Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Better pre-transplant treatment options for TP53-mutated MDS: cytoreductive or non-cytoreductive therapy?

Abstract

Patients with TP53-mutated myelodysplastic neoplasms (MDS) have unfavorable prognoses; the benefit of cytoreductive treatment before hematopoietic stem cell transplantation (HSCT) is debated. We retrospectively analyzed 284 MDS patients undergoing allogeneic HSCT; among which 49 had TP53 mutation, with 38 receiving cytoreduction and 11 treated exclusively with best supportive care (BSC) before transplantation. Regardless of TP53 allelic state, patients with mutated-TP53 had a lower overall survival rate and higher relapse rate than those with wild-type TP53 (P < 0.001, P = 0.002, respectively). Among the TP53-mutated cohort, the 2-year overall survival rate in the cytoreduction group was comparable to that in the BSC group (34.6% vs. 45.5%, P = 0.53), and no other prognostic benefit was observed as well (all P < 0.05). Moreover, no prognostic difference was found among the chemotherapy subgroup, hypomethylating agent subgroup, and BSC subgroup (all P > 0.05). Patients in the pre-HSCT measurable residual disease (MRD) negative subgroup, pre-HSCT MRD-positive subgroup, and BSC subgroup exhibited similar prognoses (all P > 0.05). Multivariate analyses showed that pre-HSCT cytoreduction was not associated with post-transplant survival (all P > 0.05). In conclusion, TP53-mutated MDS patients have poor post-HSCT outcomes; compared to BSC, pre-HSCT cytoreduction doesn’t improve prognosis, even in those with MRD negative before transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Outcomes of patients with TP53-mutated myelodysplastic neoplasms receiving cytoreduction or best supportive care before transplantation.
Fig. 2: Outcomes of patients with TP53-mutated myelodysplastic neoplasms according to different pre-transplant therapies.
Fig. 3: Outcomes of patients with TP53-mutated myelodysplastic neoplasms according to pre-transplant measurable residual disease status.

Similar content being viewed by others

Data availability

All data used and analyzed are available from the corresponding author upon reasonable request.

References

  1. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–19. https://doi.org/10.1038/s41375-022-01613-1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cazzola M. Myelodysplastic syndromes. N Engl J Med. 2020;383:1358–74. https://doi.org/10.1056/NEJMra1904794.

    Article  PubMed  CAS  Google Scholar 

  3. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364:2496–506. https://doi.org/10.1056/NEJMoa1013343.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7. https://doi.org/10.1038/leu.2013.336.

    Article  PubMed  CAS  Google Scholar 

  5. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70. https://doi.org/10.1016/s0092-8674(00)81683-9.

    Article  PubMed  CAS  Google Scholar 

  6. Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer. 2020;20:471–80. https://doi.org/10.1038/s41568-020-0262-1.

    Article  PubMed  CAS  Google Scholar 

  7. Bejar R, Stevenson KE, Caughey B, Lindsley RC, Mar BG, Stojanov P, et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 2014;32:2691–8. https://doi.org/10.1200/JCO.2013.52.3381.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Della Porta MG, Galli A, Bacigalupo A, Zibellini S, Bernardi M, Rizzo E, et al. Clinical effects of driver somatic mutations on the outcomes of patients with myelodysplastic syndromes treated with allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2016;34:3627–37. https://doi.org/10.1200/JCO.2016.67.3616.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Versluis J, Saber W, Tsai HK, Gibson CJ, Dillon LW, Mishra A, et al. Allogeneic hematopoietic cell transplantation improves outcome in myelodysplastic syndrome across high-risk genetic subgroups: genetic analysis of the blood and marrow transplant clinical trials network 1102 study. J Clin Oncol. 2023;41:4497–510. https://doi.org/10.1200/JCO.23.00866.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. de Witte T, Bowen D, Robin M, Malcovati L, Niederwieser D, Yakoub-Agha I, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129:1753–62. https://doi.org/10.1182/blood-2016-06-724500.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Sun YQ, Xu LP, Liu KY, Zhang XH, Yan CH, Jin J, et al. Pre-transplantation cytoreduction does not benefit advanced myelodysplastic syndrome patients after myeloablative transplantation with grafts from family donors. Cancer Commun. 2021;41:333–44. https://doi.org/10.1002/cac2.12140.

