 years or younger.
Fig. 2: Impact of conditioning intensity on relapse, NRM, and overall mortality stratified by each factor in patients aged 55 years or younger.
Fig. 3: Comparison of Flu/Bu2, Flu/Mel140, and Flu/Mel80 in the RIC regimen.
Fig. 4: Comparison of TBI12/Cy and Bu4/Cy in the MAC group.

Similar content being viewed by others

References

  1. Cook LB, Fuji S, Hermine O, Bazarbachi A, Ramos JC, Ratner L, et al. Revised adult T-cell leukemia-lymphoma International Consensus Meeting Report. J Clin Oncol. 2019;37:677–87. https://doi.org/10.1200/JCO.18.00501. e-pub ahead of print 2019/01/19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsukasaki K, Marcais A, Nasr R, Kato K, Fukuda T, Hermine O, et al. Diagnostic approaches and established treatments for adult T cell leukemia lymphoma. Front Microbiol. 2020;11:1207 https://doi.org/10.3389/fmicb.2020.01207.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sugata K, Yasunaga J, Mitobe Y, Miura M, Miyazato P, Kohara M, et al. Protective effect of cytotoxic T lymphocytes targeting HTLV-1 bZIP factor. Blood. 2015;126:1095–105. https://doi.org/10.1182/blood-2015-04-641118.

    Article  CAS  PubMed  Google Scholar 

  4. Kanda J, Hishizawa M, Utsunomiya A, Taniguchi S, Eto T, Moriuchi Y, et al. Impact of graft-versus-host disease on outcomes after allogeneic hematopoietic cell transplantation for adult T-cell leukemia: a retrospective cohort study. Blood. 2012;119:2141–8. https://doi.org/10.1182/blood-2011-07-368233. e-pub ahead of print 2012/01/12.

    Article  CAS  PubMed  Google Scholar 

  5. Utsunomiya A. Progress in allogeneic hematopoietic cell transplantation in adult T-cell leukemia-lymphoma. Front Microbiol. 2019;10:2235 https://doi.org/10.3389/fmicb.2019.02235.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Iqbal M, Reljic T, Klocksieben F, Sher T, Ayala E, Murthy H. et al. Corrigendum to ‘Efficacy of allogeneic HCT in HTLV-1 associated adult T-cell leukemia/lymphoma: results of a systematic review/meta-analysis’ [Biology of Blood and Marrow Transplantation 25/8 (2019)1695-1700]. Biol Blood Marrow Transpl.2020;26:209–12. https://doi.org/10.1016/j.bbmt.2019.09.014.

    Article  Google Scholar 

  7. Fuji S, Yamaguchi T, Inoue Y, Utsunomiya A, Moriuchi Y, Uchimaru K, et al. Development of a modified prognostic index for patients with aggressive adult T-cell leukemia-lymphoma aged 70 years or younger: possible risk-adapted management strategies including allogeneic transplantation. Haematologica. 2017;102:1258–65. https://doi.org/10.3324/haematol.2017.164996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fuji S, Kurosawa S, Inamoto Y, Murata T, Utsunomiya A, Uchimaru K, et al. Role of up-front allogeneic hematopoietic stem cell transplantation for patients with aggressive adult T-cell leukemia-lymphoma: a decision analysis. Bone Marrow Transpl. 2018;53:905–8. https://doi.org/10.1038/s41409-017-0082-4. e-pub ahead of print 2018/01/27.

    Article  CAS  Google Scholar 

  9. Gyurkocza B, Sandmaier BM. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood. 2014;124:344–53. https://doi.org/10.1182/blood-2014-02-514778. e-pub ahead of print 2014/06/11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martino R, Iacobelli S, Brand R, Jansen T, van Biezen A, Finke J, et al. Retrospective comparison of reduced-intensity conditioning and conventional high-dose conditioning for allogeneic hematopoietic stem cell transplantation using HLA-identical sibling donors in myelodysplastic syndromes. Blood. 2006;108:836–46. https://doi.org/10.1182/blood-2005-11-4503. e-pub ahead of print 2006/04/07.

    Article  CAS  PubMed  Google Scholar 

  11. Ringden O, Labopin M, Ehninger G, Niederwieser D, Olsson R, Basara N, et al. Reduced intensity conditioning compared with myeloablative conditioning using unrelated donor transplants in patients with acute myeloid leukemia. J Clin Oncol. 2009;27:4570–7. https://doi.org/10.1200/JCO.2008.20.9692.

