Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-cryopreserved autologous peripheral blood stem cell transplantation for multiple myeloma and lymphoma in countries with limited resources: practice considerations from the Worldwide Network for Blood and Marrow Transplantation

A Correction to this article was published on 30 June 2025

This article has been updated

Abstract

Autologous peripheral blood stem cell (PBSC) transplantation is a standard treatment of multiple myeloma (MM), Hodgkin lymphoma and various subtypes of non-Hodgkin lymphoma. Cryopreservation of hematopoietic stem cells is standard practice that allows time for delivery of conditioning regimen prior to cell infusion. The aim of this Worldwide Network for Blood & Marrow Transplantation (WBMT) work was to assess existing evidence on non-cryopreserved autologous transplants through a systematic review/meta-analysis, to study feasibility and safety of this approach. We searched PubMed, Web of Science and SCOPUS for studies that utilized non-cryopreserved autologous PBSC transplantation. Identified literature was reviewed for information on mobilization, apheresis, preservation and viability, conditioning regimen, engraftment, response, and survival. Results highlight collective experience from 19 transplant centers (1686 patients), that performed autologous transplants using non-cryopreserved PBSCs. The mean of infused CD34+ was 5.6 × 106/kg. Stem cell viability at transplantation was >90% in MM and >75% in lymphomas, after a storage time of 24–144 h at +4 °C. Mean time-to-neutrophil engraftment was 12 days and 15.3 days for platelets. Pooled proportion estimates of day 100 transplant-related mortality and graft failure were 1% and 0%, respectively. Non-cryopreservation of apheresed autologous PBSCs appears feasible and safe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Pooled mean estimates of CD34+ cell dose.
Fig. 3: Pooled mean estimates of ANC.
Fig. 4: Pooled mean estimates of platelets recovery.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Change history

  • 24 June 2025

    The original online version of this article was revised: In this article the author name Dietger Niederwiser has been corrected to Dietger Niederwieser and fig. 3 replaced.

  • 30 June 2025

    A Correction to this paper has been published: https://doi.org/10.1038/s41409-025-02664-5

References

  1. Kessinger A, Armitage JO, Landmark J, Weisenburger D. Reconstitution of human hematopoietic function with autologous cryopreserved circulating stem cells. Exp Hematol. 1986;14:192–6.

    CAS  PubMed  Google Scholar 

  2. Kessinger A, Armitage JO, Landmark JD, Smith DM, Weisenburger DD. Autologous peripheral hematopoietic stem cell transplantation restores hematopoietic function following marrow ablative therapy. 1988;71:723–7.

  3. Abdrabou AK, Sharif FA, Fakih RE, Hashmi S, Khafaga YM, Alhayli S, et al. Outcomes of autologous stem cell transplantation for multiple myeloma in Saudi Arabia. Ann Saudi Med. 2021;41:198–205.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Niederwieser D, Baldomero H, Bazuaye N, Bupp C, Chaudhri N, Corbacioglu S, et al. One and a half million hematopoietic stem cell transplants: continuous and differential improvement in worldwide access with the use of non-identical family donors. Haematologica. 2022;107:1045.

    Article  PubMed  Google Scholar 

  5. Fermand J-P, Katsahian S, Divine M, Leblond V, Dreyfus F, Macro M, et al. High-dose therapy and autologous blood stem-cell transplantation compared with conventional treatment in myeloma patients aged 55 to 65 years: long-term results of a randomized control trial from the Group Myelome-Autogreffe. J Clin Oncol. 2005;23:9227–33.

    Article  CAS  PubMed  Google Scholar 

  6. Philip T, Guglielmi C, Hagenbeek A, Somers R, Van Der Lelie H, Bron D, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N Engl J Med. 1995;333:1540–5.

    Article  CAS  PubMed  Google Scholar 

  7. André M, Henry-Amar M, Pico J-L, Brice P, Blaise D, Kuentz M, et al. Comparison of high-dose therapy and autologous stem-cell transplantation with conventional therapy for Hodgkin’s disease induction failure: a case-control study. J Clin Oncol. 1999;17:222.

