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Bone loss with aging is independent of gut microbiome in mice
Xiaomeng You 1✉, Jing Yan1, Jeremy Herzog2, Sabah Nobakhti3, Ross Campbell4,5, Allison Hoke5,6, Rasha Hammamieh5,
R. Balfour Sartor2, Sandra Shefelbine3, Melissa A. Kacena 7,8, Nabarun Chakraborty5 and Julia F. Charles 1,9✉

Emerging evidence suggests a significant role of gut microbiome in bone health. Aging is well recognized as a crucial factor influencing
the gut microbiome. In this study, we investigated whether age-dependent microbial change contributes to age-related bone loss in
CB6F1 mice. The bone phenotype of 24-month-old germ-free (GF) mice was indistinguishable compared to their littermates colonized by
fecal transplant at 1-month-old. Moreover, bone loss from 3 to 24-month-old was comparable between GF and specific pathogen-free
(SPF) mice. Thus, GF mice were not protected from age-related bone loss. 16S rRNA gene sequencing of fecal samples from 3-month and
24-month-old SPF males indicated an age-dependent microbial shift with an alteration in energy and nutrient metabolism potential. An
integrative analysis of 16S predicted metagenome function and LC-MS fecal metabolome revealed an enrichment of protein and amino
acid biosynthesis pathways in aged mice. Microbial S-adenosyl methionine metabolism was increased in the aged mice, which has
previously been associated with the host aging process. Collectively, aging caused microbial taxonomic and functional alteration in mice.
To demonstrate the functional importance of young and old microbiome to bone, we colonized GF mice with fecal microbiome from
3-month or 24-month-old SPF donor mice for 1 and 8 months. The effect of microbial colonization on bone phenotypes was independent
of the microbiome donors’ age. In conclusion, our study indicates age-related bone loss occurs independent of gut microbiome.
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INTRODUCTION
Osteoporosis is characterized by a low bone mass and micro-
architectural deterioration of bone tissue, leading to compromised
bone strength and increased risk for fractures.1 It is a common
chronic metabolic bone disease, affecting 200 million individuals
worldwide.1 Aging is a well-recognized risk factor for osteoporosis
and osteoporotic fractures. Approximately 10 million Americans
aged over 50 have osteoporosis and an estimated 50% women and
20% men will suffer an osteoporotic fracture in their lifetime.2 With
the rapid growth of aged population, the prevalence of osteo-
porosis and osteoporotic fractures is continuingly increasing,
placing a heavy burden on economic cost and health care systems.2

Current treatments for osteoporosis, including both antiresorptive
agents (e.g bisphosphonates, denosumab) to inhibit bone resorption
or osteoanabolic agents (e.g Teriparatide) to stimulate bone
formation, are effective at reducing fracture risk.1 However, concerns
over side effects, particularly with long term use, and as well as other
factors (e.g medication cost, access to medical care, lack of
education about treatment) reduce adherence and contribute to
poor persistence with osteoporosis therapy, leading to a significant
number of patients remaining at risk for osteoporotic fractures.3–6

These factors have increased interest in non-pharmacologic
interventions to improve bone health, including whether the gut
microbiome could be leveraged for therapeutic benefit.
Recent studies suggest that the gut microbiome, the collection of

microorganisms that reside in the host gastrointestinal (GI) tract,

participates in the modulation of bone health. Colonization of gut
microbiome in germ-free (GF) mice has been shown to promote
bone growth by inducing IGF-1.7 On the other hand, depletion of gut
microbes caused by antibiotics leads to impaired tissue mechanical
properties and reduced bone strength.8,9 Moreover, in various
preclinical models, it has been shown that bone loss resulting from
sex steroid deficiency,10 glucocorticoid treatments11 and continuous
PTH treatments12 is microbiome-dependent. Supplementation with
probiotics (e.g Lactobacillus) prevented impaired bone growth due to
chronic undernutrition,13 and exhibit beneficial effects on the bone
loss induced by antibiotics,14 as well as in several preclinical
osteoporosis models.10,11,15 These findings clearly suggest an
important role of the gut microbiome in regulating bone mass,
bone quality, and bone strength. Thus, the gut microbiome is
emerging as a promising target for the prevention and treatment of
age-related bone loss and osteoporosis.
It is well documented that the human gut microbiome

diversifies with age.16 In early life, the gut microbiome is
characterized by a relatively low diversity which is mainly
dominated by Proteobacteria and Actinobacteria.17 The composi-
tion of the gut microbiome originally diversifies after weaning,
develops into an adult-like microbial community, and reaches a
relatively stable status in adulthood.16 With advancing age, the
gut microbiome further undergoes a transition away from its
composition in young adulthood.18–22 Our previous meta-analysis
across 6 publicly available sequencing datasets revealed an age-
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dependent increase in gut microbiome α-diversity and as well as
alterations in predicted metagenomic functions related to
carbohydrate metabolism in C57BL/6 mice.23

However, it remains unclear whether these documented age-
related microbial alterations directly affect bone loss with aging. In
this study, we investigated whether bone loss with aging is
dependent on gut microbiome in CB6F1 mice. Specifically, we
examined whether the presence of gut microbiome is required for
age-associated bone loss by comparing the bone phenotypes of
GF mice with their colonized littermates at 24-month of age. We
further compared bone loss with aging from young (3-month-old)
to old (24-month-old) in both GF mice and conventionally raised

specific pathogen free (SPF) mice. Fecal samples from young and
old SPF mice were characterized by 16S rRNA gene sequencing
and LC-MS to identify age-related alterations in microbial
compositions and functional consequences. Finally, bone pheno-
types were compared between the gnotobiotic CB6F1 mice
colonized with fecal microbiome from young and old donors.

RESULTS
GF mice are not protected from trabecular bone loss with aging in
either sex
To understand whether the gut microbiome is required for age-
related bone loss, we randomized 1-month-old GF CB6F1
littermates to remain GF or be colonized and examined the bone
phenotype at 24-months of age in both sexes (Fig. 1a). No
significant differences in trabecular bone volume fraction (Tb. BV/
TV), cortical thickness (Ct. Th), or cortical area (Ct. Ar) were
observed between the GF and colonized mice in either sex
(Fig. 2a–c, f–h). Trabecular parameters were similar in colonized
females (Fig. S1a–c). However, we cannot rule out an impact of
microbiome on microarchitecture in males, as trabecular number
(Tb. N) and trabecular spacing (Tb. Sp) differed significantly
between colonized and GF male mice (Fig. S1f, h). Neither
periosteal perimeter (Ps. Pm) or tissue mineral density (Ct. TMD)
was changed by colonization (Fig. S1d, e, i, j), Therefore, GF mice
demonstrated similar trabecular and cortical bone mass level
compared to their colonized littermates at 24-month-old in both
females and males. The presence of the gut microbiome was not
required for bone loss with aging.
Bone turnover was assessed by measurement of serum bone

formation and resorption markers, P1NP and CTX-1. P1NP was
significantly increased in colonized female mice compared to GF
female mice (P < 0.01, Fig. 2d), though colonization did not change
serum P1NP in males (Fig. 2i) nor CTX-1 in either sex (Fig. 2e, j).
Additionally, the bone phenotypes of GF mice and convention-