    Article  PubMed  Google Scholar 

  12. Eapen M, Brazauskas R, Hemmer M, Perez WS, Steinert P, Horowitz MM, et al. Hematopoietic cell transplant for acute myeloid leukemia and myelodysplastic syndrome: conditioning regimen intensity. Blood Adv. 2018;2:2095–103. https://doi.org/10.1182/bloodadvances.2018021980. e-pub ahead of print 2018/08/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishida T, Hishizawa M, Kato K, Tanosaki R, Fukuda T, Takatsuka Y, et al. Impact of graft-versus-host disease on allogeneic hematopoietic cell transplantation for adult T cell leukemia-lymphoma focusing on preconditioning regimens: nationwide retrospective study. Biol Blood Marrow Transpl. 2013;19:1731–9. https://doi.org/10.1016/j.bbmt.2013.09.014. e-pub ahead of print 2013/10/05.

    Article  Google Scholar 

  14. Ishida T, Hishizawa M, Kato K, Tanosaki R, Fukuda T, Taniguchi S, et al. Allogeneic hematopoietic stem cell transplantation for adult T-cell leukemia-lymphoma with special emphasis on preconditioning regimen: a nationwide retrospective study. Blood. 2012;120:1734–41. https://doi.org/10.1182/blood-2012-03-414490. e-pub ahead of print 2012/06/13.

    Article  CAS  PubMed  Google Scholar 

  15. Atsuta Y, Suzuki R, Yoshimi A, Gondo H, Tanaka J, Hiraoka A, et al. Unification of hematopoietic stem cell transplantation registries in Japan and establishment of the TRUMP System. Int J Hematol. 2007;86:269–74. https://doi.org/10.1532/IJH97.06239. e-pub ahead of print 2007/11/09.

    Article  PubMed  Google Scholar 

  16. Atsuta Y. Introduction of Transplant Registry Unified Management Program 2 (TRUMP2): scripts for TRUMP data analyses, part I (variables other than HLA-related data). Int J Hematol. 2016;103:3–10. https://doi.org/10.1007/s12185-015-1894-x. e-pub ahead of print 2015/11/09.

    Article  PubMed  Google Scholar 

  17. Kanda J. Scripts for TRUMP data analyses. Part II (HLA-related data): statistical analyses specific for hematopoietic stem cell transplantation. Int J Hematol. 2016;103:11–19. https://doi.org/10.1007/s12185-015-1907-9. e-pub ahead of print 2015/11/22.

    Article  CAS  PubMed  Google Scholar 

  18. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transpl. 2009;15:1628–33. https://doi.org/10.1016/j.bbmt.2009.07.004. e-pub ahead of print 2009/11/10.

    Article  Google Scholar 

  19. Giralt S, Ballen K, Rizzo D, Bacigalupo A, Horowitz M, Pasquini M, et al. Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the center for international blood and marrow transplant research. Biol Blood Marrow Transpl. 2009;15:367–9. https://doi.org/10.1016/j.bbmt.2008.12.497. e-pub ahead of print 2009/02/11.

    Article  Google Scholar 

  20. Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984-87). Br J Haematol. 1991;79:428–37. https://doi.org/10.1111/j.1365-2141.1991.tb08051.x. e-pub ahead of print 1991/11/01.

    Article  CAS  PubMed  Google Scholar 

  21. Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106:2912–9. https://doi.org/10.1182/blood-2005-05-2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transpl. 1995;15:825–8. e-pub ahead of print 1995/06/01.

    CAS  Google Scholar 

  23. Shulman HM, Sullivan KM, Weiden PL, McDonald GB, Striker GE, Sale GE, et al. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med. 1980;69:204–17. https://doi.org/10.1016/0002-9343(80)90380-0. e-pub ahead of print 1980/08/01.

    Article  CAS  PubMed  Google Scholar 

  24. Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transpl. 2005;11:945–56. https://doi.org/10.1016/j.bbmt.2005.09.004. e-pub ahead of print 2005/12/13.

    Article  Google Scholar 

  25. Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transpl. 2015;21:389–401.e381. https://doi.org/10.1016/j.bbmt.2014.12.001. e-pub ahead of print 2014/12/23.

    Article  Google Scholar 

  26. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48:452–8. https://doi.org/10.1038/bmt.2012.244. e-pub ahead of print 2012/12/05.

    Article  CAS  Google Scholar 

  27. Hishizawa M, Kanda J, Utsunomiya A, Taniguchi S, Eto T, Moriuchi Y, et al. Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study. Blood. 2010;116:1369–76. https://doi.org/10.1182/blood-2009-10-247510. e-pub ahead of print 2010/05/19.