    Article  PubMed  Google Scholar 

  8. Carella AM, Bellei M, Brice P, Gisselbrecht C, Visani G, Colombat P, et al. High-dose therapy and autologous stem cell transplantation versus conventional therapy for patients with advanced Hodgkin’s lymphoma responding to front-line therapy: long-term results. Haematologica. 2009;94:146.

    Article  PubMed  Google Scholar 

  9. Gorin N. Collection, manipulation and freezing of haemopoietic stem cells. Clin Haematol. 1986;15:19–48.

    Article  CAS  PubMed  Google Scholar 

  10. Billen D. Recovery of lethally irradiat-ed mice by treatment with bone marrow cells maintained in vitro. nature1957;179:574–5.

  11. Ahmed T, Wuest D, Ciavarella D, Ayello J, Feldman EJ, Biguzzi S, et al. Marrow storage techniques: a clinical comparison of refrigeration versus cryopreservation. Acta Haematol. 1991;85:173–8.

    Article  CAS  PubMed  Google Scholar 

  12. Sierra J, Conde E, Iriondo A, Brunet S, Marin J, de Oteiza JP, et al. Frozen vs. nonfrozen bone marrow for autologous transplantation in lymphomas: a report from the Spanish GEL/TAMO Cooperative Group. Ann Hematol. 1993;67:111–4.

    Article  CAS  PubMed  Google Scholar 

  13. Preti R, Razis E, Ciavarella D, Fan Y, Kuhns R, Cook P, et al. Clinical and laboratory comparison study of refrigerated and cryopreserved bone marrow for transplantation. Bone Marrow Transplant. 1994;13:253–60.

    CAS  PubMed  Google Scholar 

  14. Hechler G, Weide R, Heymanns J, Köppler H, Havemann K. Storage of noncryopreserved periphered blood stem cells for transplantation. Ann Hematol. 1996;72:303–6.

    Article  CAS  PubMed  Google Scholar 

  15. Wannesson L, Panzarella T, Mikhael J, Keating A. Feasibility and safety of autotransplants with noncryopreserved marrow or peripheral blood stem cells: a systematic review. Ann Oncol. 2007;18:623–32.

    Article  CAS  PubMed  Google Scholar 

  16. Al-Anazi KA. Autologous hematopoietic stem cell transplantation for multiple myeloma without cryopreservation. Bone Marrow Res. 2012;2012:917361.

  17. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M. et al. The NewcastleOttawa Scale (NOS) for assessing the quality if nonrandomized studies in metaanalyses. Ontario, Canada. 2024. https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

  18. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

  19. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28:105–14.

  20. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Freeman MF, Tukey JW. Transformations related to the angular and the square root. Ann Math Stat. 1950;21:607–11.

  22. Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013;67:974–8.

  23. Lewis S, Clarke MJB. Forest plots: trying to see the wood and the trees. 2001;322:1479–80.

  24. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. 2003;327:557–60.

  25. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9.

  26. Papadimitriou CA, Dimopoulos MA, Kouvelis V, Kostis E, Kapsimali V, Contoyannis D, et al. Non‐cryopreserved peripheral blood progenitor cells collected by a single very large‐volume leukapheresis: a simplified and effective procedure for support of high‐dose chemotherapy. J Clin Apher. 2000;15:236–41.

    Article  CAS  PubMed  Google Scholar 

  27. Ruiz-Argüelles GJ, Gómez-Rangel D, Ruiz-Delgado GJ, Ruiz-Argüelles A, Pérez-Romano B, Rivadeneyra L. Results of an autologous noncryopreserved, unmanipulated peripheral blood hematopoietic stem cell transplant program: a single-institution, 10-year experience. Acta Haematol. 2003;110:179–83.

    Article  PubMed  Google Scholar 

  28. Cuellar-Ambrosi F, Karduss U, Gomez W, Mondragon M, Velasquez-Lopera M, Calle S, editors. Hematologic reconstitution following high-dose and supralethal chemoradiotherapy using stored, noncryopreserved autologous hematopoietic stem cells. Transplantation Proc. 2004;36:1704–5.

  29. Mabed M, Shamaa S. High-dose chemotherapy plus non-cryopreserved autologous peripheral blood stem cell transplantation rescue for patients with refractory or relapsed Hodgkin disease. Biol Blood Marrow Transpl. 2006;12:942–8.