ally raised SPF mice were assessed at 3 and 24 months of age in
both sexes (Fig. S2a). In both GF and SPF female mice, Tb. BV/TV
decreased from ~10% (GF: 10.27% ± 0.52%, SPF: 10.44% ± 0.73%)
to less than 1% (GF: 0.56% ± 0.14%, SPF: 0.84% ± 0.16%) (Fig. S2b),
with corresponding changes in other trabecular bone parameters
(Fig. S2c–e). In males, Tb. BV/TV decreased from ~20% at 3-month
(GF: 23.93% ± 1.01%, SPF: 19.60% ± 0.82%) to ~6% at 24-month
(GF: 6.28% ± 0.52%, SPF: 6.49% ± 0.64%) of age (Fig. S2l), with
corresponding changes in other trabecular bone parameters (Fig.
S2m–o). Cortical area (Ct. Ar), periosteal perimeter (Ps. Pm) and
tissue mineral density (Ct. TMD) showed an increase with aging in
both female and male mice under both SPF and GF conditions
(Fig. S2g–i, q–s).
Although cortical thickness is typically thought to decrease with

age, published studies report increases, decreases, or no changes in
femur diaphyseal cortical thickness (Ct. Th) with aging in mice, with
variations observed across sexes and genetic backgrounds.24–28 In
this study we found Ct. Th increased with aging in female GF and
SPF CB6F1 mice (Fig. S2f), decreased with aging in male SPF mice
but was unchanged with aging in GF males (Fig. S2p).
Quantitative backscatter scanning electron microscopy (qbSEM)

was then applied to assess tissue mineralization properties of a
subset of bones from the female cohort. Whereas microCT assesses
structural properties (how much bone), qbSEM assesses the amount
of mineral in the bone. The gray-level mode of the histogram of
backscatter intensities of the tibial cross-section, which indicates
amount of mineralization, was increased with age in both GF and
SPF female mice (Fig. S2j). The FWHM did not differ by age (data not
shown). Cortical porosity measured by SEM, which includes both
lacunar and vascular space, decreased with age in both female
groups (Fig. S2k). Taken together, GF mice demonstrated compar-
able bone loss as observed in SPF mice, thus GF mice are not
protected from trabecular bone loss with aging in either sex.

Does microbiome donor age influence bone phenotypes by short-term 
colonization in adult mice? (Fig. 7a-b, Fig. S4a-e)
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Fig. 1 The workflow of study design. a 1-month-old CB6F1 germ-free
(GF) mice were randomly assigned to 2 experimental groups: remain
GF or colonization with microbiome from 3-month-old donors for
23 months. b Fecal samples were collected from 3-month-old and 24-
month-old conventionally raised specific pathogen free (SPF) mice for
gut microbiota characterization by 16S rRNA gene sequencing and
LC-MS. 2-month-old CB6F1 GF mice were randomly assigned to
remain GF or be colonized with fecal microbiome from 3-month-old
or 24-month-old donors for (c) 1 month or (e) 8 months. d 1-month-
old CB6F1 GF mice were randomized to remain GF or be colonized
with microbiome from 3-month-old or 24-month-old donors for
1 month
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Age-dependent divergence in microbial ecosystem between the
young and old male mice
Our previous meta-analysis across 6 publicly available datasets
revealed an age-dependent shift in microbial diversities in C57BL/
6 mice.23 To confirm that CB6F1 mice also undergo changes in
microbial community in response to aging, 16S rRNA sequencing
was performed to characterize gut microbiome from young and
old SPF CB6F1 male mice. In total, an average of 156 610 reads per
sample were generated.
Principal coordinate analysis was performed on the β-diversity

distance matrices, which assessed the microbial communities’
dissimilarity between samples. Quantitative matrices which
consider taxa abundance (weighted UniFrac and Bray-Curtis,)
and qualitative matrices which consider presence/absence pat-
terns of taxa (unweighted UniFrac and Jaccard) were calculated,
respectively. Accordingly, a significant age-dependent shift of gut
microbiome was found between the young and old mice based
on the weighted UniFrac and Bray-Curtis distance matrices
(PERMANOVA with 999 permutations, P= 0.038 for weighted

UniFrac and P= 0.012 for Bray-Curtis, Fig. 3a, b). However, no
statistical differences were found based on the unweighted
UniFrac and Jaccard distance matrices (Fig. S3a). Therefore, age-
dependent microbial structure divergence is predominantly
driven by the changes in taxa abundance rather than the
presence/absence patterns of taxa.
The α-diversity indices Shannon, Simpson and Chao1 were

calculated after rarefaction (Fig. S3b) to estimate the microbial
richness (number of taxa) and evenness (distribution of taxa
relative abundances). The Simpson index was significantly
increased in the old mice (Fig. 3c), while no alteration of Shannon
and Chao1 indices were found between the young and old mice
(Fig. S3c). Given that the calculation of Simpson index places more
weight on microbial evenness than richness in comparison to the
other two indices, our results suggested that an age-dependent
increase of microbial α-diversity was likely due to a greater
evenness in the microbiome of aged mice. Collectively, CB6F1
male mice showed altered microbial diversities in response to
aging similar to what we previously reported in C57BL/6 mice.23
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Fig. 2 The presence of gut microbiome is not required for age-related trabecular bone loss. Trabecular bone volume fraction (Tb. BV/TV),
cortical thickness (Ct. Th), cortical area (Ct. Ar), serum P1NP and CTX-1 of GF and colonized mice in both (a–e) female and (f–j) male mice are
shown. k Representative 3D images of femur trabecular bone are shown. Data are represented as mean ± SEM. Unpaired t test or Mann-
Whitney U Test was performed. ns, not statistically significant. For female, GF, n= 5; Col, n= 10. For male GF, n= 6; Col, n= 6. 2 data in (d) and
(e) were missing due to insufficient sample collection
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Distinct microbial compositions between young and old male mice
At the phylum level, Firmicutes and Bacteroidetes were the two
most abundant taxa in both young and old male mice,
constituting 51.5%–99.8% amplicon sequence variants (ASVs)
identified in the 16 mice fecal samples (Fig. 3d and Table S1).
The relative abundance of Firmicutes was significantly increased in
old mice (young: 40.93% ± 3.03% vs. old: 66.30% ± 4.45%, Fig. 3d
and Table S1), leading to an increased ratio of Firmicutes to
Bacteroidetes (F/B ratio) in the old mice (young: 1.07% ± 0.12% vs.
old: 3.10% ± 1.79%, Fig. 3e). The increased relative abundance of
Firmicutes in old mice was mostly attributed to age-dependent
increases of Lactobacillus (young: 9.91% ± 1.21%, old:
24.12% ± 3.69%) and Butyricicoccus (young: 0.04% ± 0.01%, old:
0.16% ± 0.05%) at genus level (Table S2 and Fig. S3d). Both taxa
were identified as discriminant taxa for the microbiome from the
old mice by LefSe analysis (Fig. 3f, g and Fig. S3e).
The relative abundance of subdominant taxon Deferribacteres was

also significantly increased in the old mice (young: 0.78%± 0.08%,
old: 1.84%± 1.55%, P= 0.038, Fig. 3d and Table S4). This was
primarily driven by variation of Mucispirillum at the genus level
(young: 0.78%± 0.08%, old: 1.84%± 1.55%, Table S2 and Fig. S3d),
which was also identified as a significant discriminant taxon for the
old mice microbiome by LefSe analysis (Fig. 3f, g and Fig. S3e). On

the other hand, 3 taxa at the genus level including Jeotgalicoccus,
Staphylococcus and Corynebacterium were significantly enriched in
the young mice (Table S2 and Fig. S3d) and were identified as
significant discriminant taxa for the young mice microbiome by LefSe
analysis (Fig. 3f, g and Fig. S3e). Taken together, the young and old
CB6F1 male mice demonstrated distinct microbial communities.

