Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Navigating ‘grey areas’ and challenges during evaluation of transplant eligibility in specific myelofibrosis populations: a perspective on behalf of the Chronic Malignancies Working Party of the EBMT

Abstract

Significant efforts have been made to effectively select myelofibrosis (MF) patients who can benefit from allogeneic hematopoietic cell transplantation (allo-HCT), the only current cure for MF. The recent EBMT/ELN 2024 recommendations offer valuable guidance for hematologists and transplant physicians. However, several grey areas remain in day-to-day clinical practice regarding the feasibility and optimal preparation for transplantation in patients with this disease. Effective spleen size reduction, often achieved with JAK inhibitors, appears crucial for transplant success. For resistant cases, switching JAK inhibitors, splenectomy, or spleen irradiation may be considered, taking into account patient profiles, treatment availability and center preferences. Managing splanchnic vein thromboses, portal, and pulmonary hypertension is critical as these conditions may affect transplant outcomes. Cytopenias, particularly transfusion-dependent anemia and thrombocytopenia, complicate treatment and impact on outcomes, though new drugs show promise. Comorbidities play a significant role and tools like the Hematopoietic Cell Transplantation-Comorbidity Index (HCT-CI) and frailty assessments are useful for evaluating transplant risks while allowing the implementation of corrective measures. Especially in low- and medium-income countries where access to novel therapies may be challenging, allo-HCT still represents an attractive therapeutic option for MF. Future directions include integrating new therapeutics into the transplant algorithm and leveraging artificial intelligence for more informed risk assessment, highlighting the need for tailored approaches to improve allo-HCT outcomes in such a setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transplant outcomes for myelofibrosis patients in Brazil.
Fig. 2: Comprehensive assessment of myelofibrosis patients for transplant.

Similar content being viewed by others

References

  1. Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140:1200–28. https://doi.org/10.1182/blood.2022015850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–19. https://doi.org/10.1038/s41375-022-01613-1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Polverelli N, Breccia M, Benevolo G, Martino B, Tieghi A, Latagliata R, et al. Risk factors for infections in myelofibrosis: role of disease status and treatment. a multicenter study of 507 patients. Am J Hematol. 2017;92:37–41. https://doi.org/10.1002/ajh.24572.

    Article  CAS  PubMed  Google Scholar 

  4. Tefferi A. Primary myelofibrosis: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98:801–21. https://doi.org/10.1002/ajh.26857.

    Article  CAS  PubMed  Google Scholar 

  5. Kröger NM, Deeg JH, Olavarria E, Niederwieser D, Bacigalupo A, Barbui T, et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia. 2015;29:2126–33. https://doi.org/10.1038/leu.2015.233.

    Article  CAS  PubMed  Google Scholar 

  6. Kröger N, Bacigalupo A, Barbui T, Ditschkowski M, Gagelmann N, Griesshammer M. et al. Indication and management of allogeneic haematopoietic stem-cell transplantation in myelofibrosis: updated recommendations by the EBMT/ELN International Working Group. Lancet Haematol. 2024;11:e62–74. https://doi.org/10.1016/S2352-3026(23)00305-8.

    Article  PubMed  Google Scholar 

  7. Barosi G. Myelofibrosis with myeloid metaplasia: diagnostic definition and prognostic classification for clinical studies and treatment guidelines. J Clin Oncol. 1999;17:2954–2954.

    Article  CAS  PubMed  Google Scholar 

  8. Visani G, Finelli C, Castelli U, Petti MC, Ricci P, Vianelli N, et al. Myelofibrosis with myeloid metaplasia: clinical and haematological parameters predicting survival in a series of 133 patients. Br J Haematol. 1990;75:4–9.

    Article  CAS  PubMed  Google Scholar 

  9. Polverelli N, Mauff K, Kröger N, Robin M, Beelen D, Beauvais D, et al. Impact of spleen size and splenectomy on outcomes of allogeneic hematopoietic cell transplantation for myelofibrosis: a retrospective analysis by the chronic malignancies working party on behalf of European society for blood and marrow transplantation (EBMT). Am J Hematol. 2021;96:69–79.