    Article  CAS  Google Scholar 

  30. Mabed M, Al-Kgodary T. Cyclophosphamide, etoposide and carboplatine plus non-cryopreserved autologous peripheral blood stem cell transplantation rescue for patients with refractory or relapsed non-Hodgkin’s lymphomas. Bone marrow Transplant. 2006;37:739–43.

    Article  CAS  PubMed  Google Scholar 

  31. López-Otero A, Ruiz-Delgado G, Ruiz-Argüelles G. A simplified method for stem cell autografting in multiple myeloma: a single institution experience. Bone Marrow Transplant. 2009;44:715–9.

    Article  PubMed  Google Scholar 

  32. Ramzi M, Zakerinia M, Nourani H, Dehghani M, Vojdani R, Haghighinejad H. Non‐cryopreserved hematopoietic stem cell transplantation in multiple myeloma, a single center experience. Clin Transplant. 2012;26:117–22.

    Article  PubMed  Google Scholar 

  33. Ramzi M, Mohamadian M, Vojdani R, Dehghani M, Nourani H, Zakerinia M, et al. Autologous noncryopreserved hematopoietic stem cell transplant with CEAM as a modified conditioning regimen in patients with Hodgkin lymphoma: a single-center experience with a new protocol. Exp Clin Transpl. 2012;10:163–7.

    Article  Google Scholar 

  34. Bekadja M-A, Brahimi M, Osmani S, Arabi A, Bouhass R, Yafour N, et al. A simplified method for autologous stem cell transplantation in multiple myeloma. Hematol Oncol Stem Cell Ther. 2012;5:49–53.

    Article  CAS  PubMed  Google Scholar 

  35. Kayal S, Sharma A, Iqbal S, Tejomurtula T, Cyriac SL, Raina V. High-dose chemotherapy and autologous stem cell transplantation in multiple myeloma: a single institution experience at All India Institute of Medical Sciences, New Delhi, using non-cryopreserved peripheral blood stem cells. Clin Lymphoma Myeloma Leuk. 2014;14:140–7.

    Article  PubMed  Google Scholar 

  36. Bekadja MA, Brahimi M, Osmani S, Yafour N, Krim A, Serradj F, et al. Hematopoietic stem cell transplantation in Algeria. Hematol Oncol Stem Cell Ther. 2017;10:311–4.

    Article  PubMed  Google Scholar 

  37. Sarmiento M, Ramírez P, Parody R, Salas M, Beffermann N, Jara V, et al. Advantages of non-cryopreserved autologous hematopoietic stem cell transplantation against a cryopreserved strategy. Bone Marrow Transplant. 2018;53:960–6.

    Article  CAS  PubMed  Google Scholar 

  38. Kardduss-Urueta A, Gale RP, Gutierrez-Aguirre CH, Herrera-Rojas MA, Murrieta-Álvarez I, Perez-Fontalvo R, et al. Freezing the graft is not necessary for autotransplants for plasma cell myeloma and lymphomas. Bone Marrow Transpantl. 2018;53:457–60.

    Article  CAS  Google Scholar 

  39. Naithani R, Dayal N, Pathak S, Rai R. Hematopoietic stem cell transplantation using non-cryopreserved peripheral blood stem cells graft is effective in multiple myeloma and lymphoma. Bone Marrow Transplant. 2018;53:1198–200.

    Article  CAS  PubMed  Google Scholar 

  40. Kulkarni U, Devasia AJ, Korula A, Fouzia N, Nisham P, Samoon YJ, et al. Use of non-cryopreserved peripheral blood stem cells is associated with adequate engraftment in patients with multiple myeloma undergoing an autologous transplant. Biol Blood Marrow Transplant. 2018;24:e31–5.

    Article  PubMed  Google Scholar 

  41. Bittencourt M, Mariano L, Moreira F, Schmidt-Filho J, Mendrone-Jr A, Rocha V. Cryopreserved versus non-cryopreserved peripheral blood stem cells for autologous transplantation after high-dose Melphalan in multiple myeloma: comparative analysis. Bone marrow Transplant. 2019;54:138–41.

