Abstract
Several CD19 CAR-T-cell drugs are approved for safety and efficacy in advanced B-cell cancers with encouraging results. However, primary refractory and relapse are common. We critically analyze long-term data on efficacy of CD19 CAR-T-cell therapies in B-cell non-Hodgkin lymphomas from clinical trials with those of so-called real world data. We identify co-variates associated with efficacy, discuss mechanisms of relapse, summarize the data on the results of post-failure therapy including allotransplants, monoclonal and bi-specific antibodies, antibody-drug conjugates, immune checkpoint-inhibitors and repeat infusions of CAR-T-cells. We conclude, save for allotransplants, there are few data strongly supporting any of these interventions. Most trial are with few heterogeneously-treated subjects with diverse interventions and brief follow-up. Interventions need to be tailored to the cause(s) of CAR-T-cell failure. Prestly, there is not a convincingly safe and effective therapy of people failing initial CAR-T-cell therapy of B-cell non-Hodgkin lymphoma.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
References
Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15:31–46. https://doi.org/10.1038/nrclinonc.2017128.
Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA. et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-Cell lymphoma. N Engl J Med. 2017;377:2531–44. https://doi.org/10.1056/NEJMoa1707447.
Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-Cell lymphoma. N Engl J Med. 2019;380:45–56. https://doi.org/10.1056/NEJMoa1804980.
Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396:839–52. https://doi.org/10.1016/S0140-6736(20)31366-0.
Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT. et al. KTE-X19 CAR T-Cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382:1331–42. https://doi.org/10.1056/NEJMoa1914347.
Jacobson CA, Chavez JC, Sehgal AR, William BM, Munoz J, Salles G, et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022;23:91–103. https://doi.org/10.1016/S1470-2045(21)00591-X.
Fowler NH, Dickinson M, Dreyling M, Martinez-Lopez J, Kolstad A, Butler J, et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial. Nat Med. 2022;28:325–32. https://doi.org/10.1038/s41591-021-01622-0.
Hirayama AV, Gauthier J, Hay KA, Voutsinas JM, Wu Q, Pender BS, et al. High rate of durable complete remission in follicular lymphoma after CD19 CAR-T cell immunotherapy. Blood. 2019;134:636–40. https://doi.org/10.1182/blood.2019000905.
Cappell KM, Sherry RM, Yang JC, Goff SL, Vanasse DA, McIntyre L. et al. Long-term follow-up of anti-CD19 chimeric antigen receptor T-Cell therapy. J Clin Oncol. 2020;38:3805–15. https://doi.org/10.1200/JCO.20.01467.
Schuster SJ, Tam CS, Borchmann P, Worel N, McGuirk JP, Holte H. et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021;22:1403–15. https://doi.org/10.1016/S1470-2045(21)00375-2.
Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. Three-year follow-up of KTE-X19 in patients with relapsed/refractory mantle cell lymphoma, including high-risk subgroups, in the ZUMA-2 study. J Clin Oncol. 2023;41:555–67. https://doi.org/10.1200/JCO.21.02370.
Neelapu SS, Jacobson CA, Ghobadi A, Miklos DB, Lekakis LJ, Oluwole OO, et al. Five-year follow-up of ZUMA-1 supports the curative potential of axicabtagene ciloleucel in refractory large B-cell lymphoma. Blood. 2023;141:2307–15. https://doi.org/10.1182/blood.2022018893.
Westin JR, Oluwole OO, Kersten MJ, Miklos DB, Perales MA, Ghobadi A, et al. Survival with axicabtagene ciloleucel in large B-Cell lymphoma. N Engl J Med. 2023;389:148–57. https://doi.org/10.1056/NEJMoa2301665.
Abramson JS, Palomba ML, Gordon LI, Lunning M, Wang M, Arnason J, et al. Two-year follow-up of lisocabtagene maraleucel in relapsed or refractory large B-cell lymphoma in TRANSCEND NHL 001. Blood. 2024;143:404–16. https://doi.org/10.1182/blood.2023020854.
Neelapu SS, Chavez JC, Sehgal AR, Epperla N, Ulrickson M, Bachy E, et al. Three-year follow-up analysis of axicabtagene ciloleucel in relapsed/refractory indolent non-Hodgkin lymphoma (ZUMA-5). Blood. 2024;143:496–506. https://doi.org/10.1182/blood.2023021243.