    Article  CAS  PubMed  Google Scholar 

  10. Luther M, Henes FO, Zabelina T, Massoud R, Janson D, Wolschke C, et al. Spleen volume and length determined by computed tomography impact outcome after allogeneic stem cell transplantation for myelofibrosis. Bone Marrow Transplant. 2023;58:755–61.

    Article  CAS  PubMed  Google Scholar 

  11. Passamonti F, Mora B. Myelofibrosis. Blood 2023;141:1954–70.

    Article  CAS  PubMed  Google Scholar 

  12. Polverelli N, Hernández-Boluda JC, Czerw T, Barbui T, D’Adda M, Deeg HJ, et al. Splenomegaly in patients with primary or secondary myelofibrosis who are candidates for allogeneic hematopoietic cell transplantation: a Position Paper on behalf of the Chronic Malignancies Working Party of the EBMT. Lancet Haematol. 2023;10:e59–70.

    Article  CAS  PubMed  Google Scholar 

  13. Tremblay D, Schwartz M, Bakst R, Patel R, Schiano T, Kremyanskaya M, et al. Modern management of splenomegaly in patients with myelofibrosis. Ann Hematol. 2020;99:1441–51.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98.

    Article  CAS  PubMed  Google Scholar 

  16. Pardanani A, Tefferi A. How I treat myelofibrosis after failure of JAK inhibitors. Blood. 2018;132:492–500. https://doi.org/10.1182/blood-2018-02-785923.

    Article  CAS  PubMed  Google Scholar 

  17. Kröger N, Sbianchi G, Sirait T, Wolschke C, Beelen D, Passweg J, et al. Impact of prior JAK-inhibitor therapy with ruxolitinib on outcome after allogeneic hematopoietic stem cell transplantation for myelofibrosis: a study of the CMWP of EBMT. Leukemia 2021;35:3551–60.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mascarenhas J, Hoffman R, Talpaz M, Gerds AT, Stein B, Gupta V, et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis. JAMA Oncol. 2018;4:652.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Harrison CN, Schaap N, Vannucchi AM, Kiladjian JJ, Tiu RV, Zachee P, et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol. 2017;4:e317–24.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gerds AT, Verstovsek S, Vannucchi AM, Al-Ali HK, Lavie D, Kuykendall AT, et al. Momelotinib versus danazol in symptomatic patients with anaemia and myelofibrosis previously treated with a JAK inhibitor (MOMENTUM): an updated analysis of an international, double-blind, randomised phase 3 study. Lancet Haematol. 2023;10:e735–46.

    Article  CAS  PubMed  Google Scholar 

  21. Verstovsek S, Gerds AT, Vannucchi AM, Al-Ali HK, Lavie D, Kuykendall AT, et al. Momelotinib versus danazol in symptomatic patients with anaemia and myelofibrosis (MOMENTUM): results from an international, double-blind, randomised, controlled, phase 3 study. Lancet. 2023;401:269–80. https://doi.org/10.1016/S0140-6736(22)02036-0.

    Article  CAS  PubMed  Google Scholar 

  22. Gagelmann N, Hobbs GS, Campodonico E, Helbig G, Novak P, Schroeder T, et al. Splenic irradiation for myelofibrosis prior to hematopoietic cell transplantation: a global collaborative analysis. Am J Hematol. 2024;99:844–53.

    Article  CAS  PubMed  Google Scholar 

  23. Oechsler S, Gagelmann N, Wolschke C, Janson D, Badbaran A, Klyuchnikov E, et al. Graft-versus-host disease and impact on relapse in myelofibrosis undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant. 2024;59:550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kitanaka A, Takenaka K, Shide K, Miyamoto T, Kondo T, Ozawa K, et al. Splenic irradiation provides transient palliation for symptomatic splenomegaly associated with primary myelofibrosis: a report on 14 patients. Int J Hematol. 2016;103:423–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kalman NS, Mukhopadhyay ND, Roberts CH, Chung HM, Clark WB, McCarty JM, et al. Low-dose splenic irradiation prior to hematopoietic cell transplantation in hypersplenic patients with myelofibrosis. Leuk Lymphoma. 2017;58:2983–4.