    Article  CAS  PubMed  Google Scholar 

  42. Jennane S, Hasnaoui N, Mahtat E, Merimi F, Bougar S, El Maaroufi H, et al. Non-cryopreserved peripheral blood stem cells autologous transplantation in multiple myeloma: bicentric study. Transfus Clin Biol. 2020;27:152–6.

    Article  CAS  PubMed  Google Scholar 

  43. Piriyakhuntorn P, Tantiworawit A, Rattanathammethee T, Hantrakool S, Chai-Adisaksopha C, Rattarittamrong E. et al. Outcomes of non-cryopreserved versus cryopreserved peripheral blood stem cells for autologous stem cell transplantation in multiple myeloma. Ann Transplant. 2020;25:e927084-1–7.

    Article  Google Scholar 

  44. Bekadja M-A, Boumendil A, Blaise D, Chevallier P, Peggs KS, Salles G, et al. Non-cryopreserved hematopoietic stem cells in autograft patients with lymphoma: a matched-pair analysis comparing a single center experience with the use of cryopreserved stem cells reported to the European Society for Blood and Marrow Transplantation registry. Cytotherapy. 2021;23:483–7.

    Article  CAS  PubMed  Google Scholar 

  45. Fleming K, Hubel A. Cryopreservation of hematopoietic and non-hematopoietic stem cells. Transfus Apheresis Sci. 2006;34:309–15.

    Article  CAS  Google Scholar 

  46. Lobo F, Kessinger A, Landmark J, Smith D, Weisenburger D, Wigton R, et al. Addition of peripheral blood stem cells collected without mobilization techniques to transplanted autologous bone marrow did not hasten marrow recovery following myeloablative therapy. Bone marrow Transplant. 1991;8:389–92.

    CAS  PubMed  Google Scholar 

  47. Smith R, Sweetenham J. A mononuclear cell dose of 3 x 10 (8)/kg predicts early multilineage recovery in patients with malignant lymphoma treated with carmustine, etoposide, Ara-C and melphalan (BEAM) and peripheral blood progenitor cell transplantation. Exp Hematol. 1995;23:1581–8.

    CAS  PubMed  Google Scholar 

  48. Bekadja M, Talhi S, Amani K, Osmani S, Brahimi M, Mazari M, et al. Outcomes of modified-eam conditioned autologous non-cryopreserved hematopoietic sct for lymphoma. a retrospective single-centre study. Bone Marrow Transplant. 2018;53:1596–8.

    Article  CAS  PubMed  Google Scholar 

  49. Garifullin A, Voloshin S, Linnikov S, Kuzyaeva A, Balashova V, Chubukina Z. The use of non-cryopreserved and cryopreserved hematopoietic stem cells for autotransplantation in multiple myeloma. HemaSphere. 2021;5:494–5.

    Google Scholar 

  50. Lanza F, Campioni DC, Hellmann A, Milone G, Wahlin A, Walewski J, et al. Individual quality assessment of autografting by probability estimation for clinical endpoints: a prospective validation study from the European group for blood and marrow transplantation. Biol Blood Marrow Transplant. 2013;19:1670–6.

    Article  PubMed  Google Scholar 

  51. Bekadja MA, Omani S, Talhi S, Brahimi M, Yafour N, Arabi A, et al. L’autogreffe de cellules souches périphériques (CSP) non cryopréservées dans les lymphomes de Hodgkin (LH). Expérience de I’EHU 1er novembre d’Oran. Revue Algérienne d’Hématologie. 2015;10-11:40-45

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study concept: MAB, MAK-D, REF, MA. Study design: MAB, MAK-D, REF, AK, TE, MA. Data collection: TE. Statistical analysis: TE. Interpretation of results: MAB, DN, MAK-D, REF, LG, IY-A, HG, DJW, SG, SOA, CC, SKH, AR, UG, AB, NH, AA, MP, AH, JS, YK, AK, TE, DMc, NW, RG, MM, YA, MK, AS, DR, MA, WR. Manuscript writing: MAB, DN, MAK-D, REF, LG, IY-A, HG, DJW, SG, SOA, CC, SKH, AR, UG, AB, NH, AA, MP, AH, JS, YK, AK, TE, DMc, NW, RG, MM, YA, MK, AS, DR, MA, WR.

Corresponding authors

Correspondence to Mohamed A. Kharfan-Dabaja, Riad El Fakih or Mahmoud Aljurf.