Neelapu SS, Chavez JC, Sehgal AR, Epperla N, Ulrickson ML, Bachy E, et al. Axicabtagene Ciloleucel (Axi-Cel) in Patients with relapsed/refractory indolent non-Hodgkin lymphoma: 4-year follow-up from the phase 2 ZUMA-5 Trial. Blood. 2023;142:4868. https://doi.org/10.1182/blood-2023-174914.
Brisou G, Cartron G, Bachy E, Thieblemont C, Castilla-Llorente C, Le Bras F, et al. Real world data of axicabtagene ciloleucel as second line therapy for patients with large B Cell lymphoma: first results of a lysa study from the French descar-T registry. Blood. 2023;142:5138. https://doi.org/10.1182/blood-2023-180241.
Jacobson CA, Locke FL, Ma L, Asubonteng J, Hu ZH, Siddiqi T, et al. Real-world evidence of axicabtagene ciloleucel for the treatment of large B Cell lymphoma in the United States. Transpl Cell Ther. 2022;28:581 e581–581 e588. https://doi.org/10.1016/j.jtct.2022.05.026.
Bethge WA, Martus P, Schmitt M, Holtick U, Subklewe M, von Tresckow B, et al. GLA/DRST real-world outcome analysis of CAR T-cell therapies for large B-cell lymphoma in Germany. Blood. 2022;140:349–58. https://doi.org/10.1182/blood.2021015209.
Kuhnl A, Roddie C, Kirkwood AA, Tholouli E, Menne T, Patel A, et al. A national service for delivering CD19 CAR-Tin large B-cell lymphoma - The UK real-world experience. Br J Haematol. 2022;198:492–502. https://doi.org/10.1111/bjh.18209.
Bachy E, Le Gouill S, Di Blasi R, Sesques P, Manson G, Cartron G, et al. A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma. Nat Med. 2022;28:2145–54. https://doi.org/10.1038/s41591-022-01969-y.
Kwon M, Iacoboni G, Reguera JL, Corral LL, Morales RH, Ortiz-Maldonado V, et al. Axicabtagene ciloleucel compared to tisagenlecleucel for the treatment of aggressive B-cell lymphoma. Haematologica. 2023;108:110–21. https://doi.org/10.3324/haematol.2022.280805.
Pasquini MC, Hu ZH, Curran K, Laetsch T, Locke F, Rouce R, et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 2020;4:5414–24. https://doi.org/10.1182/bloodadvances.2020003092.
Portuguese AJ, Albittar A, Liang EC, Huang JJ, Hirayama AV, Kimble EL, et al. Lisocabtagene maraleucel versus axicabtagene ciloleucel: efficacy and toxicity in a real-world setting. Blood. 2023;142:2131–2131. https://doi.org/10.1182/blood-2023-172978.
Wang Y, Jain P, Locke FL, Maurer MJ, Frank MJ, Munoz JL, et al. Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in standard-of-care practice: results from the US lymphoma CAR T consortium. J Clin Oncol. 2023;41:2594–606. https://doi.org/10.1200/JCO.22.01797.
Locke FL, Rossi JM, Neelapu SS, Jacobson CA, Miklos DB, Ghobadi A, et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020;4:4898–911. https://doi.org/10.1182/bloodadvances.2020002394.
Good Z, Spiegel JY, Sahaf B, Malipatlolla MB, Ehlinger ZJ, Kurra S, et al. Post-infusion CAR T(Reg) cells identify patients resistant to CD19-CAR therapy. Nat Med. 2022;28:1860–71. https://doi.org/10.1038/s41591-022-01960-7.
Hirayama AV, Gauthier J, Hay KA, Voutsinas JM, Wu Q, Gooley T, et al. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood. 2019;133:1876–87. https://doi.org/10.1182/blood-2018-11-887067.
Vercellino L, Di Blasi R, Kanoun S, Tessoulin B, Rossi C, D’Aveni-Piney M, et al. Predictive factors of early progression after CAR T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Adv. 2020;4:5607–15. https://doi.org/10.1182/bloodadvances.2020003001.
Cherng HJ, Deng Q, Fayad L, Fowler NH, Parmar S, Steiner R, et al. Risk assessment with low-pass whole-genome sequencing of cell-free DNA before CD19 CAR T-cell therapy for large B-cell lymphoma. Blood. 2022;140:504–15. https://doi.org/10.1182/blood.2022015601.