    Article  PubMed  Google Scholar 

  26. Bales JR, Kim HT, Portillo R, Patel C, McAfee S, Dey B, et al. Splenic irradiation prior to allogeneic hematopoietic cell transplantation for patients with myelofibrosis. Bone Marrow Transplant. 2023;58:459–61.

    Article  PubMed  Google Scholar 

  27. Campodonico E, Xue E, Piemontese S, Chiara A, Bruno A, Scorpio G, et al. Splenic irradiation prior to allogeneic transplant conditioning in myelofibrosis: a pilot experience. Curr Res Transl Med. 2023;71:103400.

    Article  CAS  PubMed  Google Scholar 

  28. Finazzi MC, Tefferi A, Rambaldi A. JAK inhibitor treatment‐resistant splenomegaly before transplantation in myelofibrosis: splenectomy or radiotherapy? Am J Hematol. 2024;99:804–5.

    Article  CAS  PubMed  Google Scholar 

  29. Ferreira Gomes G, Harrison C. Pelabresib (CPI-0610): an exciting novel drug for the treatment of myelofibrosis. Curr Hematol Malig Rep. 2023;18:113–20.

    Article  PubMed  Google Scholar 

  30. Pemmaraju N, Garcia JS, Perkins A, Harb JG, Souers AJ, Werner ME, et al. New era for myelofibrosis treatment with novel agents beyond Janus kinase‐inhibitor monotherapy: Focus on clinical development of BCL‐XL/BCL‐2 inhibition with navitoclax. Cancer 2023;129:3535–45.

    Article  CAS  PubMed  Google Scholar 

  31. Mascarenhas J, Kremyanskaya M, Patriarca A, Palandri F, Devos T, Passamonti F, et al. MANIFEST: pelabresib in combination with ruxolitinib for Janus kinase inhibitor treatment-naïve myelofibrosis. J Clin Oncol. 2023;41:4993–5004. https://doi.org/10.1200/JCO.22.01972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hernández‐Boluda J, Pastor‐Galán I, Arellano‐Rodrigo E, Raya J, Pérez‐Encinas M, Ayala R, et al. Predictors of thrombosis and bleeding in 1613 myelofibrosis patients from the Spanish Registry of Myelofibrosis. Br J Haematol. 2022;199:529–38.

    Article  PubMed  Google Scholar 

  33. Lavu S, Szuber N, Mudireddy M, Yogarajah M, Gangat N, Pardanani A, et al. Splanchnic vein thrombosis in patients with myeloproliferative neoplasms: the Mayo clinic experience with 84 consecutive cases. Am J Hematol. 2018;93:E61–4.

  34. Sant’Antonio E, Guglielmelli P, Pieri L, Primignani M, Randi ML, Santarossa C, et al. Splanchnic vein thromboses associated with myeloproliferative neoplasms: An international, retrospective study on 518 cases. Am J Hematol. 2020;95:156–66.

    Article  PubMed  Google Scholar 

  35. Alvarez-Larrán A, Pereira A, Magaz M, Hernández-Boluda JC, Garrote M, Cuevas B, et al. Natural history of polycythemia vera and essential thrombocythemia presenting with splanchnic vein thrombosis. Ann Hematol. 2020;99:791–8.

    Article  PubMed  Google Scholar 

  36. Wong KM, Atenafu EG, Kim D, Kuruvilla J, Lipton JH, Messner H, et al. Incidence and risk factors for early hepatotoxicity and its impact on survival in patients with myelofibrosis undergoing allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2012;18:1589–99.