Age-dependent variation in predicted energy generation and
nutrient metabolisms by microbial populations
The metagenomic function was predicted by PICRUSt2 based on
16S rRNA gene sequencing data. In total, 104 pathways were
significantly altered between the young and old male mice, of
which 44 pathways were down-regulated while 60 pathways were
up-regulated in old mice compared to young mice (Table S3).
Old mice had lower levels of four TCA cycle-related pathways,

indicating reduced energy potential in their microbiome. The
pyruvate fermentation to propanoate pathway was also lower in
old mice (Fig. 4a). Conversely, several microbial fermentation
pathways producing lactate, acetate, and ethanol were higher in
old mice (Fig. 4a), suggesting potential differences in microbial
fermentation products between young and old mice.
Microbial carbohydrate degradation also changed significantly

in response to aging (Fig. 4b). Old mice had increased mono- and
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represented as mean with 95% confidence intervals. Unpaired t-test or Mann Whitney U test was performed. *P < 0.05, **P < 0.01, ***P < 0.001.
3-month, n= 8; 24-month, n= 8
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di-saccharide degradation pathways, including lactose, galactose,
glucose, and sucrose degradation. Young mice, on the other hand,
showed an increase in starch and rhamnose degradation (Fig. 4b).
Significant underrepresentation of microbial B vitamin bio-

synthesis and metabolism (Fig. 4c) including thiamine (B1),
riboflavin (B2), pantothenate (B5), and folate (B9) was also seen
in old mice. Conversely, microbial phospholipid biosynthesis and

unsaturated fatty acid biosynthesis were significantly higher in
the old mice compared to the young mice (Fig. 4d). Moreover,
microbial tRNA charging involved in protein biosynthesis, lysine
biosynthesis and S-adenosyl-L-methionine (SAM) cycle were
enriched in old mice (Fig. 4e). Taken together, aging significantly
affected predicted microbial energy generation and nutrient
metabolism.
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Fig. 5 Distinct fecal metabolite profiles between young and old mice. Manhattan plots were used to visualize the significantly differentially
expressed spectral features obtained from MS (a) positive mode and (b) negative mode. Red dots and blue dots represent spectral features
significantly enriched in the young and old mice, respectively (adjusted P < 0.05). c Principal component analysis (PCA) plot shows two clearly
separate clusters according to fecal donor age. d Supervised sparse partial least square discriminant analysis (sPLS-DA) was performed to
select most discriminative features to classify young and old mouse fecal metabolomes. The optimal complexity of the sPLS-DA model was
assessed by five-fold cross-validation. The top 10 spectral features were selected for loading plot. e Candidate metabolites associated with
these spectral features are annotated in brackets. Bubble plots were used to visualize the pathway enrichment analysis performed by
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Distinct fecal metabolomic profiles between the young and old
male mice
Microbial metabolic compounds are widely thought to mediate
host-microbiome interactions. Given that both compositional and
functional alterations in response to aging were observed, we next
performed LC-MS to characterize the fecal metabolome and
confirm that these aging associated changes in microbiome result
in metabolic functional consequences.
A total of 3 069 metabolic features from positive ion mode and

2 877 metabolic features from negative ion mode were annotated
by HMDB in 10 fecal samples (5 per age group). 1 288 metabolic
features were significantly differentially expressed, of which 1 012
metabolic features were significantly increased and 276 were
significantly decreased in the fecal samples from the old mice
compared to the young mice (Fig. 5a, b).
A PCA plot showed two clearly separate clusters according to the

age of the mice, indicating distinct metabolomic profiles between
the young and old mice fecal samples (Fig. 5c). Supervised sparse
partial least discriminant analysis (sPLS-DA) was further applied
(Fig. 5d). As assessed by five-fold cross-validation, the optimal
complexity of the model was found to be one component with 10
features selected, resulting in 0% classification error rate (Fig. 5e).
4 of the 10 features responsible for discrimination were enriched in
young mice while the remaining 6 features were enriched in old
mice (Fig. 5e). The 10 LC-MS peaks annotated with all potential
HMDB IDs and compounds are listed in Table S4.
Pathway enrichment analysis was performed on differentially

expressed metabolic features by MetaboAnalyst 5.0 to further
elucidate microbial metabolic alterations in response to aging.
Consistent with the results of the predicted metagenomic
functions, pathway enrichment analysis also showed significant
increases in unsaturated fatty acid biosynthesis and tRNA charging
pathways in the metabolome of old mice. Moreover, cysteine and
methionine metabolism and taurine and hypotaurine metabolism
were also significantly enriched in old mice (Fig. 5f, g). On the
other hand, young mice featured increases in pathways involved
in tryptophan degradation (2-amino-3-carboxymuconate semial-
dehyde degradation to glutaryl-CoA, Fig. 5f).

Correlation of fecal metabolites and 16S predicted metagenome
The metabolites derived from 16S predicted pathways were
annotated and compared to the LC-MS fecal metabolome (Table
S5, S6). 152 metabolic features from fecal metabolome matching
16S predicted pathways were identified, of which 59 metabolic
features were identified as significantly altered in response to
aging in analysis of both metabolome and predicted metagenome
(Table S7 and Fig. S3f).
An integrative analysis of 16S predicted metagenome and LC-

MS metabolome was performed by a customized gene set
enrichment analysis (GSEA). Metabolites obtained by LC-MS were
first classified into 16S predicted pathways at a higher superclass
level. GSEA was then performed to test whether the pathways
representing this set of metabolites were significantly enriched
between young and old mice. Amino acid biosynthesis and
aminoacyl-tRNA charging were significantly enriched in old mice
by integrative analysis (Fig. 6a–d), consistent with the 16S
predicted functional analysis (Fig. 4e) and the LC-MS pathway
enrichment analysis (Fig. 5f, g). Together, these data suggest that
alterations in microbial protein and amino acids biosynthesis
could be a distinguishing feature for aging in CB6F1 male mice.

Effect of microbial colonization on bone phenotypes of germ-free
mice is independent of age of the fecal donors
We previously showed that the effect of microbial colonization on
bone homeostasis varied depending on the duration of coloniza-
tion. Short-term colonization of gut microbiome resulted in a
reduction in trabecular bone mass whereas prolonged coloniza-
tion promoted longitudinal bone growth.7 In this study, we were

interested in whether the effect of microbial colonization on bone
phenotypes varied according to the age of fecal donors.
Accordingly, GF mice were reconstituted with fecal microbiome
from young (3-month-old) or old (24-month-old) male donor mice.
Fecal and femur samples were collected and assessed after short-
term (1 month) and long-term (8 months) colonization.
The fecal microbiome of the recipient mice was analyzed by

qRT-PCR to investigate whether age-related microbial divergence
persisted in the gnotobiotic recipients. Mice colonized with
microbiome from 24-month-old donors exhibited higher total
bacterial abundance and a significantly increased abundance of
Bacteroidetes compared to those colonized with microbiome from
3-month-old donors, both in the short-term and long-term
colonization cohorts (Fig. S3g, h). Additionally, Deferribacteres,
Actinobacteria, and γ/δ-Proteobacteria also had similar trend of
alteration between mice colonized with microbiome from different
ages of donors in both cohorts (Fig. S3g, h). However, Lactobacillus,
the primary genus driving the increased Firmicutes in the old
donor mice, showed no or very low abundance in the colonized
mice with either young or old donors’ microbiome, indicating
microbial loss during FMT (data not shown). Consequently, there
was no difference in Firmicutes between the colonized mice from
different donor ages (Fig. S3g, h). Despite the microbial loss,
microbial divergence persisted post-FMT in the gnotobiotic mice
colonized with microbiomes from donors of different ages.
After 1 month colonization, Tb. BV/TV exhibited a significant