Frank MJ, Hossain NM, Bukhari A, Dean E, Spiegel JY, Claire GK, et al. Monitoring of circulating tumor DNA improves early relapse detection after axicabtagene ciloleucel infusion in large B-Cell lymphoma: results of a prospective multi-institutional trial. J Clin Oncol. 2021;39:3034–43. https://doi.org/10.1200/JCO.21.00377.
Sworder BJ, Kurtz DM, Alig SK, Frank MJ, Shukla N, Garofalo A, et al. Determinants of resistance to engineered T cell therapies targeting CD19 in large B cell lymphomas. Cancer Cell. 2023;41:210–25.e215. https://doi.org/10.1016/j.ccell.2022.12.005.
Brammer JE, Braunstein Z, Katapadi A, Porter K, Biersmith M, Guha A et al. Early toxicity and clinical outcomes after chimeric antigen receptor T-cell (CAR-T) therapy for lymphoma. J Immunother Cancer 2021;9(8). https://doi.org/10.1136/jitc-2020-002303.
Ruella M, Korell F, Porazzi P, Maus MV. Mechanisms of resistance to chimeric antigen receptor-T cells in haematological malignancies. Nat Rev Drug Discov. 2023;22:976–95. https://doi.org/10.1038/s41573-023-00807-1.
Wada F, Jo T, Arai Y, Kitawaki T, Mizumoto C, Kanda J, et al. T-cell counts in peripheral blood at leukapheresis predict responses to subsequent CAR-T cell therapy. Sci Rep. 2022;12:18696. https://doi.org/10.1038/s41598-022-23589-9.
Ayuk FA, Berger C, Badbaran A, Zabelina T, Sonntag T, Riecken K, et al. Axicabtagene ciloleucel in vivo expansion and treatment outcome in aggressive B-cell lymphoma in a real-world setting. Blood Adv. 2021;5:2523–7. https://doi.org/10.1182/bloodadvances.2020003959.
Frank MJ, Baird JH, Kramer AM, Srinagesh HK, Patel S, Brown AK et al. CD22-directed CAR T-cell therapy for large B-cell lymphomas progressing after CD19-directed CAR T-cell therapy: a dose-finding phase 1 study. Lancet 2024. https://doi.org/10.1016/s0140-6736(24)00746-3.
Rossi J, Paczkowski P, Shen YW, Morse K, Flynn B, Kaiser A, et al. Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood. 2018;132:804–14. https://doi.org/10.1182/blood-2018-01-828343.
Zhang X, Sun R, Zhang M, Zhao Y, Cao X, Guo R, et al. A CAR-T response prediction model for r/r B-NHL patients based on a T cell subset nomogram. Cancer Immunol Immunother. 2024;73:33. https://doi.org/10.1007/s00262-023-03618-w.
Chen J, Qiu S, Li W, Wang K, Zhang Y, Yang H, et al. Tuning charge density of chimeric antigen receptor optimizes tonic signaling and CAR-T cell fitness. Cell Res. 2023;33:341–54. https://doi.org/10.1038/s41422-023-00789-0.
Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24:563–71. https://doi.org/10.1038/s41591-018-0010-1.
Ventin M, Cattaneo G, Maggs L, Arya S, Wang XH, Ferrone CR. Implications of high tumor burden on chimeric antigen receptor T-Cell immunotherapy a review. JAMA Oncol. 2024;10:115–21. https://doi.org/10.1001/jamaoncol.2023.4504.
Reiss DJ, Do T, Kuo D, Gray VE, Olson NE, Lee C-W, et al. Multiplexed Immunofluorescence (IF) Analysis and Gene Expression Profiling of Biopsies from Patients with Relapsed/Refractory (R/R) Diffuse Large B Cell Lymphoma (DLBCL) Treated with Lisocabtagene Maraleucel (liso-cel) in Transcend NHL 001 Reveal Patterns of Immune Infiltration Associated with Durable Response. Blood. 2019;134:202. https://doi.org/10.1182/blood-2019-127683.
Jain MD, Zhao H, Wang X, Atkins R, Menges M, Reid K, et al. Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma. Blood. 2021;137:2621–33. https://doi.org/10.1182/blood.2020007445.
Singh N, Lee YG, Shestova O, Ravikumar P, Hayer KE, Hong SJ, et al. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T-cell dysfunction. Cancer Discov. 2020;10:552–67. https://doi.org/10.1158/2159-8290.CD-19-0813.
Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature. 2018;558:307–12. https://doi.org/10.1038/s41586-018-0178-z.
Si J, Shi X, Sun S, Zou B, Li Y, An D, et al. Hematopoietic Progenitor Kinase1 (HPK1) mediates T Cell dysfunction and is a druggable target for T Cell-based immunotherapies. Cancer Cell. 2020;38:551–66.e511. https://doi.org/10.1016/j.ccell.2020.08.001.
Carnevale J, Shifrut E, Kale N, Nyberg WA, Blaeschke F, Chen YY, et al. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature. 2022;609:174–82. https://doi.org/10.1038/s41586-022-05126-w.
Lynn RC, Weber EW, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293–300. https://doi.org/10.1038/s41586-019-1805-z.
Lee YG, Guruprasad P, Ghilardi G, Pajarillo R, Sauter CT, Patel R, et al. Modulation of BCL-2 in Both T cells and tumor cells to enhance chimeric antigen receptor T-cell immunotherapy against cancer. Cancer Discov. 2022;12:2372–91. https://doi.org/10.1158/2159-8290.CD-21-1026.
Li G, Boucher JC, Kotani H, Park K, Zhang Y, Shrestha B et al. 4-1BB enhancement of CAR T function requires NF-kappaB and TRAFs. JCI Insight 2018; 3. https://doi.org/10.1172/jci.insight.121322.
Feucht J, Sun J, Eyquem J, Ho YJ, Zhao Z, Leibold J, et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med. 2019;25:82–88. https://doi.org/10.1038/s41591-018-0290-5.
Sommermeyer D, Hill T, Shamah SM, Salter AI, Chen Y, Mohler KM, et al. Fully human CD19-specific chimeric antigen receptors for T-cell therapy. Leukemia. 2017;31:2191–9. https://doi.org/10.1038/leu.2017.57.
Roselli E, Boucher JC, Li G, Kotani H, Spitler K, Reid K et al. 4-1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells. J Immunother Cancer 2021; 9(10). https://doi.org/10.1136/jitc-2021-003354.
Li W, Qiu S, Chen J, Jiang S, Chen W, Jiang J, et al. Chimeric antigen receptor designed to prevent ubiquitination and downregulation showed durable antitumor efficacy. Immunity. 2020;53:456–70.e456. https://doi.org/10.1016/j.immuni.2020.07.011.
Zhou JX, Jin LY, Wang FP, Zhang Y, Liu B, Zhao TB. Chimeric antigen receptor T (CAR-T) cells expanded with IL-7/IL-15 mediate superior antitumor effects. Protein Cell. 2019;10:764–9. https://doi.org/10.1007/s13238-019-0643-y.
Alizadeh D, Wong RA, Yang X, Wang DR, Pecoraro JR, Kuo CF, et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol Res. 2019;7:759–72. https://doi.org/10.1158/2326-6066.Cir-18-0466.
Garfall AL, Dancy EK, Cohen AD, Hwang WT, Fraietta JA, Davis MM, et al. T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Adv. 2019;3:2812–5. https://doi.org/10.1182/bloodadvances.2019000600.
Neelapu SS, Dickinson M, Munoz J, Ulrickson ML, Thieblemont C, Oluwole OO, et al. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial. Nat Med. 2022;28:735–42. https://doi.org/10.1038/s41591-022-01731-4.
Ghassemi S, Durgin JS, Nunez-Cruz S, Patel J, Leferovich J, Pinzone M, et al. Rapid manufacturing of non-activated potent CAR T cells. Nat Biomed Eng. 2022;6:118–28. https://doi.org/10.1038/s41551-021-00842-6.
Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, van Leeuwen DG, Drakes DJ, et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol. 2018;36:847–56. https://doi.org/10.1038/nbt.4195.
Liu H, Lei W, Zhang C, Yang C, Wei J, Guo Q, et al. CD19-specific CAR T Cells that Express a PD-1/CD28 Chimeric Switch-Receptor are Effective in Patients with PD-L1-positive B-Cell Lymphoma. Clin Cancer Res. 2021;27:473–84. https://doi.org/10.1158/1078-0432.CCR-20-1457.