    Article  PubMed  Google Scholar 

  37. Silverstein MN. Gastrointestinal and abdominal manifestations of agnogenic myeloid metaplasia. Arch Intern Med. 1973;131:532.

    Article  CAS  PubMed  Google Scholar 

  38. Ward HP, Block MH. The natural history of agnogenic myeloid metaplasia (AMM) and a critical evaluation of its relationship with the myeloproliferative syndrome. Medicine. 1971;50:357–420.

    Article  CAS  PubMed  Google Scholar 

  39. Smallbone P, Sekhar M, Srour SA, Shpall EJ, Popat UR. Hematopoietic stem cell transplantation in patients with myelofibrosis and splanchnic vein thrombosis. Transplant Cell Ther. 2024;30:S103.

    Article  Google Scholar 

  40. Polverelli N, Farina M, D’Adda M, Damiani E, Grazioli L, Leoni A, et al. How we manage myelofibrosis candidates for allogeneic stem cell transplantation. Cells 2022;11:553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tan HK, Leow WQ, Chang PE. Ruxolitinib for the treatment of portal hypertension in a patient with primary myelofibrosis. Gastroenterology 2019;157:e26–7.

    Article  PubMed  Google Scholar 

  42. Koschmieder S, Koppelle A, Seifert H. Ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:2031–5.

    Article  PubMed  Google Scholar 

  43. Yan M, Geyer H, Mesa R, Atallah E, Callum J, Bartoszko J, et al. Clinical features of patients with philadelphia-negative myeloproliferative neoplasms complicated by portal hypertension. Clin Lymphoma Myeloma Leuk. 2015;15:e1–5.

    Article  PubMed  Google Scholar 

  44. Lee J, Sung PS, Eom KS, Yang H, Lee SK, Bwa AH, et al. Clinical characteristics of portal hypertension complicated by gastroesophageal varices in patients with myeloproliferative neoplasms. Clin Mol Hepatol. 2020;26:78–82.

    Article  PubMed  Google Scholar 

  45. Pieri L, Paoli C, Arena U, Marra F, Mori F, Zucchini M, et al. Safety and efficacy of ruxolitinib in splanchnic vein thrombosis associated with myeloproliferative neoplasms. Am J Hematol. 2017;92:187–95.

    Article  CAS  PubMed  Google Scholar 

  46. Verstovsek S, Atallah E, Mascarenhas J, Sun H, Montgomery M, Gupta V, et al. Efficacy of ruxolitinib on hepatomegaly in patients with myelofibrosis. Leukemia 2016;30:1413–5.

    Article  CAS  PubMed  Google Scholar 

  47. Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2022;43:3618–731.

    Article  CAS  PubMed  Google Scholar 

  48. Garcia-Manero G, Schuster SJ, Patrick H, Martinez J. Pulmonary hypertension in patients with myelofibrosis secondary to myeloproliferative diseases. Am J Hematol. 1999;60:130–5.

    Article  CAS  PubMed  Google Scholar 

  49. Cortelezzi A, Gritti G, Del Papa N, Pasquini MC, Calori R, Gianelli U, et al. Pulmonary arterial hypertension in primary myelofibrosis is common and associated with an altered angiogenic status. Leukemia 2008;22:646–9.

    Article  CAS  PubMed  Google Scholar 

  50. Lopez-Mattei J, Verstovsek S, Fellman B, Iliescu C, Bhatti K, Hassan SA, et al. Prevalence of pulmonary hypertension in myelofibrosis. Ann Hematol. 2020;99:781–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brabrand M, Hansen KN, Laursen CB, Larsen TS, Vestergaard H, Abildgaard N. Frequency and etiology of pulmonary hypertension in patients with myeloproliferative neoplasms. Eur J Haematol. 2019;102:227–34.

    Article  PubMed  Google Scholar 

  52. Gupta R, Jamal F, Yang D, Chendri C, Aldoss I, Malki M, Al, et al. Pulmonary hypertension is associated with increased nonrelapse mortality after allogeneic hematopoietic cell transplantation for myelofibrosis. Bone Marrow Transplant. 2020;55:877–83.