    Article  Google Scholar 

  12. Schroeder T, Wegener N, Lauseker M, Rautenberg C, Nachtkamp K, Schuler E, et al. Comparison between upfront transplantation and different pretransplant cytoreductive treatment approaches in patients with high-risk myelodysplastic syndrome and secondary acute myelogenous leukemia. Biol Blood Marrow Transpl. 2019;25:1550–9. https://doi.org/10.1016/j.bbmt.2019.03.011.

    Article  Google Scholar 

  13. Bernard E, Tuechler H, Greenberg PL, Hasserjian RP, Arango Ossa JE, Nannya Y, et al. Molecular international prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 2022. https://doi.org/10.1056/EVIDoa2200008.

  14. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65. https://doi.org/10.1182/blood-2012-03-420489.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Malcovati L, Della Porta MG, Strupp C, Ambaglio I, Kuendgen A, Nachtkamp K, et al. Impact of the degree of anemia on the outcome of patients with myelodysplastic syndrome and its integration into the WHO classification-based Prognostic Scoring System (WPSS). Haematologica. 2011;96:1433–40. https://doi.org/10.3324/haematol.2011.044602.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Weinberg OK, Siddon A, Madanat YF, Gagan J, Arber DA, Dal Cin P, et al. TP53 mutation defines a unique subgroup within complex karyotype de novo and therapy-related MDS/AML. Blood Adv. 2022;6:2847–53. https://doi.org/10.1182/bloodadvances.2021006239.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Luo Y, Xiao H, Lai X, Shi J, Tan Y, He J, et al. T-cell-replete haploidentical HSCT with low-dose anti-T-lymphocyte globulin compared with matched sibling HSCT and unrelated HSCT. Blood. 2014;124:2735–43. https://doi.org/10.1182/blood-2014-04-571570.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Malard F, Holler E, Sandmaier BM, Huang H, Mohty M. Acute graft-versus-host disease. Nat Rev Dis Prim. 2023;9:27. https://doi.org/10.1038/s41572-023-00438-1.

    Article  PubMed  Google Scholar 

  19. Lee SJ. Classification systems for chronic graft-versus-host disease. Blood. 2017;129:30–37. https://doi.org/10.1182/blood-2016-07-686642.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Holtan SG, DeFor TE, Lazaryan A, Bejanyan N, Arora M, Brunstein CG, et al. Composite end point of graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic cell transplantation. Blood. 2015;125:1333–8. https://doi.org/10.1182/blood-2014-10-609032.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Ruggeri A, Labopin M, Ciceri F, Mohty M, Nagler A. Definition of GvHD-free, relapse-free survival for registry-based studies: an ALWP-EBMT analysis on patients with AML in remission. Bone Marrow Transpl. 2016;51:610–1. https://doi.org/10.1038/bmt.2015.305.

    Article  CAS  Google Scholar 

  22. Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140:1200–28. https://doi.org/10.1182/blood.2022015850.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Zhao Y, Chen W, Yu J, Pei S, Zhang Q, Shi J, et al. TP53 in MDS and AML: biological and clinical advances. Cancer Lett. 2024;588:216767 https://doi.org/10.1016/j.canlet.2024.216767.

    Article  PubMed  CAS  Google Scholar 

  24. Haase D, Germing U, Schanz J, Pfeilstocker M, Nosslinger T, Hildebrandt B, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007;110:4385–95. https://doi.org/10.1182/blood-2007-03-082404.

    Article  PubMed  CAS  Google Scholar 

  25. Hunter AM, Komrokji RS, Yun S, Al Ali N, Chan O, Song J, et al. Baseline and serial molecular profiling predicts outcomes with hypomethylating agents in myelodysplastic syndromes. Blood Adv. 2021;5:1017–28. https://doi.org/10.1182/bloodadvances.2020003508.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Yoshizato T, Nannya Y, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood. 2017;129:2347–58. https://doi.org/10.1182/blood-2016-12-754796.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376:536–47. https://doi.org/10.1056/NEJMoa1611604.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 2020;26:1549–56. https://doi.org/10.1038/s41591-020-1008-z.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Grob T, Al Hinai ASA, Sanders MA, Kavelaars FG, Rijken M, Gradowska PL, et al. Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood. 2022;139:2347–54. https://doi.org/10.1182/blood.2021014472.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Garcia-Manero G. Myelodysplastic syndromes: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98:1307–25. https://doi.org/10.1002/ajh.26984.