Agarwal S, Aznar MA, Rech AJ, Good CR, Kuramitsu S, Da T, et al. Deletion of the inhibitory co-receptor CTLA-4 enhances and invigorates chimeric antigen receptor T cells. Immunity. 2023;56:2388–407.e2389. https://doi.org/10.1016/j.immuni.2023.09.001.
Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5:1282–95. https://doi.org/10.1158/2159-8290.CD-15-1020.
Fischer J, Paret C, El Malki K, Alt F, Wingerter A, Neu MA, et al. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. J Immunother. 2017;40:187–95. https://doi.org/10.1097/CJI.0000000000000169.
Plaks V, Rossi JM, Chou J, Wang L, Poddar S, Han G, et al. CD19 target evasion as a mechanism of relapse in large B-cell lymphoma treated with axicabtagene ciloleucel. Blood. 2021;138:1081–5. https://doi.org/10.1182/blood.2021010930.
Ledererova A, Dostalova L, Kozlova V, Peschelova H, Ladungova A, Culen M et al. Hypermethylation of CD19 promoter enables antigen-negative escape to CART-19 in vivo and in vitro. J Immunother Cancer 2021; 9. https://doi.org/10.1136/jitc-2021-002352.
Heard A, Landmann JH, Hansen AR, Papadopolou A, Hsu YS, Selli ME, et al. Antigen glycosylation regulates efficacy of CAR T cells targeting CD19. Nat Commun. 2022;13:3367. https://doi.org/10.1038/s41467-022-31035-7.
Witkowski MT, Lee S, Wang E, Lee AK, Talbot A, Ma C, et al. NUDT21 limits CD19 levels through alternative mRNA polyadenylation in B cell acute lymphoblastic leukemia. Nat Immunol. 2022;23:1424–32. https://doi.org/10.1038/s41590-022-01314-y.
Evans AG, Rothberg PG, Burack WR, Huntington SF, Porter DL, Friedberg JW, et al. Evolution to plasmablastic lymphoma evades CD19-directed chimeric antigen receptor T cells. Br J Haematol. 2015;171:205–9. https://doi.org/10.1111/bjh.13562.
Zhang Q, Orlando EJ, Wang HY, Bogusz AM, Liu X, Lacey SF, et al. Transdifferentiation of lymphoma into sarcoma associated with profound reprogramming of the epigenome. Blood. 2020;136:1980–3. https://doi.org/10.1182/blood.2020005123.
Gardner R, Wu D, Cherian S, Fang M, Hanafi LA, Finney O, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127:2406–10. https://doi.org/10.1182/blood-2015-08-665547.
Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ, Ambrose DE, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med. 2018;24:1499–503. https://doi.org/10.1038/s41591-018-0201-9.
Zurko JC, Fenske TS, Johnson BD, Bucklan D, Szabo A, Xu H, et al. Long-term outcomes and predictors of early response, late relapse, and survival for patients treated with bispecific LV20.19 CAR T-cells. Am J Hematol. 2022;97:1580–8. https://doi.org/10.1002/ajh.26718.
Wang N, Hu X, Cao W, Li C, Xiao Y, Cao Y, et al. Efficacy and safety of CAR19/22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies. Blood. 2020;135:17–27. https://doi.org/10.1182/blood.2019000017.
Roddie C, Lekakis LJ, Marzolini MAV, Ramakrishnan A, Zhang Y, Hu Y, et al. Dual targeting of CD19 and CD22 with bicistronic CAR-T cells in patients with relapsed/refractory large B-cell lymphoma. Blood. 2023;141:2470–82. https://doi.org/10.1182/blood.2022018598.
Ahmed N, Kumar A, Kharfan-Dabaja MA, DeFilipp Z, Herrera A, Hashmi S, et al. ASTCT committee on practice guidelines survey on evaluation & management of diffuse large B-cell lymphoma after failure of chimeric antigen receptor T cell therapy (CAR-T) Therapy. Transpl Cell Ther. 2022;28:523–9. https://doi.org/10.1016/j.jtct.2022.05.043.
Shadman M, Gauthier J, Hay KA, Voutsinas JM, Milano F, Li A, et al. Safety of allogeneic hematopoietic cell transplant in adults after CD19-targeted CAR T-cell therapy. Blood Adv. 2019;3:3062–9. https://doi.org/10.1182/bloodadvances.2019000593.