    Article  CAS  PubMed  Google Scholar 

  53. Salit RB, Baker KK, Edwards R, Tobin G, Kicska G, Gooley TA, et al. Diagnosis of pulmonary hypertension by noninvasive methods in hematopoietic cell transplant patients with myelofibrosis. Bone Marrow Transplant. 2020;55:1681–3.

    Article  PubMed  Google Scholar 

  54. Perram J, Ross DM, McLornan D, Gowin K, Kröger N, Gupta V, et al. Innovative strategies to improve hematopoietic stem cell transplant outcomes in myelofibrosis. Am J Hematol. 2022;97:1464–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Steensma DP, Hook CC, Stafford SL, Tefferi A. Low‐dose, single‐fraction, whole‐lung radiotherapy for pulmonary hypertension associated with myelofibrosis with myeloid metaplasia. Br J Haematol. 2002;118:813–6.

    Article  PubMed  Google Scholar 

  56. Chunduri S, Gaitonde S, Ciurea SO, Hoffman R, Rondelli D. Pulmonary extramedullary hematopoiesis in patients with myelofibrosis undergoing allogeneic stem cell transplantation. Haematologica 2008;93:1593–5.

    Article  PubMed  Google Scholar 

  57. Maccaferri M, Leonardi G, Marasca R, Colaci E, Paolini A, Soci F, et al. Ruxolitinib for pulmonary extramedullary hematopoiesis in myelofibrosis. Leuk Lymphoma. 2014;55:2207–8.

    Article  PubMed  Google Scholar 

  58. Fujimoto A, Hamaguchi S, Suzuki R. Case of pulmonary extramedullary hematopoiesis responding to ruxolitinib. Leuk Res Rep. 2022;17:100290.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tabarroki A, Lindner DJ, Visconte V, Zhang L, Rogers HJ, Parker Y, et al. Ruxolitinib leads to improvement of pulmonary hypertension in patients with myelofibrosis. Leukemia 2014;28:1486–93.

    Article  CAS  PubMed  Google Scholar 

  60. Gerds AT, Bose P, Hobbs GS, Kuykendall AT, Neilson LM, Song J, et al. Treating anemic patients with myelofibrosis in the new Janus kinase inhibitor era: current evidence and real-world implications. HemaSphere. 2022;6. https://journals.lww.com/hemasphere/fulltext/2022/10000/treating_anemic_patients_with_myelofibrosis_in_the.10.aspx.

  61. Palandri F, Breccia M, Mazzoni C, Auteri G, Elli EM, Trawinska MM, et al. Ruxolitinib in cytopenic myelofibrosis: response, toxicity, drug discontinuation, and outcome. Cancer. 2023;129:1704–13. https://doi.org/10.1002/cncr.34722.

    Article  CAS  PubMed  Google Scholar 

  62. Huang J, Li CY, Mesa RA, Wu W, Hanson CA, Pardanani A, et al. Risk factors for leukemic transformation in patients with primary myelofibrosis. Cancer. 2008;112:2726–32. https://doi.org/10.1002/cncr.23505.

    Article  PubMed  Google Scholar 

  63. Winton EF, Kota V. Momelotinib in myelofibrosis: JAK1/2 inhibitor with a role in treating and understanding the anemia. Future Oncol. 2016;13:395–407. https://doi.org/10.2217/fon-2016-0417.

    Article  CAS  PubMed  Google Scholar 

  64. Bacigalupo A, Soraru M, Dominietto A, Pozzi S, Geroldi S, Van Lint MT, et al. Allogeneic hemopoietic SCT for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen size and donor type. Bone Marrow Transplant. 2010;45:458–63.

    Article  CAS  PubMed  Google Scholar 

  65. Gerds AT, Vannucchi AM, Passamonti F, Kremyanskaya M, Gotlib JR, Palmer JM, et al. SIMPLIFY-1: a phase 2 study of luspatercept in patients with myelofibrosis-associated anemia. Blood. 2019;134:557 https://doi.org/10.1182/blood-2019-122546.