    Article  PubMed  CAS  Google Scholar 

  31. Alessandrino EP, Della Porta MG, Pascutto C, Bacigalupo A, Rambaldi A. Should cytoreductive treatment be performed before transplantation in patients with high-risk myelodysplastic syndrome? J Clin Oncol. 2013;31:2761–2. https://doi.org/10.1200/JCO.2012.48.0525.

    Article  PubMed  Google Scholar 

  32. Duarte FB, Moura ATG, Funke VAM, Colturato VAR, Hamerschlak N, Vilela NC, et al. Impact of treatment prior to allogeneic transplantation of hematopoietic stem cells in patients with myelodysplastic syndrome: results of the Latin American Bone Marrow Transplant Registry. Biol Blood Marrow Transpl. 2020;26:1021–4. https://doi.org/10.1016/j.bbmt.2020.01.030.

    Article  CAS  Google Scholar 

  33. Oran B, Kongtim P, Popat U, de Lima M, Jabbour E, Lu X, et al. Cytogenetics, donor type, and use of hypomethylating agents in myelodysplastic syndrome with allogeneic stem cell transplantation. Biol Blood Marrow Transpl. 2014;20:1618–25. https://doi.org/10.1016/j.bbmt.2014.06.022.

    Article  CAS  Google Scholar 

  34. Damaj G, Mohty M, Robin M, Michallet M, Chevallier P, Beguin Y, et al. Upfront allogeneic stem cell transplantation after reduced-intensity/nonmyeloablative conditioning for patients with myelodysplastic syndrome: a study by the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Biol Blood Marrow Transpl. 2014;20:1349–55. https://doi.org/10.1016/j.bbmt.2014.05.010.

    Article  Google Scholar 

  35. Zhang Y, Liu C, Zhang R, Shi Y, Li X, Yu J, et al. Impact of treatments before allogeneic hematopoietic stem cell transplantation in patients with higher-risk myelodysplastic syndrome. Leuk Res. 2023;124:106997 https://doi.org/10.1016/j.leukres.2022.106997.

    Article  PubMed  Google Scholar 

  36. Fransolet G, Ehx G, Somja J, Delens L, Hannon M, Muller J, et al. Azacytidine mitigates experimental sclerodermic chronic graft-versus-host disease. J Hematol Oncol. 2016;9:53. https://doi.org/10.1186/s13045-016-0281-2.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Sanchez-Abarca LI, Gutierrez-Cosio S, Santamaria C, Caballero-Velazquez T, Blanco B, Herrero-Sanchez C, et al. Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Blood. 2010;115:107–21. https://doi.org/10.1182/blood-2009-03-210393.

    Article  PubMed  CAS  Google Scholar 

  38. Damaj G, Duhamel A, Robin M, Beguin Y, Michallet M, Mohty M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: a study by the Societe Francaise de Greffe de Moelle et de Therapie-Cellulaire and the Groupe-Francophone des Myelodysplasies. J Clin Oncol. 2012;30:4533–40. https://doi.org/10.1200/JCO.2012.44.3499.

    Article  PubMed  CAS  Google Scholar 

  39. Potter VT, Iacobelli S, van Biezen A, Maertens J, Bourhis JH, Passweg JR, et al. Comparison of intensive chemotherapy and hypomethylating agents before allogeneic stem cell transplantation for advanced myelodysplastic syndromes: a study of the Myelodysplastic Syndrome Subcommittee of the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplant Research. Biol Blood Marrow Transpl. 2016;22:1615–20. https://doi.org/10.1016/j.bbmt.2016.05.026.