Iacoboni G, Iraola-Truchuelo J, Mussetti A, Fernández-Caldas P, Garcés VN, Lopez AAM et al. Salvage treatment with novel agents is preferable to standard chemotherapy in patients with large B-cell lymphoma progressing after chimeric antigen receptor T-cell therapy. Blood 2022; 140. https://doi.org/10.1182/blood-2022-169219.
Fried S, Shouval R, Walji M, Flynn JR, Yerushalmi R, Shem-Tov N, et al. Allogeneic hematopoietic cell transplantation after chimeric antigen receptor T cell therapy in large B cell lymphoma. Transpl Cell Ther. 2023;29:99–107. https://doi.org/10.1016/j.jtct.2022.10.026.
Zurko J, Ramdial J, Shadman M, Ahmed S, Szabo A, Iovino L, et al. Allogeneic transplant following CAR T-cell therapy for large B-cell lymphoma. Haematologica. 2023;108:98–109. https://doi.org/10.3324/haematol.2022.281242.
Furqan F, Maring M, Szabo A, Fenske TS, Hamadani M, Shah NN. Salvage polatuzumab and allogeneic transplant rescue patients with B-cell lymphoma failing CAR T-cell therapy. Blood Adv. 2023;7:2463–7. https://doi.org/10.1182/bloodadvances.2022009025.
Derigs P, Bethge WA, Kramer I, Holtick U, von Tresckow B, Ayuk F, et al. Long-term survivors after failure of chimeric antigen receptor T cell therapy for large B cell lymphoma: a role for allogeneic hematopoietic cell transplantation? A German Lymphoma Alliance and German Registry for Stem Cell Transplantation Analysis. Transpl Cell Ther. 2023;29:750–6. https://doi.org/10.1016/j.jtct.2023.09.008.
Iacoboni G, Iraola-Truchuelo J, O’Reilly M, Navarro V, Menne T, Kwon M et al. Treatment outcomes in patients with large B-cell lymphoma after progression to chimeric antigen receptor T-cell therapy. Hemasphere 2024; 8(5). https://doi.org/10.1002/hem3.62.
Qualls D, Buege MJ, Dao P, Caimi PF, Rutherford SC, Wehmeyer G, et al. Tafasitamab and lenalidomide in relapsed/refractory large B Cell Lymphoma (R/R LBCL): real world outcomes in a multicenter retrospective study. Blood. 2022;140:787–9. https://doi.org/10.1182/blood-2022-167620.
Ruckdeschel A, Sabrina K, Topp MS, Greil R, Melchardt T, Lenz G, et al. Tafasitamab and lenalidomide in relapsed/refractory B-Cell lymphoma: a multicenter retrospective real-world-study of patients from Germany and Austria. Blood. 2023;142:1771. https://doi.org/10.1182/blood-2023-185992.
Caimi PF, Ardeshna KM, Reid E, Ai W, Lunning M, Zain J, et al. The AntiCD19 antibody drug immunoconjugate loncastuximab achieves responses in DLBCL relapsing after AntiCD19 CAR-T cell therapy. Clin Lymphoma Myeloma Leuk. 2022;22:e335–e339. https://doi.org/10.1016/j.clml.2021.11.005.
Iqbal M, Jagadeesh D, Chavez J, Khurana A, Rosenthal A, Craver E, et al. Efficacy of CD19 directed therapies in patients with relapsed or refractory large b-cell lymphoma relapsing after CD19 directed chimeric antigen receptor T-cell therapy. Bone Marrow Transpl. 2024;59:211–6. https://doi.org/10.1038/s41409-023-02148-4.
Kim J, Cho J, Lee MH, Yoon SE, Kim WS, Kim SJ. Comparison of CAR T-cell vs. bispecific antibody as third- or later-line large B-cell lymphoma therapy: A Meta-analysis. Blood 2024. https://doi.org/10.1182/blood.2023023419.
Budde LE, Assouline S, Sehn LH, Schuster SJ, Yoon SS, Yoon DH, et al. Single-agent mosunetuzumab shows durable complete responses in patients with relapsed or refractory B-cell lymphomas: phase I dose-escalation study. J Clin Oncol. 2022;40:481–91. https://doi.org/10.1200/JCO.21.00931.
Bartlett NL, Assouline S, Giri P, Schuster SJ, Cheah CY, Matasar M, et al. Mosunetuzumab monotherapy is active and tolerable in patients with relapsed/refractory diffuse large B-cell lymphoma. Blood Adv. 2023;7:4926–35. https://doi.org/10.1182/bloodadvances.2022009260.