decrease in female colonized mice when compared to GF mice. This
reduction was observed regardless of whether they were colonized
with microbiome from 3-month-old or 24-month-old donors.
(GF:10.26% ± 0.52%, 3-month: 8.22% ± 0.34%, 24-month:
8.25% ± 0.38%, Fig. 7a), indicating an overall acute catabolic effect
of microbiome colonization on bone mass.
However, no significant differences were seen between female

mice colonized with young compared to old donors’ microbiome.
Distal femur bone parameters, including bone volume fraction (Tb.
BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th),
trabecular spacing (Tb. Sp), cortical thickness (Ct. Th), cortical area
(Ct. Ar), periosteal perimeter (Ps. Pm) and tissue mineral density
(Ct. TMD) were similar between groups (Fig. 7a–c and Fig. S4a–e).
We also observed no impact of microbial donor age in a second
independent cohort in which female GF mice were colonized at
1-month-old to test whether differences would be more apparent
during a period of rapid skeletal growth for recipient mice
(Fig. 7f–h and Fig. S4f–j).
We previously found that short-term colonization of microbiome

in GF mice increased P1NP.7 Consistent with prior results, serum
P1NP in this study showed a significant increase by microbial
colonization in GF females in both short-term cohorts colonized at
1 month and 2 months old (Fig. 7d, i). However, donor age had no
significant impact on serum P1NP. Serum CTX-1 was significantly
increased in 2-month-old GF female mice colonized with micro-
biomes from young donors, but not from old donors (Fig. 7e). No
alteration of serum CTX-1 was found when 1-month-old GF mice
were colonized with microbiome from either age of donors (Fig.
7j). While systemic bone catabolism may be affected by the age of
the donor and the age at colonization, short-term colonization with
either young or old donors’ microbiome resulted in a similar effect
on bone phenotypes in female mice.
Next, we investigated whether a prolonged period of microbial

colonization from donors of different ages would result in distinct
bone phenotypes. Here we examined the impact of fecal donor age
on both male and female GF mice. Similar to the results of the short-
term colonization, no significant difference was observed in bone
phenotypes between mice colonized with microbiome from young
compared to old donors. Results were similar in male and female
mice (Fig. 7k–m, p–r and Fig. S5). Serum P1NP was significantly
increased in GF female mice colonized with microbiome from old
donors, but microbiome from young donors had no effect on P1NP
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(Fig. 7n), nor was there a difference in serum CTX-1 between GF and
colonized mice, regardless of donor age (Fig. 7o).
Taken together, our findings show acute loss of femoral trabecular

bone volume fraction after microbial colonization of the gut with
recovery after 8 months post-transplant. The age of the fecal donor
does not affect the impact of microbial colonization of GF mice on
bone phenotypes. However, we cannot rule out that donors age, the
colonization age and the colonization period may differently affect
systemic bone metabolism.

DISCUSSION
In this study, we investigated the role of age-related alterations in
gut microbiome in bone loss with aging. We used CB6F1 mice, a

strain with a relatively long lifespan frequently used in aging
studies. To examine the importance of microbiome for age-related
bone loss, we compared age-related bone loss in GF mice and
their colonized littermates. At 24-months of age, GF mice
demonstrated similar trabecular bone mass as compared to their
colonized littermates. Moreover, bone loss from 3 to 24-month-old
was comparable between GF and specific pathogen-free (SPF)
mice, indicating GF mice were not protected from age-related
bone loss. Thus, our study showed that bone loss with aging is
independent of gut microbiome in CB6F1 mice.
The gut microbiome of the aged CB6F1 mice demonstrated

increased α-diversity and distinct fecal microbial structures
(β-diversity) compared to that of the young mice. To determine
whether the changes in the composition of gut microbiome

Enrichment plot: amino acid biosynthesis

Enrichment profile Hits Ranking metric scores

0 1 000 2 000 3 000 4 000 5 000 6 000

Rank in ordered dataset

0.0

0.1

0.2

0.3

0.4

0.5

-10

R
an

ke
d 

lis
t m

et
ric

 (
t-

T
es

t)
E

nr
ic

hm
en

t s
co

re
 (

E
S

)

R
an

ke
d 

lis
t m

et
ric

 (
t-

T
es

t)
E

nr
ic

hm
en

t s
co

re
 (

E
S

)

-5

0

5

10

Zero cross at 3 401erZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeererererererererererererererererererererererererererererrrrrrrrrrrrrrororororororororororororororororororororororororororororororororororororooooooooooooooooooooooooooooooooooo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o      cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrrrrrrrrrrrororororororororororororororororororororororororororororororororororororoooooooooooooooooooooooooooooooooooooooososososososososososososososososososososososososososososososososossssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s      aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatat at t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t   3 33333333333333333333333333333333333333333333333333333333333333333333333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3      4 44444444444444444444444444444444444444444444444444444444444444444444444444404040404040404040404040404040404040404040404040404040404040404040400000000000000000000000000000000000000000000000000001010101010101010101010101010101010101010101010111111111111111111111111111111111111111111111111111111ssssss

'24_month' (positively correlated)i )_ (p y

'03_month' (negatively correlated)e e03 month (negatively correlated)

Enrichment plot: aminoacyl-trna charging

Enrichment profile Hits Ranking metric scores

0 1 000 2 000 3 000 4 000 5 000 6 000

Rank in ordered dataset

0.0

0.1

0.2

0.3

0.4

0.5

-10

-5

0

5

10

Zero cross at 3 401rZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeZeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeererererererererererererererererererererererererererererrrrrrrrrrrrrrororororororororororororororororororororororororororororororororororororoooooooooooooooooooooooooooooooooooo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o      cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrrrrrrrrrrrororororororororororororororororororororororororororororororororororororoooooooooooooooooooooooooooooooooooooooosososososososososososososososososososososososososososososososososssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s     aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatat at t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t   3 333333333333333333333333333333333333333333333333333333333333333333333333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3      4 44444444444444444444444444444444444444444444444444444444444444444444444444440404040404040404040404040404040404040404040404040404040404040404040000000000000000000000000000000000000000000000000001010101010101010101010101010101010101010101010111111111111111111111111111111111111111111111111111111sss

'24_month' (positively correlated)s )_ (p y

'03_month' (negatively correlated)e e03 month (negatively correlated)