    Article  Google Scholar 

  66. Harrison CN, Vannucchi AM, Platzbecker U, Cervantes F, Gupta V, Lavie D. et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol. 2018;5:e73–81. https://doi.org/10.1016/S2352-3026(17)30237-5.

    Article  PubMed  Google Scholar 

  67. Mascarenhas J, Komrokji RS, Palandri F, Martino B, Niederwieser D, Reiter A, et al. Randomized, single-blind, multicenter phase ii study of two doses of imetelstat in relapsed or refractory myelofibrosis. J Clin Oncol. 2021;39:2881–92. https://doi.org/10.1200/JCO.20.02864.

    Article  CAS  PubMed  Google Scholar 

  68. Gerds AT, Savona MR, Scott BL, Talpaz M, Egyed M, Harrison CN, et al. Determining the recommended dose of pacritinib: results from the PAC203 dose-finding trial in advanced myelofibrosis. Blood Adv. 2020;4:5825–35. https://doi.org/10.1182/bloodadvances.2020003314.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Beauverd Y, McLornan DP, Harrison CN. Pacritinib: a new agent for the management of myelofibrosis. Expert Opin Pharmacother. 2015;16:2381–90. https://doi.org/10.1517/14656566.2015.1088831.

    Article  CAS  PubMed  Google Scholar 

  70. Rampal RK, Grosicki S, Chraniuk D, Abruzzese E, Bose P, Gerds AT. et al. Pelabresib in combination with ruxolitinib for Janus kinase inhibitor treatment-naïve patients with myelofibrosis: results of the MANIFEST-2 randomized, double-blind, phase 3 study. Blood. 2023;142:628. https://doi.org/10.1182/blood-2023-179141.

    Article  Google Scholar 

  71. Mascarenhas J, Harrison C, Luptakova K, Christo J, Wang J, Mertz JA. et al. MANIFEST-2, a global, phase 3, randomized, double-blind, active-control study of cpi-0610 and ruxolitinib vs. placebo and ruxolitinib in JAK-inhibitor-naive myelofibrosis patients. Blood. 2020;136:43. https://doi.org/10.1182/blood-2020-140901.

    Article  Google Scholar 

  72. Barba P, Valcárcel D, Pérez-Simón JA, Fernández-Avilés F, Piñana JL, Martino R. et al. Impact of hyperferritinemia on the outcome of reduced-intensity conditioning allogeneic hematopoietic cell transplantation for lymphoid malignancies. Biol Blood Marrow Transplant. 2013;19:597–601. https://www.sciencedirect.com/science/article/pii/S1083879112011779.

    Article  CAS  PubMed  Google Scholar 

  73. Armand P, Kim HT, Cutler CS, Ho VT, Koreth J, Alyea EP, et al. Prognostic impact of elevated pretransplantation serum ferritin in patients undergoing myeloablative stem cell transplantation. Blood. 2007;109:4586–8. https://doi.org/10.1182/blood-2006-10-054924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yan Z, Chen X, Wang H, Chen Y, Chen L, Wu P, et al. Effect of pre-transplantation serum ferritin on outcomes in patients undergoing allogeneic hematopoietic stem cell transplantation: a meta-analysis. Medicine. 2018;97. https://journals.lww.com/md-journal/fulltext/2018/07060/effect_of_pre_transplantation_serum_ferritin_on.1.aspx.

  75. Atilla E, Toprak SK, Demirer T. Current review of iron overload and related complications in hematopoietic stem cell transplantation. Turkish J Hematol. 2017;34:1–9.

    Article  Google Scholar 

  76. Elli EM, Di Veroli A, Bartoletti D, Iurlo A, Carmosino I, Benevolo G, et al. Deferasirox in the management of iron overload in patients with myelofibrosis treated with ruxolitinib: the multicentre retrospective RUX‐IOL study. Br J Haematol. 2022;197:190–200.