    Article  CAS  Google Scholar 

  40. Chen Y, Huang F, Xuan L, Zhang Y, Fan Z, Xu N, et al. Upfront transplantation may have better outcomes than pretransplant cytoreductive therapy for treating patients with MDS-EB-1 or MDS-EB-2. Int J Cancer. 2021;149:1109–20. https://doi.org/10.1002/ijc.33608.

    Article  PubMed  CAS  Google Scholar 

  41. Nawas MT, Kosuri S. Utility or futility? A contemporary approach to allogeneic hematopoietic cell transplantation for TP53-mutated MDS/AML. Blood Adv. 2024;8:553–61. https://doi.org/10.1182/bloodadvances.2023010417.

    Article  PubMed  CAS  Google Scholar 

  42. Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015;518:552–5. https://doi.org/10.1038/nature13968.

    Article  PubMed  CAS  Google Scholar 

  43. Jacoby MA, Duncavage EJ, Chang GS, Miller CA, Shao J, Elliott K, et al. Subclones dominate at MDS progression following allogeneic hematopoietic cell transplant. JCI Insight. 2018.https://doi.org/10.1172/jci.insight.98962.

  44. Mo XD, Qin YZ, Zhang XH, Xu LP, Wang Y, Yan CH, et al. Minimal residual disease monitoring and preemptive immunotherapy in myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2016;95:1233–40. https://doi.org/10.1007/s00277-016-2706-y.

    Article  PubMed  CAS  Google Scholar 

  45. Ma YY, Wei ZL, Xu YJ, Shi JM, Yi H, Lai YR, et al. Poor pretransplantation minimal residual disease clearance as an independent prognostic risk factor for survival in myelodysplastic syndrome with excess blasts: a multicenter, retrospective cohort study. Cancer. 2023;129:2013–22. https://doi.org/10.1002/cncr.34762.

    Article  PubMed  CAS  Google Scholar 

  46. Tobiasson M, Pandzic T, Illman J, Nilsson L, Westrom S, Ejerblad E, et al. Patient-specific measurable residual disease markers predict outcome in patients with myelodysplastic syndrome and related diseases after hematopoietic stem-cell transplantation. J Clin Oncol. 2024;42:1378–90. https://doi.org/10.1200/JCO.23.01159.

    Article  PubMed  CAS  Google Scholar 

  47. Ciurea SO, Chilkulwar A, Saliba RM, Chen J, Rondon G, Patel KP, et al. Prognostic factors influencing survival after allogeneic transplantation for AML/MDS patients with TP53 mutations. Blood. 2018;131:2989–92. https://doi.org/10.1182/blood-2018-02-832360.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Hientz K, Mohr A, Bhakta-Guha D, Efferth T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget. 2017;8:8921–46. https://doi.org/10.18632/oncotarget.13475.

    Article  PubMed  Google Scholar 

Download references

Funding

The study was supported by the National Natural Science Foundation of China (grant numbers: 82070179, 82170210, and 81970158) and the Zhejiang Province Vanguard Goose-Leading Initiative (grant number: 2024SSYS0023).

Author information

Authors and Affiliations

Authors

Contributions

SJM, JBQ, and YTT designed the whole study. ZYM, LY, OYGF, YJ, YYS, LJP, LY, LXY, YBD, CY, LLZ, XY, SPF, XHW, HHX, GQY, FHR, SJ, ZWY, HJS, ZY, WWJ, CZ, and WGQ collected data; JBQ, YTT and WXY organized data. JBQ and YTT analyzed and interpreted the data, and wrote the manuscript, which was proofreaded by HH and SJM. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to He Huang or Jimin Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. Ethical approval was obtained from the Clinical Research Ethics Committee of the First Affiliated Hospital, Zhejiang University School of Medicine (No. IIT20240717B). Informed consent was obtained from each participant or their legal guardians in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41409_2024_2486_MOESM1_ESM.docx

Figure S1. Outcomes after hematopoietic stem cell transplantation of patients with myelodysplastic neoplasms according to different TP53 allelic state.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Yang, T., Zhao, Y. et al. Better pre-transplant treatment options for TP53-mutated MDS: cytoreductive or non-cytoreductive therapy?. Bone Marrow Transplant 60, 326–334 (2025). https://doi.org/10.1038/s41409-024-02486-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41409-024-02486-x

Search

Quick links