    Article  CAS  PubMed  Google Scholar 

  28. Fuji S, Fujiwara H, Nakano N, Wake A, Inoue Y, Fukuda T, et al. Early application of related SCT might improve clinical outcome in adult T-cell leukemia/lymphoma. Bone Marrow Transpl. 2016;51:205–11. https://doi.org/10.1038/bmt.2015.265. e-pub ahead of print 2015/11/03.

    Article  CAS  Google Scholar 

  29. Inoue Y, Fuji S, Tanosaki R, Inamoto Y, Tanaka T, Ito A, et al. Prognostic importance of pretransplant disease status for posttransplant outcomes in patients with adult T cell leukemia/lymphoma. Bone Marrow Transpl. 2018;53:1105–15. https://doi.org/10.1038/s41409-018-0139-z. e-pub ahead of print 2018/03/11.

    Article  CAS  Google Scholar 

  30. Yoshimitsu M, Tanosaki R, Kato K, Ishida T, Choi I, Takatsuka Y, et al. Risk assessment in adult T cell leukemia/lymphoma treated with allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2018;24:832–9. https://doi.org/10.1016/j.bbmt.2017.11.005. e-pub ahead of print 2017/11/21.

    Article  Google Scholar 

  31. Yoshimitsu M, Utsunomiya A, Fuji S, Fujiwara H, Fukuda T, Ogawa H, et al. A retrospective analysis of haplo-identical HLA-mismatch hematopoietic transplantation without posttransplantation cyclophosphamide for GVHD prophylaxis in patients with adult T-cell leukemia-lymphoma. Bone Marrow Transpl. 2019;54:1266–74. https://doi.org/10.1038/s41409-018-0400-5. e-pub ahead of print 2018/12/14.

    Article  CAS  Google Scholar 

  32. Rambaldi A, Grassi A, Masciulli A, Boschini C, Mico MC, Busca A, et al. Busulfan plus cyclophosphamide versus busulfan plus fludarabine as a preparative regimen for allogeneic haemopoietic stem-cell transplantation in patients with acute myeloid leukaemia: an open-label, multicentre, randomised, phase 3 trial. Lancet Oncology. 2015;16:1525–36. https://doi.org/10.1016/S1470-2045(15)00200-4.

    Article  CAS  PubMed  Google Scholar 

  33. Kroger N, Iacobelli S, Franke GN, Platzbecker U, Uddin R, Hubel K, et al. Dose-reduced versus standard conditioning followed by allogeneic stem-cell transplantation for patients with myelodysplastic syndrome: a prospective randomized phase III study of the EBMT (RICMAC Trial). J Clin Oncol. 2017;35:2157–64. https://doi.org/10.1200/JCO.2016.70.7349. e-pub ahead of print 2017/05/04.

    Article  PubMed  Google Scholar 

  34. Solomon SR, St Martin A, Shah NN, Fatobene G, Al Malki MM, Ballen KK, et al. Myeloablative vs reduced intensity T-cell-replete haploidentical transplantation for hematologic malignancy. Blood Adv. 2019;3:2836–44. https://doi.org/10.1182/bloodadvances.2019000627. e-pub ahead of print 2019/10/05.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, Boeckh M, et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med. 2010;363:2091–101. https://doi.org/10.1056/NEJMoa1004383. e-pub ahead of print 2010/11/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Horan JT, Logan BR, Agovi-Johnson MA, Lazarus HM, Bacigalupo AA, Ballen KK, et al. Reducing the risk for transplantation-related mortality after allogeneic hematopoietic cell transplantation: how much progress has been made? J Clin Oncol. 2011;29:805–13. https://doi.org/10.1200/JCO.2010.32.5001.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kurosawa S, Yakushijin K, Yamaguchi T, Atsuta Y, Nagamura-Inoue T, Akiyama H, et al. Changes in incidence and causes of non-relapse mortality after allogeneic hematopoietic cell transplantation in patients with acute leukemia/myelodysplastic syndrome: an analysis of the Japan Transplant Outcome Registry. Bone Marrow Transpl. 2013;48:529–36. https://doi.org/10.1038/bmt.2012.172. e-pub ahead of print 2012/09/12.

    Article  CAS  Google Scholar 

  38. Le Gouill S, Milpied N, Buzyn A, De Latour RP, Vernant JP, Mohty M, et al. Graft-versus-lymphoma effect for aggressive T-cell lymphomas in adults: a study by the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. J Clin Oncol. 2008;26:2264–71. https://doi.org/10.1200/JCO.2007.14.1366.