P = 0.027 P = 0.014

a b

c

d

pos_132.1 023*

pos_166.0 865*

pos_118.0 866*

pos_182.0 821

pos_150.0 585

pos_116.0 708

pos_205.0 969*

neg_164.0 708*

pos_220.0 386

pos_140.0 688

neg_162.0 553

pos_120.0 657

pos_140.0 683*

neg_130.0 864*

pos_90.0 546

pos_197.1 005*

pos_178.0 589

pos_188.0 682*

neg_166.0 172**

neg_194.0 485*

pos_220.0 392

neg_216.0 453

neg_203.082

neg_128.0 346

neg_162.0 554

neg_132.0 296

neg_148.0 434

neg_209.0 821**

neg_162.0 548

neg_209.0 816

neg_146.0 607*

neg_180.0 656

Log peak intensity

6
8
10
12
14
16

Aminoacyl-tRNA charging

SAMe cycleL−lysine IL−lysine IIL−lysine VIL−arginine IIIL−lysine IIIL−methionine

pos_150.0 585*
pos_136.0 624**
neg_194.0 485**
neg_429.1 211**
neg_148.0 434*
pos_184.9 857
pos_156.0 057
pos_191.1 042*
neg_152.011**
neg_117.0 187*
neg_128.0 346
neg_132.0 296
pos_184.9 857
pos_156.0 057
pos_191.1 042*
neg_152.011**
neg_128.0 346
neg_132.0 296
pos_184.9 857
pos_156.0 057
pos_191.1 042*
neg_152.011**
neg_128.0 346
neg_132.0 296
pos_184.9 857
pos_198.0 834
pos_191.1 042*
pos_313.1 091***
pos_197.1 005**
pos_196.0 582
pos_256.0 709***
pos_174.075
neg_128.0 346
neg_132.0 296
neg_172.0 609
neg_209.0 821***
neg_209.0 816
pos_156.0 057
pos_191.1 042*
neg_152.011**
neg_132.0 296
pos_184.9 857
pos_150.0 585*
pos_120.0 657
pos_162.0 758**
pos_156.0 057
neg_194.0 485**
neg_152.011**
pos_446.1 774
neg_128.0 346
neg_480.1 397
neg_132.0 296
neg_148.0 434*
neg_96.9 597***
neg_142.049***
neg_142.0 501**

3−month−1
3−month−2
3−month−3
3−month−4
3−month−5

24−month−1
24−month−2
24−month−3
24−month−4
24−month−5

Log peak intensity

6
8
10
12
14

3−month−1
3−month−2
3−month−3
3−month−4
3−month−5

24−month−1
24−month−2
24−month−3
24−month−4
24−month−5

Fig. 6 Integrative analysis of 16S microbiome and LC-MS metabolome. Integrative analysis of 16S microbiome and LC-MS metabolome was
performed using a customized gene set enrichment analysis (GSEA) method. Metabolites obtained by LC-MS were significantly enriched in (a)
amino acid biosynthesis and (b) aminoacyl-tRNA charging using the predicted metagenome of 16S rRNA gene dataset (P < 0.05). Peak
intensity of metabolites involved in (c) amino acid biosynthesis and (d) aminoacyl-tRNA charging was log transformed and visualized by
heatmap, with each row representing a unique sample and each column representing a LC-MS peak. For (c, d), *P < 0.05, **P < 0.01,
***P < 0.001. For LC-MS, 3-month, n= 5; 24-month, n= 5. For 16S, 3-month, n= 8; 24-month, n= 8
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corresponded to alterations in microbial functions, we performed
microbial metagenomic functional predictions by PICRUSTs and
metabolomic profiling by LC-MS. As expected, distinct microbial
predicted functions and metabolic consequences were observed
between young and old mice. Notably, both the individual
datasets and the integrative analysis revealed enrichment of tRNA
charging pathways, responsible for loading tRNAs with amino

acids for use in protein synthesis, in aged mice. This raises the
possibility that increased amino acid flux into microbial protein
synthesis ultimately affects host amino acid balance in the aged
CB6F1 mice.29 The S-adenosyl-L-methionine (SAMe) cycle was also
enriched in aged mice. SAMe serves as a methyl donor for DNA
and protein methylation, which is critical in the regulation of many
biological processes. Microbial SAMe synthesis is implicated in the
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Fig. 7 Effect of colonization on bone phenotype of germ-free mice is independent of age of donor microbiome. Effect of colonization for 1 month
on trabecular bone volume fraction (Tb. BV/TV), cortical thickness (Ct. Th), cortical area (Ct. Ar), serum P1NP and CTX-1 in young adult (2-month-
old, a–e) and skeletal immature (1-month-old, f–j) females is shown. Consequences of 8 months colonization on Tb. BV/TV, Ct. Th, and Ct. Ar are
shown for (k–m) female and (p–r) male mice. n, o Serum P1NP and CTX-1 is shown in female after 8 months colonization. s Representative 3D
images of femur trabecular bone are shown. Data are represented as mean ± SEM. One-way ANOVA or Kruskal-Wallis test with Tukey post hoc was
performed. *P < 0.05, **P < 0.01, ***P < 0.001, ns, not statistically significant. For (a–e): GF, n= 11; Col with 3-month, n= 14; Col with 24-month,
n= 14. For (f–j): GF= 8; Col with 3-month, n= 9; Col with 24-month, n= 8. For (k–o): GF, n= 12; Col with 3-month, n= 7; Col with 24-month, n= 8.
For (p–r): n= 8 per group. 4 data in (e) and 5 data in (n) and (o) were missing due to insufficient sample collection
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host aging process by its essential function in metformin-induced
extension of lifespan in Caenorhabditis elegans (C. elegans).30

Collectively, an age-dependent divergence in microbial protein
and amino acid metabolism potentially plays a role in the host
nitrogen balance and aging process.
Despite microbial compositional and functional alteration with

aging, GF mice reconstituted with the microbiome of young and old
donors exhibited comparable bone phenotypes after colonization for
either 1 or 8 months, suggesting that the effect of colonization on
bone phenotypes was independent of fecal donor age. It is
important to note that the current fecal microbiome transfer
techniques cannot ensure the successful transfer of all the taxa
identified by 16S rRNA gene sequencing as 16S rRNA gene
sequencing identifies both live and dead microbial populations.
Moreover, some microbes may be lost during the FMT procedure.
Furthermore, recipient host and environmental factors could lead to
microbiome drift post-FMT. In the current study, the brand of chow
diet fed to recipient mice differed from the donor diet, and may also
contribute to microbiome drift post-FMT. However, physical pheno-
types, such as obesity and skeletal maturation, can be transferred
from donors to recipients by fecal transplantation, indicating the
capacity of gnotobiotic mice to successfully maintain specific
microbiome associated with donors’ phenotypes.31,32 Gut micro-
biome development and final composition are largely influenced by
the pioneering colonizers, known as “priority effects”.33 Such
“microbial priority effect” may overweigh other factors to determine
the microbial effect on host health. For example, FMT from calorie
restricted (CR) mice to diet induced obese (DIO) mice demonstrate
metabolic improvement despite continued exposure to high fat
diet.34 In this study, we used qRT-PCR to confirm the success of FMT,
a technique commonly used to quantify microbial load and profile
gut microbiome community.35 Despite the loss of some microbes
and the potential microbial drift, the microbial divergence persisted
between the recipient mice colonized with different ages of donors’
microbiome throughout the duration of our experiment.
While we chose to use the same batch of pooled male fecal

samples for colonizing GF mice in order to control for potential
confounding due to interindividual variations in microbiome, this did
limit our ability to investigate sex differences of donors’ microbiome
on the consequences of FMT, the potential of sex-dependent
difference for microbiome drift after FMT, and their impact on bone
phenotypes. However, this is a minor limitation as gut microbial
functions have been shown to be highly conserved between female
and male mice despite taxonomic differences,36 and our previous
meta-analysis found comparable age-related microbial functional
changes between female and male C57BL/6 mice.23