Budde LE, Olszewski AJ, Assouline S, Lossos IS, Diefenbach C, Kamdar M, et al. Mosunetuzumab with polatuzumab vedotin in relapsed or refractory aggressive large B cell lymphoma: a phase 1b/2 trial. Nat Med. 2024;30:229–39. https://doi.org/10.1038/s41591-023-02726-5.
Thieblemont C, Phillips T, Ghesquieres H, Cheah CY, Clausen MR, Cunningham D, et al. Epcoritamab, a novel, subcutaneous CD3xCD20 Bispecific T-Cell-engaging antibody, in relapsed or refractory large B-Cell lymphoma: dose expansion in a phase I/II Trial. J Clin Oncol. 2023;41:2238–47. https://doi.org/10.1200/JCO.22.01725.
Dickinson MJ, Carlo-Stella C, Morschhauser F, Bachy E, Corradini P, Iacoboni G, et al. Glofitamab for relapsed or refractory diffuse large B-Cell lymphoma. N Engl J Med. 2022;387:2220–31. https://doi.org/10.1056/NEJMoa2206913.
Bannerji R, Arnason JE, Advani RH, Brown JR, Allan JN, Ansell SM, et al. Odronextamab, a human CD20xCD3 bispecific antibody in patients with CD20-positive B-cell malignancies (ELM-1): results from the relapsed or refractory non-Hodgkin lymphoma cohort in a single-arm, multicentre, phase 1 trial. Lancet Haematol. 2022;9:e327–e339. https://doi.org/10.1016/S2352-3026(22)00072-2.
Alarcon Tomas A, Fein JA, Fried S, Flynn JR, Devlin SM, Fingrut WB, et al. Outcomes of first therapy after CD19-CAR-T treatment failure in large B-cell lymphoma. Leukemia. 2023;37:154–63. https://doi.org/10.1038/s41375-022-01739-2.
Gouni S, Rosenthal AC, Crombie JL, Ip A, Kamdar MK, Hess B, et al. A multicenter retrospective study of polatuzumab vedotin in patients with large B-cell lymphoma after CAR T-cell therapy. Blood Adv. 2022;6:2757–62. https://doi.org/10.1182/bloodadvances.2021006801.
Grosser R, Cherkassky L, Chintala N, Adusumilli PS. Combination immunotherapy with CAR T Cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell. 2019;36:471–82. https://doi.org/10.1016/j.ccell.2019.09.006.
Shi X, Zhang D, Li F, Zhang Z, Wang S, Xuan Y, et al. Targeting glycosylation of PD-1 to enhance CAR-T cell cytotoxicity. J Hematol Oncol. 2019;12:127 https://doi.org/10.1186/s13045-019-0831-5.
Li AM, Hucks GE, Dinofia AM, Seif AE, Teachey DT, Baniewicz D, et al. Checkpoint inhibitors augment CD19-Directed Chimeric Antigen Receptor (CAR) T Cell therapy in relapsed B-Cell acute lymphoblastic leukemia. Blood. 2018;132:556. https://doi.org/10.1182/blood-2018-99-112572.
Chong EA, Melenhorst JJ, Lacey SF, Ambrose DE, Gonzalez V, Levine BL, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood. 2017;129:1039–41. https://doi.org/10.1182/blood-2016-09-738245.
Chong EA, Alanio C, Svoboda J, Nasta SD, Landsburg DJ, Lacey SF, et al. Pembrolizumab for B-cell lymphomas relapsing after or refractory to CD19-directed CAR T-cell therapy. Blood. 2022;139:1026–38. https://doi.org/10.1182/blood.2021012634.
Major A, Yu J, Shukla N, Che Y, Karrison TG, Treitman R, et al. Efficacy of checkpoint inhibition after CAR-T failure in aggressive B-cell lymphomas: outcomes from 15 US institutions. Blood Adv. 2023;7:4528–38. https://doi.org/10.1182/bloodadvances.2023010016.
Gazeau N, Mitra S, Nudel M, Tilmont R, Chauvet P, Srour M, et al. Safety and efficacy of nivolumab in patients who failed to achieve a complete remission after CD19-directed CAR T-cell therapy in diffuse large B cell lymphoma. Br J Haematol. 2023;202:434–6. https://doi.org/10.1111/bjh.18775.