    Article  PubMed  Google Scholar 

  39. Kyriakou C, Canals C, Finke J, Kobbe G, Harousseau JL, Kolb HJ, et al. Allogeneic stem cell transplantation is able to induce long-term remissions in angioimmunoblastic T-cell lymphoma: a retrospective study from the lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol. 2009;27:3951–8. https://doi.org/10.1200/JCO.2008.20.4628. e-pub ahead of print 2009/07/22.

    Article  PubMed  Google Scholar 

  40. Jacobsen ED, Kim HT, Ho VT, Cutler CS, Koreth J, Fisher DC, et al. A large single-center experience with allogeneic stem-cell transplantation for peripheral T-cell non-Hodgkin lymphoma and advanced mycosis fungoides/Sezary syndrome. Ann Oncol. 2011;22:1608–13. https://doi.org/10.1093/annonc/mdq698. e-pub ahead of print 2011/01/22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim SW, Yoon SS, Suzuki R, Matsuno Y, Yi HG, Yoshida T, et al. Comparison of outcomes between autologous and allogeneic hematopoietic stem cell transplantation for peripheral T-cell lymphomas with central review of pathology. Leukemia. 2013;27:1394–7. https://doi.org/10.1038/leu.2012.321. e-pub ahead of print 2012/11/28.

    Article  CAS  PubMed  Google Scholar 

  42. Kanakry JA, Kasamon YL, Gocke CD, Tsai HL, Davis-Sproul J, Ghosh N, et al. Outcomes of related donor HLA-identical or HLA-haploidentical allogeneic blood or marrow transplantation for peripheral T cell lymphoma. Biol Blood Marrow Transpl. 2013;19:602–6. https://doi.org/10.1016/j.bbmt.2013.01.006. e-pub ahead of print 2013/02/02.

    Article  CAS  Google Scholar 

  43. Smith SM, Burns LJ, van Besien K, Lerademacher J, He W, Fenske TS, et al. Hematopoietic cell transplantation for systemic mature T-cell non-Hodgkin lymphoma. J Clin Oncol. 2013;31:3100–9. https://doi.org/10.1200/JCO.2012.46.0188. e-pub ahead of print 2013/07/31.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kharfan-Dabaja MA, El-Jurdi N, Ayala E, Kanate AS, Savani BN, Hamadani M. Is myeloablative dose intensity necessary in allogeneic hematopoietic cell transplantation for lymphomas? Bone Marrow Transpl. 2017;52:1487–94. https://doi.org/10.1038/bmt.2017.55. e-pub ahead of print 2017/04/04.

    Article  CAS  Google Scholar 

  45. Kim SW, Tanimoto TE, Hirabayashi N, Goto S, Kami M, Yoshioka S, et al. Myeloablative allogeneic hematopoietic stem cell transplantation for non-Hodgkin lymphoma: a nationwide survey in Japan. Blood. 2006;108:382–9. https://doi.org/10.1182/blood-2005-02-0596. e-pub ahead of print 2006/03/09.

    Article  CAS  PubMed  Google Scholar 

  46. Dreger P, Sureda A, Ahn KW, Eapen M, Litovich C, Finel H, et al. PTCy-based haploidentical vs matched related or unrelated donor reduced-intensity conditioning transplant for DLBCL. Blood Adv. 2019;3:360–9. https://doi.org/10.1182/bloodadvances.2018027748. e-pub ahead of print 2019/02/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shimoni A, Hardan I, Shem-Tov N, Rand A, Herscovici C, Yerushalmi R, et al. Comparison between two fludarabine-based reduced-intensity conditioning regimens before allogeneic hematopoietic stem-cell transplantation: fludarabine/melphalan is associated with higher incidence of acute graft-versus-host disease and non-relapse mortality and lower incidence of relapse than fludarabine/busulfan. Leukemia. 2007;21:2109–16. https://doi.org/10.1038/sj.leu.2404886.

    Article  CAS  PubMed  Google Scholar 

  48. Baron F, Labopin M, Peniket A, Jindra P, Afanasyev B, Sanz MA, et al. Reduced-intensity conditioning with fludarabine and busulfan versus fludarabine and melphalan for patients with acute myeloid leukemia: a report from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Cancer. 2015;121:1048–55. https://doi.org/10.1002/cncr.29163.