Although we find that age-related bone loss in mice occurs in the
absence of a gut microbiome, this does not rule out an important
role for microbiome to either positively or negatively impact bone
loss under particular conditions, for example ovariectomy, or to
impact bone material properties.8,9,37 Furthermore, unlike mice in
which diet is tightly controlled, in real-life situations, aged individuals
are likely to encounter changes in diet, nutrient supplementations,
and medication intake. These factors can influence gut microbial
composition and function, which in turn can impact host bone
phenotypes. For example, gut microbiome dysbiosis induced by low
glycemic diet and antibiotics resulted in a reduction in bone tissue
strength in aged mice.8 Additionally, Lactobacillus supplementation
attenuated age-related bone loss in both animal studies and human
trials.38,39 Various human aging studies indicate multiple gut
microbiome patterns of aging exist, resulting from the variations
in health conditions, diet, physical activities, medication intake, and
housing environments.18–22 It remains intriguing to investigate
whether the modifications to gut microbiome by external interven-
tions could impact age-related bone loss.
In summary, our study demonstrated age-related changes in the

compositions and functions of the gut microbiome in CB6F1 mice.
However, age-related microbial alteration did not appear to play a

significant role in the process of bone loss with aging in our
gnotobiotic mouse model. It is important to note that the age-related
microbial changes in humans are more complex than those observed
in mice. Future research may benefit from using humanized
gnotobiotic mice models to investigate the potential effects of the
different human aging microbial patterns on age-related bone loss.

MATERIALS AND METHODS
Animals
CB6F1 germ-free mice were generated from female BALB/c and male
C57BL/6 mice and housed in germ-free Trexler isolators (Alpha-dri
paper-based bedding). GF mice were transferred to individually
ventilated cages at a BSL2 cubicle when fecal microbiome
colonization occurred (3-5 mice per cage, Andersons ¼” Bed-o’Cobs
corncob bedding). The housing environmental conditions were
maintained at constant room temperature (22 °C ± 10%), air humidity
(50%± 20%), and a light/dark cycle of 12 h. The gnotobiotic mice
experiments were conducted in the National Gnotobiotic Rodent
Resource Center, University of North Carolina at Chapel Hill.
3-month-old and 24-month-old CB6F1 conventional SPF mice

were obtained from the National Institute on Aging (NIA) and
housed under SPF conditions (Alpha Chip softwood pine bedding)
at constant room temperature (22 °C ± 10%), air humidity
(50% ± 20%), and a light/dark cycle of 12 h. The SPF conventional
mice study was conducted in the Brigham and Women’s Hospital/
Harvard Medical School vivarium.
All mice were given ad libitum access to autoclaved water and

chow diet (5053 PicoLab Mouse Diet 20 for SPF mice with 24.5%
protein, 13.1% fat and 63.4% carbohydrate by calorie density, and
4.4% crude fiber and 2020SX Envigo for gnotobiotic mice with
24% protein, 16% fat, 60% carbohydrate by calorie density, and
2.7% crude fiber).
For fecal sample collection, each cage housed 4-5 conventional

SPF male mice, with a total of 4 cages per age group. Two to four
fecal pellets were freshly collected from each individual mice, flash
frozen and pooled together within their respective cages and
stored at −80 °C until analysis. Two fecal pellets from each cage
were randomly selected (a total of 8 fecal samples per age group)
for used for 16S rRNA gene sequencing. One to two fecal pellets
from each cage were randomly selected (a total of 5 fecal samples
per age group) for fecal LC-MS metabolomic analysis. Colonization
of GF mice was performed as follows: 10 fecal samples per age
group were pooled from 4 cages of SPF donors and homogenized
in 5mL sterile PBS for colonization purpose. Sterile cotton swabs
were used to inoculate the mouth and anus with fecal material and
wiped on the abdomen of the mouse. Fecal slurry was prepared
freshly in an anerobic chamber at the time of colonization.
For fecal microbiome transplant (FMT) experiments, 4 indepen-

dent cohorts of mice were utilized (Fig. 1). 1-month-old GF mice
were randomly assigned to 2 experimental groups: remain GF (a)
or colonization with microbiome from 3-month-old donors for
23 months (b) (Cohort 1, Fig. 1a).
In a second cohort (Fig. 1c), 2-month-old CB6F1 GF mice were

randomly assigned to remain GF (a) or be colonized with fecal
microbiome from 3-month-old (b) or 24-month-old donors (c) for
1 month.
The third cohort (Fig. 1d) tested the effect of colonization prior

to skeletal maturity by comparing 1-month-old CB6F1 GF mice
randomized to remain GF (a) or be colonized with microbiome
from 3-month-old (b) or 24-month-old donors (c) for 1 month.
Cohort 4 (Fig. 1e) was set up identically to cohort 2 (Fig. 1c), but

the duration of colonization was extended to 8 months. Cohort 1
and cohort 4 were performed in both female and male mice.
Cohort 2 and cohort 3 were performed in female mice.
In addition to the four FMT cohorts, bone phenotypes of 3-

month-old and 24-month-old GF mice were compared to age-
matched conventionally raised SPF mice (Fig. S2).
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All animal procedures were approved by the Institutional
Animal Care and Use Committee, Harvard Medical School, and
the University of North Carolina at Chapel Hill for the gnotobiotic
experiments. GF mice and colonized mice with 3-month-old
microbiome at 2-month-old in Fig. 7 are the same groups of mice
that were reported previously.7 In the current study, these two
groups of mice were reanalyzed and compared to the colonized
mice with 24-month-old microbiome that were collected in
parallel but not previously reported.

Micro-CT analysis
Femurs were collected at the time of mice sacrifice and fixed in
4% paraformaldehyde in PBS for 24 h followed by 70% (v/v)
ethanol. μCT 35 (Scanco Medical AG) was used to scan femur
samples in 70% ethanol using a 7 µm voxel size and the following
settings: X-ray tube potential of 55 kVp, intensity of 145 mA, and
integration time of 600ms. Trabecular bone region was selected
starting 0.35 mm proximal to the growth plate and extending
1mm proximally. Cortical bone was assessed at the midshaft
(0.6 mm in length). Global threshold values of 495.03 mg HA/cm3

for trabecular bone and 760.05 mg HA/cm3 for cortical bone were
selected based on an historical experience and confirmation by an
experienced reader.

Serum P1NP and CTX-1 measurement
Blood samples were collected by cardiac puncture. Serum samples
were separated from blood by using serum separation tubes (BD
Medical, NJ, US). Serum PINP and CTX-1 were measured by Rat/
Mouse PINP EIA kit (IDS, UK) and RatLaps CTX-1 EIA kit (IDS, UK)
following the manufacturer’s protocol.