    Article  CAS  PubMed  Google Scholar 

  77. Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106:2912–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Raimondi R, Tosetto A, Oneto R, Cavazzina R, Rodeghiero F, Bacigalupo A, et al. Validation of the hematopoietic cell transplantation-specific comorbidity index: a prospective, multicenter GITMO study. Blood. 2012;120:1327–33.

    Article  CAS  PubMed  Google Scholar 

  79. Gagelmann N, Ditschkowski M, Bogdanov R, Bredin S, Robin M, Cassinat B, et al. Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation. Blood. 2019;133:2233–42.

    Article  CAS  PubMed  Google Scholar 

  80. Tamari R, McLornan DP, Ahn KW, Estrada-Merly N, Hernández-Boluda JC, Giralt S, et al. A simple prognostic system in patients with myelofibrosis undergoing allogeneic stem cell transplantation: a CIBMTR/EBMT analysis. Blood Adv. 2023;7:3993–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hernández-Boluda JC, Pereira A, Alvarez-Larran A, Martín AA, Benzaquen A, Aguirre L, et al. Predicting survival after allogeneic hematopoietic cell transplantation in myelofibrosis: performance of the Myelofibrosis Transplant Scoring System (MTSS) and development of a new prognostic model. Biol Blood Marrow Transplant. 2020;26:2237–44.

    Article  PubMed  Google Scholar 

  82. Doney K, McMillen K, Buono L, Deeg HJ, Gooley T. Impact of body mass index on outcomes of hematopoietic stem cell transplantation in adults. Biol Blood Marrow Transplant. 2019;25:613–20.

    Article  PubMed  Google Scholar 

  83. Hernández‐Boluda J, Pereira A, Kröger N, Cornelissen JJ, Finke J, Beelen D, et al. Allogeneic hematopoietic cell transplantation in older myelofibrosis patients: a study of the chronic malignancies working party of EBMT and the Spanish Myelofibrosis Registry. Am J Hematol. 2021;96:1186–94.

    Article  PubMed  Google Scholar 

  84. Jayani RV. How old is too old? Frailty and geriatric assessments of older patients undergoing allogeneic HCT. Hematology 2023;2023:709–14.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Polverelli N, Tura P, Battipaglia G, Malagola M, Bernardi S, Gandolfi L, et al. Multidimensional geriatric assessment for elderly hematological patients (≥60 years) submitted to allogeneic stem cell transplantation. a French-Italian 10-year experience on 228 patients. Bone Marrow Transplant. 2020;55:2224–33.

    Article  PubMed  Google Scholar 

  86. Muffly LS, Boulukos M, Swanson K, Kocherginsky M, Cerro P, del, Schroeder L, et al. Pilot study of comprehensive geriatric assessment (CGA) in allogeneic transplant: CGA captures a high prevalence of vulnerabilities in older transplant recipients. Biol Blood Marrow Transplant. 2013;19:429–34.

    Article  PubMed  Google Scholar 

  87. Muffly LS, Kocherginsky M, Stock W, Chu Q, Bishop MR, Godley LA, et al. Geriatric assessment to predict survival in older allogeneic hematopoietic cell transplantation recipients. Haematologica 2014;99:1373–9.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kneis S, Straub E, Walz ID, von Olshausen P, Wehrle A, Gollhofer A, et al. Gait analysis of patients after allogeneic hematopoietic cell transplantation reveals impairments of functional performance. Integr Cancer Ther. 2020;19:153473542091578.

    Article  Google Scholar 

  89. Smith PJ, Lew M, Lowder Y, Romero K, Thompson JC, Bohannon L, et al. Cognitive impairment in candidates for allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2022;57:89–94.

    Article  PubMed  Google Scholar 

  90. Sorror ML, Gooley TA, Storer BE, Gerds AT, Sekeres MA, Medeiros BC. et al. An 8-year pragmatic observation evaluation of the benefits of allogeneic HCT in older and medically infirm patients with AML. Blood. 2023;141:295–308.