    Article  CAS  PubMed  Google Scholar 

  49. Damlaj M, Alkhateeb HB, Hefazi M, Partain DK, Hashmi S, Gastineau DA, et al. Fludarabine-busulfan reduced-intensity conditioning in comparison with fludarabine-melphalan is associated with increased relapse risk in spite of pharmacokinetic dosing. Biol Blood Marrow Transpl. 2016;22:1431–9. https://doi.org/10.1016/j.bbmt.2016.04.026.

    Article  CAS  Google Scholar 

  50. Nakano N, Takatsuka Y, Kubota A, Tokunaga M, Miyazono T, Tabuchi T et al. Cord blood transplantation with a reduced-intensity conditioning regimen using fludarabine and melphalan for adult T-cell leukemia/lymphoma. Int J Hematol. 2021. e-pub ahead of print 2021/02/18; https://doi.org/10.1007/s12185-021-03102-0.

  51. Kato K, Uike N, Wake A, Yoshimitsu M, Tobai T, Sawayama Y, et al. The outcome and characteristics of patients with relapsed adult T cell leukemia/lymphoma after allogeneic hematopoietic stem cell transplantation. Hematol Oncol. 2019;37:54–61. https://doi.org/10.1002/hon.2558. e-pub ahead of print 2018/09/02.

    Article  CAS  PubMed  Google Scholar 

  52. Ciurea SO, Kongtim P, Varma A, Rondon G, Chen J, Srour S, et al. Is there an optimal conditioning for older patients with AML receiving allogeneic hematopoietic cell transplantation? Blood. 2020;135:449–52. https://doi.org/10.1182/blood.2019003662.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nosaka K, Iwanaga M, Imaizumi Y, Ishitsuka K, Ishizawa K, Ishida Y, et al. Epidemiological and clinical features of adult T-cell leukemia-lymphoma in Japan, 2010-2011: a nationwide survey. Cancer Sci. 2017;108:2478–86. https://doi.org/10.1111/cas.13398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Katsuya H, Yamanaka T, Ishitsuka K, Utsunomiya A, Sasaki H, Hanada S, et al. Prognostic index for acute- and lymphoma-type adult T-cell leukemia/lymphoma. J Clin Oncol. 2012;30:1635–40. https://doi.org/10.1200/JCO.2011.38.2101.

    Article  CAS  PubMed  Google Scholar 

  55. Fukushima T, Nomura S, Shimoyama M, Shibata T, Imaizumi Y, Moriuchi Y, et al. Japan Clinical Oncology Group (JCOG) prognostic index and characterization of long-term survivors of aggressive adult T-cell leukaemia-lymphoma (JCOG0902A). Br J Haematol. 2014;166:739–48. https://doi.org/10.1111/bjh.12962. e-pub ahead of print 2014/06/17.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Practical Research for Innovative Cancer Control Program of the Japan Agency for Medical Research and Development (20ck0106616h0001) and by JSPS KAKENHI Grant Number 19K17861. We are grateful to the ATL Working Group of the Japan Society for Hematopoietic Cell Transplantation and the Japanese Data Center for Hematopoietic Cell Transplantation for helping with this study.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

YI, NN, SF, TF, MY and KK participated in research design, data analysis, and writing of the paper. TE, TK, YS, TM, SY, NU, TK, JK and YA participated in writing of the paper.

Corresponding author

Correspondence to Yoshitaka Inoue.

Ethics declarations

Competing interests

NN: honoraria (e.g., lecture fees) from Otsuka Pharmaceutical. SF: honoraria from Kyowa Kirin. NU: honoraria from Otsuka Pharmaceutical. TK: honoraria from Otsuka Pharmaceutical. JK: honoraria from Sanofi and Otsuka Pharmaceutical. KK: consulting fees from AbbVie, AstraZeneca, Celgene, Chugai, Eisai, Janssen, Novartis, and Daiichi Sankyo; honoraria from Takeda, MSD, Kyowa-Kirin, Janssen, Celgene, Ono, Mundi, Dainippon-Sumitomo, and Bristol-Myers Squibb; research funding from Chugai, Takeda, Kyowa Kirin, AbbVie, Novartis, Eisai, Janssen, Celgene, Ono, Novartis, and Daiichi Sankyo. The other authors declare no conflicts of interest associated with this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, Y., Nakano, N., Fuji, S. et al. Impact of conditioning intensity and regimen on transplant outcomes in patients with adult T-cell leukemia-lymphoma. Bone Marrow Transplant 56, 2964–2974 (2021). https://doi.org/10.1038/s41409-021-01445-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41409-021-01445-0

This article is cited by

Search

Quick links