Scanning electron micrography
Tibia were dissected, cleaned from soft tissue, fixed in 70% ethanol
for 48 h and dehydrated in solutions with increasing concentrations
of ethanol (80%, 90%, 100%, 24 h in each solution). Samples were
kept in Xylene (Thermo Fisher Scientific, MA, US) for 24 h and
destabilized methyl methacrylate (MMA, Sigma-Aldrich, MO, US) for
48 h. Each sample was placed in a glass vial filled with DMMA and
2% benzoyl peroxide (Sigma-Aldrich, MO, US), infiltrated for 48 h
and left for 10 days at the room temperature to polymerize. After
solidification, glass vials were broken to access the blocks of the
PMMA containing bone samples. Each block was cut transversely
and mid-diaphysis part of the bone, using a low speed saw (IsoMet
1000 Precision Saw, Buehler, Braunschweig, Germany) equipped
with a 500 micron thick diamond blade (Buehler, Braunschweig,
Germany). Surface of each sample was polished with succeeding
finer grades of the alumina powder (1mm, 0.3mm and 0.05mm)
and cleaned using an ultrasound bath between the polishing. To
eliminate electron charging, samples were coated with carbon and
connected to the edge of the sample holder at three locations with
carbon adhesion. Samples were scanned using a digital electron
microscope with a four-quadrant semiconductor backscatter detec-
tor (Ziess Evo, Oberkochen, Germany). Imaging was performed at a
20 kV accelerating voltage, saturated filament current, 1.5 nA probe
current measured with a Faraday cup and at a working distance of
12mm. Magnification settings, store resolution and the scan speed
were kept consistent between different imaging sessions, such that
the pixel size was always 1.5mm for every BSE image. For calibrating
backscattered signal, pure carbon and aluminum standards (Micro-
Analysis, Huntingdon, UK) were scanned at the same imaging
condition as the bone during every imaging session. To increase the
dynamic range of the bone mineralization at different parts of the
sample, brightness and contrast were adapted such that gray level
number of carbon and aluminum were as close as possible to 25
and 225, respectively. Calibration standards were scanned before
and after each specimen. In a post-processing analysis in MATLAB
(Mathworks, MA, US) and to account for variations of the electron
beam during the scan, gray level number of the standards were

averaged between these two scans and used for calibrating the
bone specimen. Eventually, gray level number of the bone and
phantom were expanded linearly such that carbon and aluminum
were 25 and 225, respectively. From each gray-scale image, a
histogram of graylevel numbers was generated. Two parameters
were evaluated from the histograms including mode and full width
at half maximum (FWHM). Mode represents the most common
degree of mineralization in the bone (peak of the histogram) and
FWHM indicates the heterogeneity in mineralization. Data reprodu-
cibility was checked by scanning the same sample in different
imaging sessions and obtaining identical data. A custom MATLAB
code (Mathworks, MA, US) was used for quantifying matrix porosity
from the graylevel qbSE images. In this analysis pores with diameter
greater than 15 micron were considered as vascular and smaller
pores were categorized as lacunar porosity.

Fecal DNA extraction and 16S rRNA gene sequencing
Total genomic DNA was extracted from fecal pellets with MO BIO
PowerFecal DNA isolation kit according to the manufacture’s
protocol with the addition of a bead-beating step. Fecal DNA
concentration was measured by Quant-IT dsDNA high sensitivity
assay. PCR was performed to amplify 16S rRNA gene V4 region
with universal bacterial/archaeal primers (515 F: AATGATACGGC-
GACCACCGAGATCTACACNNNNNNNNTATGGTAATTGTGTGCCAGC
MGCCGCGGTAA and 806 R: CAAGCAGAAGACGGCATACGAGATN
NNNNNNNAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT). The size
of DNA amplicons was analyzed on an Agilent Technologies 2100
bioanalyzer trace. DNA concentration of the aggregated library
was measured by the Quant-IT dsDNA high sensitivity assay. The
DNA in the library was denatured by NaOH and diluted to
7.5 pmol·L−1 with HT buffer provided in the Illumina kit. 600 μL of
the denatured and diluted library with 20% phiX spike-in (120 μL,
7.5 pmol·L−1 of PhiX) was loaded onto the MiSeq V2 reagent
cartridge (Illumina) prior to 2 × 250 paired-end sequencing on
Illumina Miseq platform. Sequencing was performed at BWH
Massachusetts Host - Microbiome Center.

16S taxonomic and predicted metagenomic function analyses
Raw FASTQ files were analyzed by QIIME2 v2019.10.40 The
demultiplexed reads were quality filtered, barcode trimmed, and
chimera detected by q2-vsearch plugin. Amplicon sequence
variants (ASVs) were assigned by clustering sequence reads with
99% identity against the Greengenes V13-8 database. Diversity
metrics (Shannon, Simpson and Chao1 for α-diversities and
weighted UniFrac, unweighted UniFac, Bray-Curtis, Jaccard for
β-diversities) were calculated by R package phyloseq. Relative
abundance of each taxon was calculated by dividing the number
of reads by the total reads of the sample. Any unassigned ASVs at
the genus level were grouped to the possible family/order level
for downstream analysis.
Metagenomic function was predicted using Phylogenetic

Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt2).41 ASV table was normalized by the known/
predicted 16S copy number abundance. The functional trait
abundance was then predicted within PICRUSt2 followed by
trimmed mean of M-values (TMM) normalization in R package
edgeR42 for further statistical analysis.
Linear discriminant analysis effect size (LEfSe) was performed to

determine the enriched taxa of each age group and visualized by
cladogram by GraPhlAn in the Galaxy web server.43 LEfSe couples
a univariate nonparametric test for statistical significance with
post hoc prioritization by the size of the effect as determined by
linear discriminant analysis (LDA). Mann Whitney U test was used
to analyze all features. P < 0.05 with logarithmic LDA score >2 was
used for the identification of discriminant features.
The 16S rRNA raw sequencing data has been deposited in the

NCBI SRA under accession numbers PRJNA737742. This dataset
was previously used as the external verification dataset for
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previously published random forest models characterizing age-
related changes in gut microbiome.23

Fecal microbiome analysis by qRT-PCR
Fecal samples were freshly collected from recipient mice 1-month
and 8-month after fecal microbiome transfer (FMT), flash frozen
and stored at −80 °C until analysis. Total fecal genomic DNA was
extracted by QIAamp PowerFecal Pro DNA Kit (Qiagen) according
to the manufacture’s protocol. Total bacteria abundance and
specific taxa abundance of Firmicutes, Bacteroidetes, Deferribac-
teres, Actinobacteria, and γ/δ-Proteobacteria were quantified by
quantitative real-time PCR (qRT-PCR) using Fast SYBR green master
mix (Applied Biosystems) on a StepOne Plus real-time PCR
machine (Applied Biosystems). The following primer sets were
used to quantify total bacteria abundance: Uni-340F (ACTCC-
TACGGGAGGCAGCAGT) and Uni-514R (ATTACCGCGGCTGCTGGC),
Firmicutes: Firm-928F (TGAAACTYAAAGGAATTGACG) and Firm-
1040R (ACCATGCACCACCTGTC), Bacteroidetes: CBF-798F (CRAA-
CAGGATTAGATACCCT) and CBF-967R (GGTAAGGTTCCTCGCGTAT),
Deferribacteres: Defer-1115F (CTATTTCCAGTTGCTAACGG) and
Defer-1265R (GAGHTGCTTCCCTCTGATTATG), Actinobacteria: Act-
664F (TGTAGCGGTGGAATGCGC) and Act-941R (AATTAAGCCA-
CATGCTCCGCT), γ/δ-Proteobacteria: Gamma-887F (GCTAACGCAT-
TAAGTRYCCCG) and Gamma-1066R (GCCATGCRGCACCTG
TCT).7,35,44 The primer efficiency of each primer set was
determined as previously described.35 A standard curve was
generated from a series dilution of genomic DNA extracted from
an overnight culture of Lactobacillus plantarum which was
quantified by standard plate count. The total fecal bacteria
abundance was calculated from the standard curve with the
consideration of input fecal weight. Specific taxa were calculated
using the following formula X = [(Eff.uni)CT.uni / (Eff.spec) CT.sepc] ×
total bacteria abundance, where “X” represents the abundance of
the specific taxon of interest, “Eff.uni” is the primer efficiency for
the universal bacteria primers (Uni-340F and Uni-514R), “Eff.spec”
is the primer efficiency for the specific taxon, “CT.uni” and
“CT.spec” are the Ct values obtained from qRT-PCR reactions.