    Article  CAS  PubMed  Google Scholar 

  91. Salas MQ, Atenafu EG, Pasic I, Bascom O, Wilson L, Lam W, et al. HCT frailty scale for younger and older adults undergoing allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2023;58:1237–46.

    Article  CAS  PubMed  Google Scholar 

  92. Funke VAM, Bonfim C, Darrigo Juniro LG, Barroso Duarte F. Access to hematopoietic stem cell transplantation in Brazil: facing our challenges. J Bone Marrow Transplant Cell Ther. 2023;4:211.

    Article  Google Scholar 

  93. Moreira Funke VA, Lima ACM, Hamerschlak N, Rensi Colturato VA, De Souza MP, Vigorito AC, et al. DIPSS score validation as a tool to estimate survival and non-relapse mortality after hematopoietic stem cell transplant in a Brazilian multicentric cohort. Transplant Cell Ther. 2022;28:S131–3.

    Article  Google Scholar 

  94. Simione AJ, da Silva CC, da Sabaini PM, Macedo AV, das Neves HRA, da Geraldo BL. et al. Current use and outcomes of hematopoietic stem cell transplantation: Brazilian summary slides—2024. J Bone Marrow Transplant Cell Ther. 2024;5:228.

    Article  Google Scholar 

  95. Singh S, Cao Q, Demorest C, He F, Kramer A, Holtan S, et al. The prevalence of pretransplant frailty and mental distress in hematopoietic cell transplantation and association with clinical outcomes. Transplant Cell Ther. 2024;30:919.e1–9.

  96. Sung AD, Koll T, Gier SH, Racioppi A, White G, Lew M. et al. Preconditioning frailty phenotype influences survival and relapse for older allogeneic transplantation recipients. Transplant Cell Ther. 2024;30:415.e1–16.

    Article  PubMed  Google Scholar 

  97. Huang LW, Shi Y, Andreadis C, Logan AC, Mannis GN, Smith CC, et al. Association of geriatric measures and global frailty with cognitive decline after allogeneic hematopoietic cell transplantation in older adults. J Geriatr Oncol 2023;14:101623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ombres R, des Bordes JKA, Popat UR, Yennu S, Champlin RE, Mohile SG. et al. Serial frailty assessments following allogeneic stem cell transplant in older adults: a pilot study. J Geriatr Oncol. 2022;13:194–9.

    Article  CAS  PubMed  Google Scholar 

  99. Rodrigues M, de Souza PMR, de Oliveira Muniz Koch L, Hamerschlak N. The use of comprehensive geriatric assessment in older patients before allologeneic hematopoietic stem cell transplantation: a cross-sectional study. J Geriatr Oncol. 2020;11:100–6.

    Article  PubMed  Google Scholar 

  100. Lin RJ, Elko TA, Devlin SM, Shahrokni A, Jakubowski AA, Dahi PB, et al. Impact of geriatric vulnerabilities on allogeneic hematopoietic cell transplantation outcomes in older patients with hematologic malignancies. Bone Marrow Transplant. 2020;55:157–64.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Juan Carlos García Pagán (Hepatology Unit, Hospital Clínic, Barcelona) and Enrique Santas (Cardiology Department, Hospital Clínico, Valencia) for kindly reviewing the present manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NP, JCHB, NC, CG, MM, FBD, VAM, CZ, DPM wrote and approved the final version of the manuscript.

Corresponding authors

Correspondence to Nicola Polverelli or Donal P. McLornan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polverelli, N., Hernández-Boluda, J.C., Gagelmann, N. et al. Navigating ‘grey areas’ and challenges during evaluation of transplant eligibility in specific myelofibrosis populations: a perspective on behalf of the Chronic Malignancies Working Party of the EBMT. Bone Marrow Transplant 60, 10–18 (2025). https://doi.org/10.1038/s41409-024-02437-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41409-024-02437-6

This article is cited by

Search

Quick links