Andrews LP, Butler SC, Cui J, Cillo AR, Cardello C, Liu C, et al. LAG-3 and PD-1 synergize on CD8+ T cells to drive T cell exhaustion and hinder autocrine IFN-γ-dependent anti-tumor immunity. Cell. 2024;187:4355–e4322. https://doi.org/10.1016/j.cell.2024.07.016.
Locke FL, Bartlett NL, Jacobson CA, Oluwole OO, Munoz J, Lekakis LJ, et al. ABCL-122: Retreatment (reTx) of Patients with Refractory Large B Cell Lymphoma with Axicabtagene Ciloleucel (Axi-Cel) in ZUMA-1. Clin Lymphoma Myeloma Leuk. 2020;20:S265. https://doi.org/10.1016/S2152-2650(20)30873-9.
Gauthier J, Bezerra ED, Hirayama AV, Fiorenza S, Sheih A, Chou CK, et al. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood. 2021;137:323–35. https://doi.org/10.1182/blood.2020006770.
Liang Y, Liu H, Lu Z, Lei W, Zhang C, Li P, et al. CD19 CAR-T expressing PD-1/CD28 chimeric switch receptor as a salvage therapy for DLBCL patients treated with different CD19-directed CAR T-cell therapies. J Hematol Oncol. 2021;14:26. https://doi.org/10.1186/s13045-021-01044-y.
Li P, Liu W, Ye S, Zhou L, Zhu J, Huang J, et al. Two-Year Follow-up Results of C-CAR066, a Novel Anti-CD20 Chimeric Antigen Receptor Cell Therapy (CAR-T) in Relapsed or Refractory (r/r) Large B-Cell Lymphoma (LBCL) Patients after Failure of CD19 CAR-T Therapy. Blood. 2023;142:2115. https://doi.org/10.1182/blood-2023-181527.
Frank MJ, Baird JH, Kramer AM, Srinagesh HK, Patel S, Brown AK, et al. CD22-directed CAR T-cell therapy for large B-cell lymphomas progressing after CD19-directed CAR T-cell therapy: a dose-finding phase 1 study. Lancet. 2024;404:353–63. https://doi.org/10.1016/s0140-6736(24)00746-3.
Zhu H, Deng H, Mu J, Lyu C, Jiang Y, Deng Q. Anti-CD22 CAR-T Cell Therapy as a Salvage Treatment in B Cell Malignancies Refractory or Relapsed After Anti-CD19 CAR-T therapy. Onco Targets Ther. 2021;14:4023–37. https://doi.org/10.2147/OTT.S312904.
Huang L, Li J, Yang J, Zhang X, Zhang M, He J et al. Safety and efficacy of humanized versus murinized CD19 and CD22 CAR T-Cell cocktail therapy for refractory/relapsed B-Cell lymphoma. Cells 2022;11. https://doi.org/10.3390/cells11244085.
Zhang Y, Wang Y, Liu Y, Tong C, Wang C, Guo Y, et al. Long-term activity of tandem CD19/CD20 CAR therapy in refractory/relapsed B-cell lymphoma: a single-arm, phase 1-2 trial. Leukemia. 2022;36:189–96. https://doi.org/10.1038/s41375-021-01345-8.
Acknowledgements
RPG acknowledges support from the UK National Institute of Health Research (NIHR) Biomedical Research Center.
Funding
Supported, in part, by grants from the National Natural Science Foundation of China (82370218 to BP, 82341203 to KX) and Jiangsu Provincial Key Research and Development Program (BE2021631 to BP).
Author information
Authors and Affiliations
Contributions
BP contributed to the concept, analyzed data and revised the manuscript. KX contributed to the concept and revised the manuscript. XZ did literature retrieval and wrote the manuscript. RPG helped analyze data and revised the manuscript.
Corresponding authors
Ethics declarations
Competing interests
RPG is a consultant to Antengene Biotech LLC; Medical Director, FFF Enterprises Inc.; A speaker for Janssen Pharma and Hengrui Pharma; Board of Directors: Russian Foundation for Cancer Research Support and Scientific Advisory Board, StemRad Ltd.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, X., Xu, K., Gale, R.P. et al. Strategies following failure of CAR-T-cell therapy in non-Hodgkin lymphoma. Bone Marrow Transplant 60, 182–190 (2025). https://doi.org/10.1038/s41409-024-02463-4
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41409-024-02463-4