Ethics declarations

Competing interests

MAB, DN, REF, DJW, SG, AR, AB, AH, YK, AK, TE, MM, WR declare no conflicts of interest MAK-D: declares research/grant from Bristol Myers Squibb, Novartis, and Pharmacyclics, and lecture/honoraria from Kite Pharma; LG: declares relationship with Bristol Myers Squibb, Sanofi, Janssen, Pfizer; IY-A: declares honoraria from Kite Pharma, Novartis and Bristol Myers Squibb; HG: declares speaker bureau and consultancy for Therakos, Gilead, Novartis, Stemline, Neovii, Sanofi, and Takeda; SOA: declares advisory board with Kite Pharma and Novartis, and speaker honoraria from Kite Pharma, Novartis, and Johnson & Johnson; CC: declares honoraria (personal and institutional) for lectures and advisory boards from Bristol Myers Squibb, Kite Pharma/Gilead, Janssen, Jazz, Novartis, and Miltenyi Biotec; SKH: declares educational/travel grants from Novartis, Pfizer, Janssen, Therakos, Vertex, MSD, Roche; UG: declares consultancy/Honoraria :Kite Pharma, Incyte, Astellas, Jazz,and Vor; NH: honoria from Janssen, Novartis, Takeda, Abbvie, Roche, Astellas, Bigene; AA: declares lecture-Advisor /honoraria from Kite Pharma, Novartis, Takeda and Janssen; MP: declares research with Bristol Myers Squibb, Janssen, Kite Pharma, Novartis, and consultancy for Bristol Myers Squibb, Novartis, and honoraria from Gilead; JS: declares consultancy for Sanofi and ADRx, honoraria from Sanofi, Alexion, AstraZeneca Rare Disease, Prevail Therapeutics (Eli–Lilly), Pfizer, Sobi Pharmaceuticals, and Novartis, advisory committees for Sanofi, AstraZeneca Rare Disease, Prevail Therapeutics (Eli–Lilly), Pfizer, Sobi Pharmaceuticals, Novartis, speaker bureau for Sanofi, AstraZeneca Rare Disease, Prevail Therapeutics (Eli–Lilly), Pfizer, Sobi Pharmaceuticals, Novartis; DMc: declares lecture/honoraria from GSK, Novartis, Abbvie. Research funding from Imago Biosciences; NW: declares speakers fees from BMS Celgene, Kite Gilead, Novartis, Pierre Fabre, Sanofi Genzyme, Therakos Mallinckrodt, Travel reimbursement from Jannsen, Pierre Fabre; RG: declares speaking honoraria from Biotest, Pfizer, Medac, Neovii and Magenta; YA: declares lecture/honoraria from Otsuka Pharmaceutical Co., Ltd, Chugai Pharmaceutical Co., Ltd., Novartis Pharma KK, Meiji Seika Pharma Co., Ltd, Janssen Pharmaceutical K.K., and consultancy fee from JCR Pharmaceuticals Co., Ltd and Kyowa Kirin Co., Ltd; MK: declares non-specified relationship with Kite Pharma, Takeda and Gilead; AS: declares honoraria from Takeda, Bristol Myers Squibb /Celgene, MSD, Janssen, Amgen, Novartis, Gilead Kite, Sanofi, Roche, Genmab, AbbVie, Jazz Pharmaceuticals, consultancy from Takeda, Bristol Myers Squibb/Celgene, Novartis, Janssen, Gilead, Sanofi, Genmab, AbbVie, speaker bureau for Takeda and Research support from Takeda; MA: declares lecture/honoraria from Kite Pharma and Vertex Pharma.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article the author name Dietger Niederwiser has been corrected to Dietger Niederwieser and fig. 3 replaced.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekadja, M.A., Niederwieser, D., Kharfan-Dabaja, M.A. et al. Non-cryopreserved autologous peripheral blood stem cell transplantation for multiple myeloma and lymphoma in countries with limited resources: practice considerations from the Worldwide Network for Blood and Marrow Transplantation. Bone Marrow Transplant 60, 19–27 (2025). https://doi.org/10.1038/s41409-024-02431-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41409-024-02431-y

Search

Quick links