Fecal LC-MS metabolome analysis
Second aliquot of fecal samples were used for metabolomics
assay. Before sample preparation, the sample sequence was
randomized to avoid bias. For the metabolomics sample prepara-
tion, 150 µL of an extraction solution containing internal standards
made up of 5 mL water, 5 mL methanol, 10 µL debrisoquine (1 mg/
mL in ddH2O), and 50 µL of 4-Nitrobenzoic acid (1 mg/mL in
Methanol) (per 10 mL) was added to the fecal pellet. The samples
were vortexed for 15 min then incubated on ice for 20 min. Next,
150 µL of chilled acetonitrile was added, the samples were
vortexed, then were incubated at −20 °C for 20min. Lastly, the
samples were centrifuged at 15 493 x g for 20 min at 4 °C and the
supernatant was transferred to a MS vial for LC-MS analysis.
A volume of 2 µL of each prepared sample was injected onto a

Waters Acquity BEH C18 1.7 μm, 2.1 × 50mm column for
metabolomics using an Acquity UPLC system coupled to a Xevo
G2-S quadrupole-time-of-flight mass spectrometer with an elec-
trospray ionization source (UPLC-ESI-QToF-MS) (Waters Corpora-
tion, Milford, MA). The mobile phases consisted of 100% water
(solvent A), 100% acetonitrile containing 0.1% formic acid (solvent
B), and 100% isopropanol with 0.1% formic acid (solvent C).
The solvent flow rate for the metabolomics acquisition was set

to 0.4 mL/min with the column set at 60 °C. The LC gradient was as
follows: Initial – 95% A, 5% B; 0.5 min – 95% A, 5% B; 8.0 min – 2%
A, 98% B; 9.0 min – 11.8% B, 88.2% C; 10.5 min – 11.8% B, 88.2% C;
11.5 min – 50% A, 50% B; 12.5 min – 95% A, 5% B; 13.0 min – 95%
A, 5% B.
The column eluent was introduced into the Xevo G2-S mass

spectrometer by electrospray operating in either negative or
positive electrospray ionization mode. Positive mode had a

capillary voltage of 3.00 kV and a sampling cone voltage of 30 V.
Negative mode had a capillary voltage of 2.00 kV and had a
sampling cone voltage of 30 V. The desolvation gas flow was set to
600 L/h and the desolvation temperature was set to 500 °C. The
cone gas flow was 25 L/h and the source temperature was set to
100 °C. The data were acquired in the sensitivity MS mode with a
scan time of 0.300 s and an interscan time of 0.014 s. Accurate
mass was maintained by infusing Leucine Enkephalin (556.2771
[M+ H]+ /554.2615 [M-H]-) in 50% aqueous acetonitrile (2.0 ng/
mL) at a rate of 10 µL/min via the Lockspray interface every 10 s.
The data were acquired in centroid mode with a 50.0 to 1 200.0 m/
z mass range for TOF-MS scanning. An aliquot of each sample was
pooled and used as a quality control (QC) which represented all
metabolites present. This QC sample was run at the beginning of
the sequence to condition the column and then injected every
10 samples to check mass accuracy, ensure presence of internal
standard, and to monitor shifts in retention time and signal
intensities.

LC-MS data processing and analysis
The untargeted data acquired were first converted to the NetCDF
unified data format using the Databridge tool in MassLynx (Waters
Corporation, Milford, MA). LC-MS spectral feature were annotated
in Human Metabolome Database (HMDB V4.0) (https://hmdb.ca/
spectra/ms/search) to curate putative metabolites. Adduct type
M+ H, M+ 2H, M+Na, M+ K, and M+ NH4 were chosen for
positive ion mode. M-H, M+Cl, M+ FA-H, and M-H-H2O were
chosen for negative ion mode. Molecular weight tolerance was set
as 10 ppm. LC-MS spectral features’ abundance values were log
transformed. The raw LC-MS data has been deposited in the
EMBL-EBI MetaboLights database45 with the identifier
MTBLS10321.
Unsupervised principle component analysis (PCA) and super-

vised sparse Partial Least Squares-Discriminant Analysis
(sPLS-DA) were performed by MetaboAnalyst 5.046 and visua-
lized by R package ggplot2.47 The optimal complexity of the
sPLS-DA model was assessed by five-fold cross-validation. The
top 10 variables for component 1 of sPLS-DA model were
selected for loading plot.
Pathway enrichment analysis was performed by MetaboAnalyst

5.0. Annotated LC-MS peaks were ranked by p value of t-test with
0.01 as cutoff value using Mummichog algorithm.48 Molecular
weight tolerance was set as 10 ppm. Adduct type M+ H, M+ 2H,
M+Na, M+ K, M+ NH4, M-H, M+Cl, M+ FA-H, and M-H-H2O
were selected. Mus musculus BioCyc and Mus musculus KEGG
databases were used for pathway libraries. Enriched pathways
were visualized with bubble plot by ggplot2.

Integrated 16S microbiome and LC-MS metabolome analysis
Metabolites derived from significantly altered 16S predicted
pathways (P < 0.05) were annotated using Metacyc (V23.5), HMDB
(V4.0), and KEGG (V93.0) (Table S5). The conversion between
chemical name, HMDB ID and KEGG ID was performed by online
bioinformatics tool Chemical Translation Service (https://
cts.fiehnlab.ucdavis.edu/batch). If there was no hit, a second
search was performed in HMDB database and KEGG database,
respectively (Table S6). The metabolites derived from 16S
predicted pathway were then compared to the fecal metabolites
from LC-MS dataset to identify common metabolites associated
with LC-MS peaks (Table S7).
The integrative analysis of 16S sequencing dataset and LC-MS

dataset was performed by a customized gene set enrichment
analysis (GSEA) to determine whether metabolites involved in 16S
predicted pathways were enriched in LC-MS metabolomics
dataset.49 Most 16S metagenome-linked predicted pathways
contained only a small number of metabolites that could be
annotated with LC-MS spectral features, which might result in less
power to detect significance. Thus, 16S predicted pathways were
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classified into a higher superclass pathways according to the
Metacyc database (V23.5). The superclass pathways with their
associated LC-MS spectral features were used as the customized
metabolite sets. The LC-MS peak intensity dataset was used as
expression dataset. The metric t Test (which uses the difference of
means scaled by the standard deviation and number of samples)
was selected for ranking. The minimum size of the metabolite set
was set as 10 and default settings were used for other parameters.

Statistical analysis
Data were represented as mean ± standard error of mean (SEM) or
mean with 95% confidence intervals (95% CI) as indicated in the
text. Microbial β-diversities were compared by PERMANOVA with
999 permutations using “adonis” function in R package Vegan.50

Unpaired t test (parametric data) or Mann–Whitney U test (non-
parametric data) was used for two group comparisons including
the microbiome α-diversities, taxa relative abundance, LC-MS peak
intensities, inflammatory biomarkers, and micro-CT data. One-way
ANOVA (parametric data) or Kruskal-Wallis test (non-parametric
data) with Tukey post hoc was used for three group comparisons
of the micro-CT data. Two-way ANOVA with Tukey post hoc was
used for the micro-CT data with two independent variables (age
and colonization). If the data did not meet the assumptions of
two-way ANOVA, Mann–Whitney U test was used. Benjamini-
Hochberg (BH) adjusting was applied for multiple comparisons.
* indicates P < 0.05. ** indicates P < 0.01. *** indicates P < 0.001. ns
indicates not statistically significant.
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